1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation. Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label. On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// | |
27 /// | unused |
28 /// | |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// | union table |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// | shadow memory |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range. See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46
47 #include "llvm/Transforms/Instrumentation.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/DenseSet.h"
50 #include "llvm/ADT/DepthFirstIterator.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/Triple.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/DebugInfo.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/SpecialCaseList.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include <algorithm>
69 #include <iterator>
70 #include <set>
71 #include <utility>
72
73 using namespace llvm;
74
75 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
76 // alignment requirements provided by the input IR are correct. For example,
77 // if the input IR contains a load with alignment 8, this flag will cause
78 // the shadow load to have alignment 16. This flag is disabled by default as
79 // we have unfortunately encountered too much code (including Clang itself;
80 // see PR14291) which performs misaligned access.
81 static cl::opt<bool> ClPreserveAlignment(
82 "dfsan-preserve-alignment",
83 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
84 cl::init(false));
85
86 // The ABI list files control how shadow parameters are passed. The pass treats
87 // every function labelled "uninstrumented" in the ABI list file as conforming
88 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
89 // additional annotations for those functions, a call to one of those functions
90 // will produce a warning message, as the labelling behaviour of the function is
91 // unknown. The other supported annotations are "functional" and "discard",
92 // which are described below under DataFlowSanitizer::WrapperKind.
93 static cl::list<std::string> ClABIListFiles(
94 "dfsan-abilist",
95 cl::desc("File listing native ABI functions and how the pass treats them"),
96 cl::Hidden);
97
98 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
99 // functions (see DataFlowSanitizer::InstrumentedABI below).
100 static cl::opt<bool> ClArgsABI(
101 "dfsan-args-abi",
102 cl::desc("Use the argument ABI rather than the TLS ABI"),
103 cl::Hidden);
104
105 // Controls whether the pass includes or ignores the labels of pointers in load
106 // instructions.
107 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
108 "dfsan-combine-pointer-labels-on-load",
109 cl::desc("Combine the label of the pointer with the label of the data when "
110 "loading from memory."),
111 cl::Hidden, cl::init(true));
112
113 // Controls whether the pass includes or ignores the labels of pointers in
114 // stores instructions.
115 static cl::opt<bool> ClCombinePointerLabelsOnStore(
116 "dfsan-combine-pointer-labels-on-store",
117 cl::desc("Combine the label of the pointer with the label of the data when "
118 "storing in memory."),
119 cl::Hidden, cl::init(false));
120
121 static cl::opt<bool> ClDebugNonzeroLabels(
122 "dfsan-debug-nonzero-labels",
123 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
124 "load or return with a nonzero label"),
125 cl::Hidden);
126
127 namespace {
128
GetGlobalTypeString(const GlobalValue & G)129 StringRef GetGlobalTypeString(const GlobalValue &G) {
130 // Types of GlobalVariables are always pointer types.
131 Type *GType = G.getType()->getElementType();
132 // For now we support blacklisting struct types only.
133 if (StructType *SGType = dyn_cast<StructType>(GType)) {
134 if (!SGType->isLiteral())
135 return SGType->getName();
136 }
137 return "<unknown type>";
138 }
139
140 class DFSanABIList {
141 std::unique_ptr<SpecialCaseList> SCL;
142
143 public:
DFSanABIList()144 DFSanABIList() {}
145
set(std::unique_ptr<SpecialCaseList> List)146 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
147
148 /// Returns whether either this function or its source file are listed in the
149 /// given category.
isIn(const Function & F,StringRef Category) const150 bool isIn(const Function &F, StringRef Category) const {
151 return isIn(*F.getParent(), Category) ||
152 SCL->inSection("fun", F.getName(), Category);
153 }
154
155 /// Returns whether this global alias is listed in the given category.
156 ///
157 /// If GA aliases a function, the alias's name is matched as a function name
158 /// would be. Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const159 bool isIn(const GlobalAlias &GA, StringRef Category) const {
160 if (isIn(*GA.getParent(), Category))
161 return true;
162
163 if (isa<FunctionType>(GA.getType()->getElementType()))
164 return SCL->inSection("fun", GA.getName(), Category);
165
166 return SCL->inSection("global", GA.getName(), Category) ||
167 SCL->inSection("type", GetGlobalTypeString(GA), Category);
168 }
169
170 /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const171 bool isIn(const Module &M, StringRef Category) const {
172 return SCL->inSection("src", M.getModuleIdentifier(), Category);
173 }
174 };
175
176 class DataFlowSanitizer : public ModulePass {
177 friend struct DFSanFunction;
178 friend class DFSanVisitor;
179
180 enum {
181 ShadowWidth = 16
182 };
183
184 /// Which ABI should be used for instrumented functions?
185 enum InstrumentedABI {
186 /// Argument and return value labels are passed through additional
187 /// arguments and by modifying the return type.
188 IA_Args,
189
190 /// Argument and return value labels are passed through TLS variables
191 /// __dfsan_arg_tls and __dfsan_retval_tls.
192 IA_TLS
193 };
194
195 /// How should calls to uninstrumented functions be handled?
196 enum WrapperKind {
197 /// This function is present in an uninstrumented form but we don't know
198 /// how it should be handled. Print a warning and call the function anyway.
199 /// Don't label the return value.
200 WK_Warning,
201
202 /// This function does not write to (user-accessible) memory, and its return
203 /// value is unlabelled.
204 WK_Discard,
205
206 /// This function does not write to (user-accessible) memory, and the label
207 /// of its return value is the union of the label of its arguments.
208 WK_Functional,
209
210 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
211 /// where F is the name of the function. This function may wrap the
212 /// original function or provide its own implementation. This is similar to
213 /// the IA_Args ABI, except that IA_Args uses a struct return type to
214 /// pass the return value shadow in a register, while WK_Custom uses an
215 /// extra pointer argument to return the shadow. This allows the wrapped
216 /// form of the function type to be expressed in C.
217 WK_Custom
218 };
219
220 Module *Mod;
221 LLVMContext *Ctx;
222 IntegerType *ShadowTy;
223 PointerType *ShadowPtrTy;
224 IntegerType *IntptrTy;
225 ConstantInt *ZeroShadow;
226 ConstantInt *ShadowPtrMask;
227 ConstantInt *ShadowPtrMul;
228 Constant *ArgTLS;
229 Constant *RetvalTLS;
230 void *(*GetArgTLSPtr)();
231 void *(*GetRetvalTLSPtr)();
232 Constant *GetArgTLS;
233 Constant *GetRetvalTLS;
234 FunctionType *DFSanUnionFnTy;
235 FunctionType *DFSanUnionLoadFnTy;
236 FunctionType *DFSanUnimplementedFnTy;
237 FunctionType *DFSanSetLabelFnTy;
238 FunctionType *DFSanNonzeroLabelFnTy;
239 FunctionType *DFSanVarargWrapperFnTy;
240 Constant *DFSanUnionFn;
241 Constant *DFSanCheckedUnionFn;
242 Constant *DFSanUnionLoadFn;
243 Constant *DFSanUnimplementedFn;
244 Constant *DFSanSetLabelFn;
245 Constant *DFSanNonzeroLabelFn;
246 Constant *DFSanVarargWrapperFn;
247 MDNode *ColdCallWeights;
248 DFSanABIList ABIList;
249 DenseMap<Value *, Function *> UnwrappedFnMap;
250 AttributeSet ReadOnlyNoneAttrs;
251 DenseMap<const Function *, DISubprogram> FunctionDIs;
252
253 Value *getShadowAddress(Value *Addr, Instruction *Pos);
254 bool isInstrumented(const Function *F);
255 bool isInstrumented(const GlobalAlias *GA);
256 FunctionType *getArgsFunctionType(FunctionType *T);
257 FunctionType *getTrampolineFunctionType(FunctionType *T);
258 FunctionType *getCustomFunctionType(FunctionType *T);
259 InstrumentedABI getInstrumentedABI();
260 WrapperKind getWrapperKind(Function *F);
261 void addGlobalNamePrefix(GlobalValue *GV);
262 Function *buildWrapperFunction(Function *F, StringRef NewFName,
263 GlobalValue::LinkageTypes NewFLink,
264 FunctionType *NewFT);
265 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
266
267 public:
268 DataFlowSanitizer(
269 const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
270 void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
271 static char ID;
272 bool doInitialization(Module &M) override;
273 bool runOnModule(Module &M) override;
274 };
275
276 struct DFSanFunction {
277 DataFlowSanitizer &DFS;
278 Function *F;
279 DominatorTree DT;
280 DataFlowSanitizer::InstrumentedABI IA;
281 bool IsNativeABI;
282 Value *ArgTLSPtr;
283 Value *RetvalTLSPtr;
284 AllocaInst *LabelReturnAlloca;
285 DenseMap<Value *, Value *> ValShadowMap;
286 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
287 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
288 DenseSet<Instruction *> SkipInsts;
289 std::vector<Value *> NonZeroChecks;
290 bool AvoidNewBlocks;
291
292 struct CachedCombinedShadow {
293 BasicBlock *Block;
294 Value *Shadow;
295 };
296 DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
297 CachedCombinedShadows;
298 DenseMap<Value *, std::set<Value *>> ShadowElements;
299
DFSanFunction__anonf274973e0111::DFSanFunction300 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
301 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
302 IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
303 LabelReturnAlloca(nullptr) {
304 DT.recalculate(*F);
305 // FIXME: Need to track down the register allocator issue which causes poor
306 // performance in pathological cases with large numbers of basic blocks.
307 AvoidNewBlocks = F->size() > 1000;
308 }
309 Value *getArgTLSPtr();
310 Value *getArgTLS(unsigned Index, Instruction *Pos);
311 Value *getRetvalTLS();
312 Value *getShadow(Value *V);
313 void setShadow(Instruction *I, Value *Shadow);
314 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
315 Value *combineOperandShadows(Instruction *Inst);
316 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
317 Instruction *Pos);
318 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
319 Instruction *Pos);
320 };
321
322 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
323 public:
324 DFSanFunction &DFSF;
DFSanVisitor(DFSanFunction & DFSF)325 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
326
327 void visitOperandShadowInst(Instruction &I);
328
329 void visitBinaryOperator(BinaryOperator &BO);
330 void visitCastInst(CastInst &CI);
331 void visitCmpInst(CmpInst &CI);
332 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
333 void visitLoadInst(LoadInst &LI);
334 void visitStoreInst(StoreInst &SI);
335 void visitReturnInst(ReturnInst &RI);
336 void visitCallSite(CallSite CS);
337 void visitPHINode(PHINode &PN);
338 void visitExtractElementInst(ExtractElementInst &I);
339 void visitInsertElementInst(InsertElementInst &I);
340 void visitShuffleVectorInst(ShuffleVectorInst &I);
341 void visitExtractValueInst(ExtractValueInst &I);
342 void visitInsertValueInst(InsertValueInst &I);
343 void visitAllocaInst(AllocaInst &I);
344 void visitSelectInst(SelectInst &I);
345 void visitMemSetInst(MemSetInst &I);
346 void visitMemTransferInst(MemTransferInst &I);
347 };
348
349 }
350
351 char DataFlowSanitizer::ID;
352 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
353 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
354
355 ModulePass *
createDataFlowSanitizerPass(const std::vector<std::string> & ABIListFiles,void * (* getArgTLS)(),void * (* getRetValTLS)())356 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
357 void *(*getArgTLS)(),
358 void *(*getRetValTLS)()) {
359 return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
360 }
361
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles,void * (* getArgTLS)(),void * (* getRetValTLS)())362 DataFlowSanitizer::DataFlowSanitizer(
363 const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
364 void *(*getRetValTLS)())
365 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
366 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
367 AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
368 ClABIListFiles.end());
369 ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
370 }
371
getArgsFunctionType(FunctionType * T)372 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
373 llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
374 ArgTypes.append(T->getNumParams(), ShadowTy);
375 if (T->isVarArg())
376 ArgTypes.push_back(ShadowPtrTy);
377 Type *RetType = T->getReturnType();
378 if (!RetType->isVoidTy())
379 RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr);
380 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
381 }
382
getTrampolineFunctionType(FunctionType * T)383 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
384 assert(!T->isVarArg());
385 llvm::SmallVector<Type *, 4> ArgTypes;
386 ArgTypes.push_back(T->getPointerTo());
387 ArgTypes.append(T->param_begin(), T->param_end());
388 ArgTypes.append(T->getNumParams(), ShadowTy);
389 Type *RetType = T->getReturnType();
390 if (!RetType->isVoidTy())
391 ArgTypes.push_back(ShadowPtrTy);
392 return FunctionType::get(T->getReturnType(), ArgTypes, false);
393 }
394
getCustomFunctionType(FunctionType * T)395 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
396 llvm::SmallVector<Type *, 4> ArgTypes;
397 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
398 i != e; ++i) {
399 FunctionType *FT;
400 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
401 *i)->getElementType()))) {
402 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
403 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
404 } else {
405 ArgTypes.push_back(*i);
406 }
407 }
408 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
409 ArgTypes.push_back(ShadowTy);
410 if (T->isVarArg())
411 ArgTypes.push_back(ShadowPtrTy);
412 Type *RetType = T->getReturnType();
413 if (!RetType->isVoidTy())
414 ArgTypes.push_back(ShadowPtrTy);
415 return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg());
416 }
417
doInitialization(Module & M)418 bool DataFlowSanitizer::doInitialization(Module &M) {
419 llvm::Triple TargetTriple(M.getTargetTriple());
420 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
421 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
422 TargetTriple.getArch() == llvm::Triple::mips64el;
423
424 const DataLayout &DL = M.getDataLayout();
425
426 Mod = &M;
427 Ctx = &M.getContext();
428 ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
429 ShadowPtrTy = PointerType::getUnqual(ShadowTy);
430 IntptrTy = DL.getIntPtrType(*Ctx);
431 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
432 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
433 if (IsX86_64)
434 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
435 else if (IsMIPS64)
436 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
437 else
438 report_fatal_error("unsupported triple");
439
440 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
441 DFSanUnionFnTy =
442 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
443 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
444 DFSanUnionLoadFnTy =
445 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
446 DFSanUnimplementedFnTy = FunctionType::get(
447 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
448 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
449 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
450 DFSanSetLabelArgs, /*isVarArg=*/false);
451 DFSanNonzeroLabelFnTy = FunctionType::get(
452 Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
453 DFSanVarargWrapperFnTy = FunctionType::get(
454 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
455
456 if (GetArgTLSPtr) {
457 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
458 ArgTLS = nullptr;
459 GetArgTLS = ConstantExpr::getIntToPtr(
460 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
461 PointerType::getUnqual(
462 FunctionType::get(PointerType::getUnqual(ArgTLSTy),
463 (Type *)nullptr)));
464 }
465 if (GetRetvalTLSPtr) {
466 RetvalTLS = nullptr;
467 GetRetvalTLS = ConstantExpr::getIntToPtr(
468 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
469 PointerType::getUnqual(
470 FunctionType::get(PointerType::getUnqual(ShadowTy),
471 (Type *)nullptr)));
472 }
473
474 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
475 return true;
476 }
477
isInstrumented(const Function * F)478 bool DataFlowSanitizer::isInstrumented(const Function *F) {
479 return !ABIList.isIn(*F, "uninstrumented");
480 }
481
isInstrumented(const GlobalAlias * GA)482 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
483 return !ABIList.isIn(*GA, "uninstrumented");
484 }
485
getInstrumentedABI()486 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
487 return ClArgsABI ? IA_Args : IA_TLS;
488 }
489
getWrapperKind(Function * F)490 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
491 if (ABIList.isIn(*F, "functional"))
492 return WK_Functional;
493 if (ABIList.isIn(*F, "discard"))
494 return WK_Discard;
495 if (ABIList.isIn(*F, "custom"))
496 return WK_Custom;
497
498 return WK_Warning;
499 }
500
addGlobalNamePrefix(GlobalValue * GV)501 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
502 std::string GVName = GV->getName(), Prefix = "dfs$";
503 GV->setName(Prefix + GVName);
504
505 // Try to change the name of the function in module inline asm. We only do
506 // this for specific asm directives, currently only ".symver", to try to avoid
507 // corrupting asm which happens to contain the symbol name as a substring.
508 // Note that the substitution for .symver assumes that the versioned symbol
509 // also has an instrumented name.
510 std::string Asm = GV->getParent()->getModuleInlineAsm();
511 std::string SearchStr = ".symver " + GVName + ",";
512 size_t Pos = Asm.find(SearchStr);
513 if (Pos != std::string::npos) {
514 Asm.replace(Pos, SearchStr.size(),
515 ".symver " + Prefix + GVName + "," + Prefix);
516 GV->getParent()->setModuleInlineAsm(Asm);
517 }
518 }
519
520 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)521 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
522 GlobalValue::LinkageTypes NewFLink,
523 FunctionType *NewFT) {
524 FunctionType *FT = F->getFunctionType();
525 Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
526 F->getParent());
527 NewF->copyAttributesFrom(F);
528 NewF->removeAttributes(
529 AttributeSet::ReturnIndex,
530 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
531 AttributeSet::ReturnIndex));
532
533 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
534 if (F->isVarArg()) {
535 NewF->removeAttributes(
536 AttributeSet::FunctionIndex,
537 AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex,
538 "split-stack"));
539 CallInst::Create(DFSanVarargWrapperFn,
540 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
541 BB);
542 new UnreachableInst(*Ctx, BB);
543 } else {
544 std::vector<Value *> Args;
545 unsigned n = FT->getNumParams();
546 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
547 Args.push_back(&*ai);
548 CallInst *CI = CallInst::Create(F, Args, "", BB);
549 if (FT->getReturnType()->isVoidTy())
550 ReturnInst::Create(*Ctx, BB);
551 else
552 ReturnInst::Create(*Ctx, CI, BB);
553 }
554
555 return NewF;
556 }
557
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)558 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
559 StringRef FName) {
560 FunctionType *FTT = getTrampolineFunctionType(FT);
561 Constant *C = Mod->getOrInsertFunction(FName, FTT);
562 Function *F = dyn_cast<Function>(C);
563 if (F && F->isDeclaration()) {
564 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
565 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
566 std::vector<Value *> Args;
567 Function::arg_iterator AI = F->arg_begin(); ++AI;
568 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
569 Args.push_back(&*AI);
570 CallInst *CI =
571 CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
572 ReturnInst *RI;
573 if (FT->getReturnType()->isVoidTy())
574 RI = ReturnInst::Create(*Ctx, BB);
575 else
576 RI = ReturnInst::Create(*Ctx, CI, BB);
577
578 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
579 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
580 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
581 DFSF.ValShadowMap[ValAI] = ShadowAI;
582 DFSanVisitor(DFSF).visitCallInst(*CI);
583 if (!FT->getReturnType()->isVoidTy())
584 new StoreInst(DFSF.getShadow(RI->getReturnValue()),
585 &F->getArgumentList().back(), RI);
586 }
587
588 return C;
589 }
590
runOnModule(Module & M)591 bool DataFlowSanitizer::runOnModule(Module &M) {
592 if (ABIList.isIn(M, "skip"))
593 return false;
594
595 FunctionDIs = makeSubprogramMap(M);
596
597 if (!GetArgTLSPtr) {
598 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
599 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
600 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
601 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
602 }
603 if (!GetRetvalTLSPtr) {
604 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
605 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
606 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
607 }
608
609 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
610 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
611 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
612 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
613 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
614 F->addAttribute(1, Attribute::ZExt);
615 F->addAttribute(2, Attribute::ZExt);
616 }
617 DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
618 if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
619 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
620 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
621 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
622 F->addAttribute(1, Attribute::ZExt);
623 F->addAttribute(2, Attribute::ZExt);
624 }
625 DFSanUnionLoadFn =
626 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
627 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
628 F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
629 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
630 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
631 }
632 DFSanUnimplementedFn =
633 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
634 DFSanSetLabelFn =
635 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
636 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
637 F->addAttribute(1, Attribute::ZExt);
638 }
639 DFSanNonzeroLabelFn =
640 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
641 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
642 DFSanVarargWrapperFnTy);
643
644 std::vector<Function *> FnsToInstrument;
645 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
646 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
647 if (!i->isIntrinsic() &&
648 i != DFSanUnionFn &&
649 i != DFSanCheckedUnionFn &&
650 i != DFSanUnionLoadFn &&
651 i != DFSanUnimplementedFn &&
652 i != DFSanSetLabelFn &&
653 i != DFSanNonzeroLabelFn &&
654 i != DFSanVarargWrapperFn)
655 FnsToInstrument.push_back(&*i);
656 }
657
658 // Give function aliases prefixes when necessary, and build wrappers where the
659 // instrumentedness is inconsistent.
660 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
661 GlobalAlias *GA = &*i;
662 ++i;
663 // Don't stop on weak. We assume people aren't playing games with the
664 // instrumentedness of overridden weak aliases.
665 if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
666 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
667 if (GAInst && FInst) {
668 addGlobalNamePrefix(GA);
669 } else if (GAInst != FInst) {
670 // Non-instrumented alias of an instrumented function, or vice versa.
671 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
672 // below will take care of instrumenting it.
673 Function *NewF =
674 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
675 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
676 NewF->takeName(GA);
677 GA->eraseFromParent();
678 FnsToInstrument.push_back(NewF);
679 }
680 }
681 }
682
683 AttrBuilder B;
684 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
685 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
686
687 // First, change the ABI of every function in the module. ABI-listed
688 // functions keep their original ABI and get a wrapper function.
689 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
690 e = FnsToInstrument.end();
691 i != e; ++i) {
692 Function &F = **i;
693 FunctionType *FT = F.getFunctionType();
694
695 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
696 FT->getReturnType()->isVoidTy());
697
698 if (isInstrumented(&F)) {
699 // Instrumented functions get a 'dfs$' prefix. This allows us to more
700 // easily identify cases of mismatching ABIs.
701 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
702 FunctionType *NewFT = getArgsFunctionType(FT);
703 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
704 NewF->copyAttributesFrom(&F);
705 NewF->removeAttributes(
706 AttributeSet::ReturnIndex,
707 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
708 AttributeSet::ReturnIndex));
709 for (Function::arg_iterator FArg = F.arg_begin(),
710 NewFArg = NewF->arg_begin(),
711 FArgEnd = F.arg_end();
712 FArg != FArgEnd; ++FArg, ++NewFArg) {
713 FArg->replaceAllUsesWith(NewFArg);
714 }
715 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
716
717 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
718 UI != UE;) {
719 BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
720 ++UI;
721 if (BA) {
722 BA->replaceAllUsesWith(
723 BlockAddress::get(NewF, BA->getBasicBlock()));
724 delete BA;
725 }
726 }
727 F.replaceAllUsesWith(
728 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
729 NewF->takeName(&F);
730 F.eraseFromParent();
731 *i = NewF;
732 addGlobalNamePrefix(NewF);
733 } else {
734 addGlobalNamePrefix(&F);
735 }
736 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
737 // Build a wrapper function for F. The wrapper simply calls F, and is
738 // added to FnsToInstrument so that any instrumentation according to its
739 // WrapperKind is done in the second pass below.
740 FunctionType *NewFT = getInstrumentedABI() == IA_Args
741 ? getArgsFunctionType(FT)
742 : FT;
743 Function *NewF = buildWrapperFunction(
744 &F, std::string("dfsw$") + std::string(F.getName()),
745 GlobalValue::LinkOnceODRLinkage, NewFT);
746 if (getInstrumentedABI() == IA_TLS)
747 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
748
749 Value *WrappedFnCst =
750 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
751 F.replaceAllUsesWith(WrappedFnCst);
752
753 // Patch the pointer to LLVM function in debug info descriptor.
754 auto DI = FunctionDIs.find(&F);
755 if (DI != FunctionDIs.end())
756 DI->second->replaceFunction(&F);
757
758 UnwrappedFnMap[WrappedFnCst] = &F;
759 *i = NewF;
760
761 if (!F.isDeclaration()) {
762 // This function is probably defining an interposition of an
763 // uninstrumented function and hence needs to keep the original ABI.
764 // But any functions it may call need to use the instrumented ABI, so
765 // we instrument it in a mode which preserves the original ABI.
766 FnsWithNativeABI.insert(&F);
767
768 // This code needs to rebuild the iterators, as they may be invalidated
769 // by the push_back, taking care that the new range does not include
770 // any functions added by this code.
771 size_t N = i - FnsToInstrument.begin(),
772 Count = e - FnsToInstrument.begin();
773 FnsToInstrument.push_back(&F);
774 i = FnsToInstrument.begin() + N;
775 e = FnsToInstrument.begin() + Count;
776 }
777 // Hopefully, nobody will try to indirectly call a vararg
778 // function... yet.
779 } else if (FT->isVarArg()) {
780 UnwrappedFnMap[&F] = &F;
781 *i = nullptr;
782 }
783 }
784
785 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
786 e = FnsToInstrument.end();
787 i != e; ++i) {
788 if (!*i || (*i)->isDeclaration())
789 continue;
790
791 removeUnreachableBlocks(**i);
792
793 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
794
795 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
796 // Build a copy of the list before iterating over it.
797 llvm::SmallVector<BasicBlock *, 4> BBList(
798 depth_first(&(*i)->getEntryBlock()));
799
800 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
801 e = BBList.end();
802 i != e; ++i) {
803 Instruction *Inst = &(*i)->front();
804 while (1) {
805 // DFSanVisitor may split the current basic block, changing the current
806 // instruction's next pointer and moving the next instruction to the
807 // tail block from which we should continue.
808 Instruction *Next = Inst->getNextNode();
809 // DFSanVisitor may delete Inst, so keep track of whether it was a
810 // terminator.
811 bool IsTerminator = isa<TerminatorInst>(Inst);
812 if (!DFSF.SkipInsts.count(Inst))
813 DFSanVisitor(DFSF).visit(Inst);
814 if (IsTerminator)
815 break;
816 Inst = Next;
817 }
818 }
819
820 // We will not necessarily be able to compute the shadow for every phi node
821 // until we have visited every block. Therefore, the code that handles phi
822 // nodes adds them to the PHIFixups list so that they can be properly
823 // handled here.
824 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
825 i = DFSF.PHIFixups.begin(),
826 e = DFSF.PHIFixups.end();
827 i != e; ++i) {
828 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
829 ++val) {
830 i->second->setIncomingValue(
831 val, DFSF.getShadow(i->first->getIncomingValue(val)));
832 }
833 }
834
835 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
836 // places (i.e. instructions in basic blocks we haven't even begun visiting
837 // yet). To make our life easier, do this work in a pass after the main
838 // instrumentation.
839 if (ClDebugNonzeroLabels) {
840 for (Value *V : DFSF.NonZeroChecks) {
841 Instruction *Pos;
842 if (Instruction *I = dyn_cast<Instruction>(V))
843 Pos = I->getNextNode();
844 else
845 Pos = DFSF.F->getEntryBlock().begin();
846 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
847 Pos = Pos->getNextNode();
848 IRBuilder<> IRB(Pos);
849 Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
850 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
851 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
852 IRBuilder<> ThenIRB(BI);
853 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn);
854 }
855 }
856 }
857
858 return false;
859 }
860
getArgTLSPtr()861 Value *DFSanFunction::getArgTLSPtr() {
862 if (ArgTLSPtr)
863 return ArgTLSPtr;
864 if (DFS.ArgTLS)
865 return ArgTLSPtr = DFS.ArgTLS;
866
867 IRBuilder<> IRB(F->getEntryBlock().begin());
868 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS);
869 }
870
getRetvalTLS()871 Value *DFSanFunction::getRetvalTLS() {
872 if (RetvalTLSPtr)
873 return RetvalTLSPtr;
874 if (DFS.RetvalTLS)
875 return RetvalTLSPtr = DFS.RetvalTLS;
876
877 IRBuilder<> IRB(F->getEntryBlock().begin());
878 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS);
879 }
880
getArgTLS(unsigned Idx,Instruction * Pos)881 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
882 IRBuilder<> IRB(Pos);
883 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
884 }
885
getShadow(Value * V)886 Value *DFSanFunction::getShadow(Value *V) {
887 if (!isa<Argument>(V) && !isa<Instruction>(V))
888 return DFS.ZeroShadow;
889 Value *&Shadow = ValShadowMap[V];
890 if (!Shadow) {
891 if (Argument *A = dyn_cast<Argument>(V)) {
892 if (IsNativeABI)
893 return DFS.ZeroShadow;
894 switch (IA) {
895 case DataFlowSanitizer::IA_TLS: {
896 Value *ArgTLSPtr = getArgTLSPtr();
897 Instruction *ArgTLSPos =
898 DFS.ArgTLS ? &*F->getEntryBlock().begin()
899 : cast<Instruction>(ArgTLSPtr)->getNextNode();
900 IRBuilder<> IRB(ArgTLSPos);
901 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
902 break;
903 }
904 case DataFlowSanitizer::IA_Args: {
905 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
906 Function::arg_iterator i = F->arg_begin();
907 while (ArgIdx--)
908 ++i;
909 Shadow = i;
910 assert(Shadow->getType() == DFS.ShadowTy);
911 break;
912 }
913 }
914 NonZeroChecks.push_back(Shadow);
915 } else {
916 Shadow = DFS.ZeroShadow;
917 }
918 }
919 return Shadow;
920 }
921
setShadow(Instruction * I,Value * Shadow)922 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
923 assert(!ValShadowMap.count(I));
924 assert(Shadow->getType() == DFS.ShadowTy);
925 ValShadowMap[I] = Shadow;
926 }
927
getShadowAddress(Value * Addr,Instruction * Pos)928 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
929 assert(Addr != RetvalTLS && "Reinstrumenting?");
930 IRBuilder<> IRB(Pos);
931 return IRB.CreateIntToPtr(
932 IRB.CreateMul(
933 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
934 ShadowPtrMul),
935 ShadowPtrTy);
936 }
937
938 // Generates IR to compute the union of the two given shadows, inserting it
939 // before Pos. Returns the computed union Value.
combineShadows(Value * V1,Value * V2,Instruction * Pos)940 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
941 if (V1 == DFS.ZeroShadow)
942 return V2;
943 if (V2 == DFS.ZeroShadow)
944 return V1;
945 if (V1 == V2)
946 return V1;
947
948 auto V1Elems = ShadowElements.find(V1);
949 auto V2Elems = ShadowElements.find(V2);
950 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
951 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
952 V2Elems->second.begin(), V2Elems->second.end())) {
953 return V1;
954 } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
955 V1Elems->second.begin(), V1Elems->second.end())) {
956 return V2;
957 }
958 } else if (V1Elems != ShadowElements.end()) {
959 if (V1Elems->second.count(V2))
960 return V1;
961 } else if (V2Elems != ShadowElements.end()) {
962 if (V2Elems->second.count(V1))
963 return V2;
964 }
965
966 auto Key = std::make_pair(V1, V2);
967 if (V1 > V2)
968 std::swap(Key.first, Key.second);
969 CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
970 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
971 return CCS.Shadow;
972
973 IRBuilder<> IRB(Pos);
974 if (AvoidNewBlocks) {
975 CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2);
976 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
977 Call->addAttribute(1, Attribute::ZExt);
978 Call->addAttribute(2, Attribute::ZExt);
979
980 CCS.Block = Pos->getParent();
981 CCS.Shadow = Call;
982 } else {
983 BasicBlock *Head = Pos->getParent();
984 Value *Ne = IRB.CreateICmpNE(V1, V2);
985 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
986 Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
987 IRBuilder<> ThenIRB(BI);
988 CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2);
989 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
990 Call->addAttribute(1, Attribute::ZExt);
991 Call->addAttribute(2, Attribute::ZExt);
992
993 BasicBlock *Tail = BI->getSuccessor(0);
994 PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin());
995 Phi->addIncoming(Call, Call->getParent());
996 Phi->addIncoming(V1, Head);
997
998 CCS.Block = Tail;
999 CCS.Shadow = Phi;
1000 }
1001
1002 std::set<Value *> UnionElems;
1003 if (V1Elems != ShadowElements.end()) {
1004 UnionElems = V1Elems->second;
1005 } else {
1006 UnionElems.insert(V1);
1007 }
1008 if (V2Elems != ShadowElements.end()) {
1009 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1010 } else {
1011 UnionElems.insert(V2);
1012 }
1013 ShadowElements[CCS.Shadow] = std::move(UnionElems);
1014
1015 return CCS.Shadow;
1016 }
1017
1018 // A convenience function which folds the shadows of each of the operands
1019 // of the provided instruction Inst, inserting the IR before Inst. Returns
1020 // the computed union Value.
combineOperandShadows(Instruction * Inst)1021 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1022 if (Inst->getNumOperands() == 0)
1023 return DFS.ZeroShadow;
1024
1025 Value *Shadow = getShadow(Inst->getOperand(0));
1026 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1027 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1028 }
1029 return Shadow;
1030 }
1031
visitOperandShadowInst(Instruction & I)1032 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1033 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1034 DFSF.setShadow(&I, CombinedShadow);
1035 }
1036
1037 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1038 // Addr has alignment Align, and take the union of each of those shadows.
loadShadow(Value * Addr,uint64_t Size,uint64_t Align,Instruction * Pos)1039 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1040 Instruction *Pos) {
1041 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1042 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1043 AllocaShadowMap.find(AI);
1044 if (i != AllocaShadowMap.end()) {
1045 IRBuilder<> IRB(Pos);
1046 return IRB.CreateLoad(i->second);
1047 }
1048 }
1049
1050 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1051 SmallVector<Value *, 2> Objs;
1052 GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1053 bool AllConstants = true;
1054 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
1055 i != e; ++i) {
1056 if (isa<Function>(*i) || isa<BlockAddress>(*i))
1057 continue;
1058 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
1059 continue;
1060
1061 AllConstants = false;
1062 break;
1063 }
1064 if (AllConstants)
1065 return DFS.ZeroShadow;
1066
1067 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1068 switch (Size) {
1069 case 0:
1070 return DFS.ZeroShadow;
1071 case 1: {
1072 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
1073 LI->setAlignment(ShadowAlign);
1074 return LI;
1075 }
1076 case 2: {
1077 IRBuilder<> IRB(Pos);
1078 Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1079 ConstantInt::get(DFS.IntptrTy, 1));
1080 return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
1081 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
1082 }
1083 }
1084 if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
1085 // Fast path for the common case where each byte has identical shadow: load
1086 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1087 // shadow is non-equal.
1088 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1089 IRBuilder<> FallbackIRB(FallbackBB);
1090 CallInst *FallbackCall = FallbackIRB.CreateCall2(
1091 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
1092 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
1093
1094 // Compare each of the shadows stored in the loaded 64 bits to each other,
1095 // by computing (WideShadow rotl ShadowWidth) == WideShadow.
1096 IRBuilder<> IRB(Pos);
1097 Value *WideAddr =
1098 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1099 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1100 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1101 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
1102 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
1103 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1104 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1105
1106 BasicBlock *Head = Pos->getParent();
1107 BasicBlock *Tail = Head->splitBasicBlock(Pos);
1108
1109 if (DomTreeNode *OldNode = DT.getNode(Head)) {
1110 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1111
1112 DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1113 for (auto Child : Children)
1114 DT.changeImmediateDominator(Child, NewNode);
1115 }
1116
1117 // In the following code LastBr will refer to the previous basic block's
1118 // conditional branch instruction, whose true successor is fixed up to point
1119 // to the next block during the loop below or to the tail after the final
1120 // iteration.
1121 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1122 ReplaceInstWithInst(Head->getTerminator(), LastBr);
1123 DT.addNewBlock(FallbackBB, Head);
1124
1125 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1126 Ofs += 64 / DFS.ShadowWidth) {
1127 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1128 DT.addNewBlock(NextBB, LastBr->getParent());
1129 IRBuilder<> NextIRB(NextBB);
1130 WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1131 ConstantInt::get(DFS.IntptrTy, 1));
1132 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1133 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1134 LastBr->setSuccessor(0, NextBB);
1135 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1136 }
1137
1138 LastBr->setSuccessor(0, Tail);
1139 FallbackIRB.CreateBr(Tail);
1140 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1141 Shadow->addIncoming(FallbackCall, FallbackBB);
1142 Shadow->addIncoming(TruncShadow, LastBr->getParent());
1143 return Shadow;
1144 }
1145
1146 IRBuilder<> IRB(Pos);
1147 CallInst *FallbackCall = IRB.CreateCall2(
1148 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
1149 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
1150 return FallbackCall;
1151 }
1152
visitLoadInst(LoadInst & LI)1153 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1154 auto &DL = LI.getModule()->getDataLayout();
1155 uint64_t Size = DL.getTypeStoreSize(LI.getType());
1156 if (Size == 0) {
1157 DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1158 return;
1159 }
1160
1161 uint64_t Align;
1162 if (ClPreserveAlignment) {
1163 Align = LI.getAlignment();
1164 if (Align == 0)
1165 Align = DL.getABITypeAlignment(LI.getType());
1166 } else {
1167 Align = 1;
1168 }
1169 IRBuilder<> IRB(&LI);
1170 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1171 if (ClCombinePointerLabelsOnLoad) {
1172 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1173 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1174 }
1175 if (Shadow != DFSF.DFS.ZeroShadow)
1176 DFSF.NonZeroChecks.push_back(Shadow);
1177
1178 DFSF.setShadow(&LI, Shadow);
1179 }
1180
storeShadow(Value * Addr,uint64_t Size,uint64_t Align,Value * Shadow,Instruction * Pos)1181 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1182 Value *Shadow, Instruction *Pos) {
1183 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1184 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1185 AllocaShadowMap.find(AI);
1186 if (i != AllocaShadowMap.end()) {
1187 IRBuilder<> IRB(Pos);
1188 IRB.CreateStore(Shadow, i->second);
1189 return;
1190 }
1191 }
1192
1193 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1194 IRBuilder<> IRB(Pos);
1195 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1196 if (Shadow == DFS.ZeroShadow) {
1197 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1198 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1199 Value *ExtShadowAddr =
1200 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1201 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1202 return;
1203 }
1204
1205 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1206 uint64_t Offset = 0;
1207 if (Size >= ShadowVecSize) {
1208 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1209 Value *ShadowVec = UndefValue::get(ShadowVecTy);
1210 for (unsigned i = 0; i != ShadowVecSize; ++i) {
1211 ShadowVec = IRB.CreateInsertElement(
1212 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1213 }
1214 Value *ShadowVecAddr =
1215 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1216 do {
1217 Value *CurShadowVecAddr =
1218 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1219 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1220 Size -= ShadowVecSize;
1221 ++Offset;
1222 } while (Size >= ShadowVecSize);
1223 Offset *= ShadowVecSize;
1224 }
1225 while (Size > 0) {
1226 Value *CurShadowAddr =
1227 IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1228 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1229 --Size;
1230 ++Offset;
1231 }
1232 }
1233
visitStoreInst(StoreInst & SI)1234 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1235 auto &DL = SI.getModule()->getDataLayout();
1236 uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1237 if (Size == 0)
1238 return;
1239
1240 uint64_t Align;
1241 if (ClPreserveAlignment) {
1242 Align = SI.getAlignment();
1243 if (Align == 0)
1244 Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
1245 } else {
1246 Align = 1;
1247 }
1248
1249 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1250 if (ClCombinePointerLabelsOnStore) {
1251 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1252 Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1253 }
1254 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1255 }
1256
visitBinaryOperator(BinaryOperator & BO)1257 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1258 visitOperandShadowInst(BO);
1259 }
1260
visitCastInst(CastInst & CI)1261 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1262
visitCmpInst(CmpInst & CI)1263 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1264
visitGetElementPtrInst(GetElementPtrInst & GEPI)1265 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1266 visitOperandShadowInst(GEPI);
1267 }
1268
visitExtractElementInst(ExtractElementInst & I)1269 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1270 visitOperandShadowInst(I);
1271 }
1272
visitInsertElementInst(InsertElementInst & I)1273 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1274 visitOperandShadowInst(I);
1275 }
1276
visitShuffleVectorInst(ShuffleVectorInst & I)1277 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1278 visitOperandShadowInst(I);
1279 }
1280
visitExtractValueInst(ExtractValueInst & I)1281 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1282 visitOperandShadowInst(I);
1283 }
1284
visitInsertValueInst(InsertValueInst & I)1285 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1286 visitOperandShadowInst(I);
1287 }
1288
visitAllocaInst(AllocaInst & I)1289 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1290 bool AllLoadsStores = true;
1291 for (User *U : I.users()) {
1292 if (isa<LoadInst>(U))
1293 continue;
1294
1295 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1296 if (SI->getPointerOperand() == &I)
1297 continue;
1298 }
1299
1300 AllLoadsStores = false;
1301 break;
1302 }
1303 if (AllLoadsStores) {
1304 IRBuilder<> IRB(&I);
1305 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1306 }
1307 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1308 }
1309
visitSelectInst(SelectInst & I)1310 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1311 Value *CondShadow = DFSF.getShadow(I.getCondition());
1312 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1313 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1314
1315 if (isa<VectorType>(I.getCondition()->getType())) {
1316 DFSF.setShadow(
1317 &I,
1318 DFSF.combineShadows(
1319 CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1320 } else {
1321 Value *ShadowSel;
1322 if (TrueShadow == FalseShadow) {
1323 ShadowSel = TrueShadow;
1324 } else {
1325 ShadowSel =
1326 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1327 }
1328 DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1329 }
1330 }
1331
visitMemSetInst(MemSetInst & I)1332 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1333 IRBuilder<> IRB(&I);
1334 Value *ValShadow = DFSF.getShadow(I.getValue());
1335 IRB.CreateCall3(
1336 DFSF.DFS.DFSanSetLabelFn, ValShadow,
1337 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
1338 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy));
1339 }
1340
visitMemTransferInst(MemTransferInst & I)1341 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1342 IRBuilder<> IRB(&I);
1343 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1344 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1345 Value *LenShadow = IRB.CreateMul(
1346 I.getLength(),
1347 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1348 Value *AlignShadow;
1349 if (ClPreserveAlignment) {
1350 AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1351 ConstantInt::get(I.getAlignmentCst()->getType(),
1352 DFSF.DFS.ShadowWidth / 8));
1353 } else {
1354 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1355 DFSF.DFS.ShadowWidth / 8);
1356 }
1357 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1358 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1359 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1360 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow,
1361 AlignShadow, I.getVolatileCst());
1362 }
1363
visitReturnInst(ReturnInst & RI)1364 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1365 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1366 switch (DFSF.IA) {
1367 case DataFlowSanitizer::IA_TLS: {
1368 Value *S = DFSF.getShadow(RI.getReturnValue());
1369 IRBuilder<> IRB(&RI);
1370 IRB.CreateStore(S, DFSF.getRetvalTLS());
1371 break;
1372 }
1373 case DataFlowSanitizer::IA_Args: {
1374 IRBuilder<> IRB(&RI);
1375 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1376 Value *InsVal =
1377 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1378 Value *InsShadow =
1379 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1380 RI.setOperand(0, InsShadow);
1381 break;
1382 }
1383 }
1384 }
1385 }
1386
visitCallSite(CallSite CS)1387 void DFSanVisitor::visitCallSite(CallSite CS) {
1388 Function *F = CS.getCalledFunction();
1389 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1390 visitOperandShadowInst(*CS.getInstruction());
1391 return;
1392 }
1393
1394 // Calls to this function are synthesized in wrappers, and we shouldn't
1395 // instrument them.
1396 if (F == DFSF.DFS.DFSanVarargWrapperFn)
1397 return;
1398
1399 assert(!(cast<FunctionType>(
1400 CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() &&
1401 dyn_cast<InvokeInst>(CS.getInstruction())));
1402
1403 IRBuilder<> IRB(CS.getInstruction());
1404
1405 DenseMap<Value *, Function *>::iterator i =
1406 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1407 if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1408 Function *F = i->second;
1409 switch (DFSF.DFS.getWrapperKind(F)) {
1410 case DataFlowSanitizer::WK_Warning: {
1411 CS.setCalledFunction(F);
1412 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1413 IRB.CreateGlobalStringPtr(F->getName()));
1414 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1415 return;
1416 }
1417 case DataFlowSanitizer::WK_Discard: {
1418 CS.setCalledFunction(F);
1419 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1420 return;
1421 }
1422 case DataFlowSanitizer::WK_Functional: {
1423 CS.setCalledFunction(F);
1424 visitOperandShadowInst(*CS.getInstruction());
1425 return;
1426 }
1427 case DataFlowSanitizer::WK_Custom: {
1428 // Don't try to handle invokes of custom functions, it's too complicated.
1429 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1430 // wrapper.
1431 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1432 FunctionType *FT = F->getFunctionType();
1433 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1434 std::string CustomFName = "__dfsw_";
1435 CustomFName += F->getName();
1436 Constant *CustomF =
1437 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1438 if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1439 CustomFn->copyAttributesFrom(F);
1440
1441 // Custom functions returning non-void will write to the return label.
1442 if (!FT->getReturnType()->isVoidTy()) {
1443 CustomFn->removeAttributes(AttributeSet::FunctionIndex,
1444 DFSF.DFS.ReadOnlyNoneAttrs);
1445 }
1446 }
1447
1448 std::vector<Value *> Args;
1449
1450 CallSite::arg_iterator i = CS.arg_begin();
1451 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1452 Type *T = (*i)->getType();
1453 FunctionType *ParamFT;
1454 if (isa<PointerType>(T) &&
1455 (ParamFT = dyn_cast<FunctionType>(
1456 cast<PointerType>(T)->getElementType()))) {
1457 std::string TName = "dfst";
1458 TName += utostr(FT->getNumParams() - n);
1459 TName += "$";
1460 TName += F->getName();
1461 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1462 Args.push_back(T);
1463 Args.push_back(
1464 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1465 } else {
1466 Args.push_back(*i);
1467 }
1468 }
1469
1470 i = CS.arg_begin();
1471 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1472 Args.push_back(DFSF.getShadow(*i));
1473
1474 if (FT->isVarArg()) {
1475 auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1476 CS.arg_size() - FT->getNumParams());
1477 auto *LabelVAAlloca = new AllocaInst(LabelVATy, "labelva",
1478 DFSF.F->getEntryBlock().begin());
1479
1480 for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
1481 auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1482 IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1483 }
1484
1485 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1486 }
1487
1488 if (!FT->getReturnType()->isVoidTy()) {
1489 if (!DFSF.LabelReturnAlloca) {
1490 DFSF.LabelReturnAlloca =
1491 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
1492 DFSF.F->getEntryBlock().begin());
1493 }
1494 Args.push_back(DFSF.LabelReturnAlloca);
1495 }
1496
1497 for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
1498 Args.push_back(*i);
1499
1500 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1501 CustomCI->setCallingConv(CI->getCallingConv());
1502 CustomCI->setAttributes(CI->getAttributes());
1503
1504 if (!FT->getReturnType()->isVoidTy()) {
1505 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1506 DFSF.setShadow(CustomCI, LabelLoad);
1507 }
1508
1509 CI->replaceAllUsesWith(CustomCI);
1510 CI->eraseFromParent();
1511 return;
1512 }
1513 break;
1514 }
1515 }
1516 }
1517
1518 FunctionType *FT = cast<FunctionType>(
1519 CS.getCalledValue()->getType()->getPointerElementType());
1520 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1521 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1522 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1523 DFSF.getArgTLS(i, CS.getInstruction()));
1524 }
1525 }
1526
1527 Instruction *Next = nullptr;
1528 if (!CS.getType()->isVoidTy()) {
1529 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1530 if (II->getNormalDest()->getSinglePredecessor()) {
1531 Next = II->getNormalDest()->begin();
1532 } else {
1533 BasicBlock *NewBB =
1534 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1535 Next = NewBB->begin();
1536 }
1537 } else {
1538 Next = CS->getNextNode();
1539 }
1540
1541 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1542 IRBuilder<> NextIRB(Next);
1543 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1544 DFSF.SkipInsts.insert(LI);
1545 DFSF.setShadow(CS.getInstruction(), LI);
1546 DFSF.NonZeroChecks.push_back(LI);
1547 }
1548 }
1549
1550 // Do all instrumentation for IA_Args down here to defer tampering with the
1551 // CFG in a way that SplitEdge may be able to detect.
1552 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1553 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1554 Value *Func =
1555 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1556 std::vector<Value *> Args;
1557
1558 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1559 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1560 Args.push_back(*i);
1561
1562 i = CS.arg_begin();
1563 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1564 Args.push_back(DFSF.getShadow(*i));
1565
1566 if (FT->isVarArg()) {
1567 unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1568 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1569 AllocaInst *VarArgShadow =
1570 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
1571 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1572 for (unsigned n = 0; i != e; ++i, ++n) {
1573 IRB.CreateStore(
1574 DFSF.getShadow(*i),
1575 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1576 Args.push_back(*i);
1577 }
1578 }
1579
1580 CallSite NewCS;
1581 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1582 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1583 Args);
1584 } else {
1585 NewCS = IRB.CreateCall(Func, Args);
1586 }
1587 NewCS.setCallingConv(CS.getCallingConv());
1588 NewCS.setAttributes(CS.getAttributes().removeAttributes(
1589 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
1590 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(),
1591 AttributeSet::ReturnIndex)));
1592
1593 if (Next) {
1594 ExtractValueInst *ExVal =
1595 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1596 DFSF.SkipInsts.insert(ExVal);
1597 ExtractValueInst *ExShadow =
1598 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1599 DFSF.SkipInsts.insert(ExShadow);
1600 DFSF.setShadow(ExVal, ExShadow);
1601 DFSF.NonZeroChecks.push_back(ExShadow);
1602
1603 CS.getInstruction()->replaceAllUsesWith(ExVal);
1604 }
1605
1606 CS.getInstruction()->eraseFromParent();
1607 }
1608 }
1609
visitPHINode(PHINode & PN)1610 void DFSanVisitor::visitPHINode(PHINode &PN) {
1611 PHINode *ShadowPN =
1612 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1613
1614 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1615 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1616 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1617 ++i) {
1618 ShadowPN->addIncoming(UndefShadow, *i);
1619 }
1620
1621 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1622 DFSF.setShadow(&PN, ShadowPN);
1623 }
1624