1 //===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.  Each
20 /// byte of application memory is backed by two bytes of shadow memory which
21 /// hold the label.  On Linux/x86_64, memory is laid out as follows:
22 ///
23 /// +--------------------+ 0x800000000000 (top of memory)
24 /// | application memory |
25 /// +--------------------+ 0x700000008000 (kAppAddr)
26 /// |                    |
27 /// |       unused       |
28 /// |                    |
29 /// +--------------------+ 0x200200000000 (kUnusedAddr)
30 /// |    union table     |
31 /// +--------------------+ 0x200000000000 (kUnionTableAddr)
32 /// |   shadow memory    |
33 /// +--------------------+ 0x000000010000 (kShadowAddr)
34 /// | reserved by kernel |
35 /// +--------------------+ 0x000000000000
36 ///
37 /// To derive a shadow memory address from an application memory address,
38 /// bits 44-46 are cleared to bring the address into the range
39 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
40 /// account for the double byte representation of shadow labels and move the
41 /// address into the shadow memory range.  See the function
42 /// DataFlowSanitizer::getShadowAddress below.
43 ///
44 /// For more information, please refer to the design document:
45 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46 
47 #include "llvm/Transforms/Instrumentation.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/DenseSet.h"
50 #include "llvm/ADT/DepthFirstIterator.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/Triple.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/DebugInfo.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/MDBuilder.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/SpecialCaseList.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include <algorithm>
69 #include <iterator>
70 #include <set>
71 #include <utility>
72 
73 using namespace llvm;
74 
75 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
76 // alignment requirements provided by the input IR are correct.  For example,
77 // if the input IR contains a load with alignment 8, this flag will cause
78 // the shadow load to have alignment 16.  This flag is disabled by default as
79 // we have unfortunately encountered too much code (including Clang itself;
80 // see PR14291) which performs misaligned access.
81 static cl::opt<bool> ClPreserveAlignment(
82     "dfsan-preserve-alignment",
83     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
84     cl::init(false));
85 
86 // The ABI list files control how shadow parameters are passed. The pass treats
87 // every function labelled "uninstrumented" in the ABI list file as conforming
88 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
89 // additional annotations for those functions, a call to one of those functions
90 // will produce a warning message, as the labelling behaviour of the function is
91 // unknown.  The other supported annotations are "functional" and "discard",
92 // which are described below under DataFlowSanitizer::WrapperKind.
93 static cl::list<std::string> ClABIListFiles(
94     "dfsan-abilist",
95     cl::desc("File listing native ABI functions and how the pass treats them"),
96     cl::Hidden);
97 
98 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
99 // functions (see DataFlowSanitizer::InstrumentedABI below).
100 static cl::opt<bool> ClArgsABI(
101     "dfsan-args-abi",
102     cl::desc("Use the argument ABI rather than the TLS ABI"),
103     cl::Hidden);
104 
105 // Controls whether the pass includes or ignores the labels of pointers in load
106 // instructions.
107 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
108     "dfsan-combine-pointer-labels-on-load",
109     cl::desc("Combine the label of the pointer with the label of the data when "
110              "loading from memory."),
111     cl::Hidden, cl::init(true));
112 
113 // Controls whether the pass includes or ignores the labels of pointers in
114 // stores instructions.
115 static cl::opt<bool> ClCombinePointerLabelsOnStore(
116     "dfsan-combine-pointer-labels-on-store",
117     cl::desc("Combine the label of the pointer with the label of the data when "
118              "storing in memory."),
119     cl::Hidden, cl::init(false));
120 
121 static cl::opt<bool> ClDebugNonzeroLabels(
122     "dfsan-debug-nonzero-labels",
123     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
124              "load or return with a nonzero label"),
125     cl::Hidden);
126 
127 namespace {
128 
GetGlobalTypeString(const GlobalValue & G)129 StringRef GetGlobalTypeString(const GlobalValue &G) {
130   // Types of GlobalVariables are always pointer types.
131   Type *GType = G.getType()->getElementType();
132   // For now we support blacklisting struct types only.
133   if (StructType *SGType = dyn_cast<StructType>(GType)) {
134     if (!SGType->isLiteral())
135       return SGType->getName();
136   }
137   return "<unknown type>";
138 }
139 
140 class DFSanABIList {
141   std::unique_ptr<SpecialCaseList> SCL;
142 
143  public:
DFSanABIList()144   DFSanABIList() {}
145 
set(std::unique_ptr<SpecialCaseList> List)146   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
147 
148   /// Returns whether either this function or its source file are listed in the
149   /// given category.
isIn(const Function & F,StringRef Category) const150   bool isIn(const Function &F, StringRef Category) const {
151     return isIn(*F.getParent(), Category) ||
152            SCL->inSection("fun", F.getName(), Category);
153   }
154 
155   /// Returns whether this global alias is listed in the given category.
156   ///
157   /// If GA aliases a function, the alias's name is matched as a function name
158   /// would be.  Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const159   bool isIn(const GlobalAlias &GA, StringRef Category) const {
160     if (isIn(*GA.getParent(), Category))
161       return true;
162 
163     if (isa<FunctionType>(GA.getType()->getElementType()))
164       return SCL->inSection("fun", GA.getName(), Category);
165 
166     return SCL->inSection("global", GA.getName(), Category) ||
167            SCL->inSection("type", GetGlobalTypeString(GA), Category);
168   }
169 
170   /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const171   bool isIn(const Module &M, StringRef Category) const {
172     return SCL->inSection("src", M.getModuleIdentifier(), Category);
173   }
174 };
175 
176 class DataFlowSanitizer : public ModulePass {
177   friend struct DFSanFunction;
178   friend class DFSanVisitor;
179 
180   enum {
181     ShadowWidth = 16
182   };
183 
184   /// Which ABI should be used for instrumented functions?
185   enum InstrumentedABI {
186     /// Argument and return value labels are passed through additional
187     /// arguments and by modifying the return type.
188     IA_Args,
189 
190     /// Argument and return value labels are passed through TLS variables
191     /// __dfsan_arg_tls and __dfsan_retval_tls.
192     IA_TLS
193   };
194 
195   /// How should calls to uninstrumented functions be handled?
196   enum WrapperKind {
197     /// This function is present in an uninstrumented form but we don't know
198     /// how it should be handled.  Print a warning and call the function anyway.
199     /// Don't label the return value.
200     WK_Warning,
201 
202     /// This function does not write to (user-accessible) memory, and its return
203     /// value is unlabelled.
204     WK_Discard,
205 
206     /// This function does not write to (user-accessible) memory, and the label
207     /// of its return value is the union of the label of its arguments.
208     WK_Functional,
209 
210     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
211     /// where F is the name of the function.  This function may wrap the
212     /// original function or provide its own implementation.  This is similar to
213     /// the IA_Args ABI, except that IA_Args uses a struct return type to
214     /// pass the return value shadow in a register, while WK_Custom uses an
215     /// extra pointer argument to return the shadow.  This allows the wrapped
216     /// form of the function type to be expressed in C.
217     WK_Custom
218   };
219 
220   Module *Mod;
221   LLVMContext *Ctx;
222   IntegerType *ShadowTy;
223   PointerType *ShadowPtrTy;
224   IntegerType *IntptrTy;
225   ConstantInt *ZeroShadow;
226   ConstantInt *ShadowPtrMask;
227   ConstantInt *ShadowPtrMul;
228   Constant *ArgTLS;
229   Constant *RetvalTLS;
230   void *(*GetArgTLSPtr)();
231   void *(*GetRetvalTLSPtr)();
232   Constant *GetArgTLS;
233   Constant *GetRetvalTLS;
234   FunctionType *DFSanUnionFnTy;
235   FunctionType *DFSanUnionLoadFnTy;
236   FunctionType *DFSanUnimplementedFnTy;
237   FunctionType *DFSanSetLabelFnTy;
238   FunctionType *DFSanNonzeroLabelFnTy;
239   FunctionType *DFSanVarargWrapperFnTy;
240   Constant *DFSanUnionFn;
241   Constant *DFSanCheckedUnionFn;
242   Constant *DFSanUnionLoadFn;
243   Constant *DFSanUnimplementedFn;
244   Constant *DFSanSetLabelFn;
245   Constant *DFSanNonzeroLabelFn;
246   Constant *DFSanVarargWrapperFn;
247   MDNode *ColdCallWeights;
248   DFSanABIList ABIList;
249   DenseMap<Value *, Function *> UnwrappedFnMap;
250   AttributeSet ReadOnlyNoneAttrs;
251   DenseMap<const Function *, DISubprogram> FunctionDIs;
252 
253   Value *getShadowAddress(Value *Addr, Instruction *Pos);
254   bool isInstrumented(const Function *F);
255   bool isInstrumented(const GlobalAlias *GA);
256   FunctionType *getArgsFunctionType(FunctionType *T);
257   FunctionType *getTrampolineFunctionType(FunctionType *T);
258   FunctionType *getCustomFunctionType(FunctionType *T);
259   InstrumentedABI getInstrumentedABI();
260   WrapperKind getWrapperKind(Function *F);
261   void addGlobalNamePrefix(GlobalValue *GV);
262   Function *buildWrapperFunction(Function *F, StringRef NewFName,
263                                  GlobalValue::LinkageTypes NewFLink,
264                                  FunctionType *NewFT);
265   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
266 
267  public:
268   DataFlowSanitizer(
269       const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
270       void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
271   static char ID;
272   bool doInitialization(Module &M) override;
273   bool runOnModule(Module &M) override;
274 };
275 
276 struct DFSanFunction {
277   DataFlowSanitizer &DFS;
278   Function *F;
279   DominatorTree DT;
280   DataFlowSanitizer::InstrumentedABI IA;
281   bool IsNativeABI;
282   Value *ArgTLSPtr;
283   Value *RetvalTLSPtr;
284   AllocaInst *LabelReturnAlloca;
285   DenseMap<Value *, Value *> ValShadowMap;
286   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
287   std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
288   DenseSet<Instruction *> SkipInsts;
289   std::vector<Value *> NonZeroChecks;
290   bool AvoidNewBlocks;
291 
292   struct CachedCombinedShadow {
293     BasicBlock *Block;
294     Value *Shadow;
295   };
296   DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
297       CachedCombinedShadows;
298   DenseMap<Value *, std::set<Value *>> ShadowElements;
299 
DFSanFunction__anonf274973e0111::DFSanFunction300   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
301       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
302         IsNativeABI(IsNativeABI), ArgTLSPtr(nullptr), RetvalTLSPtr(nullptr),
303         LabelReturnAlloca(nullptr) {
304     DT.recalculate(*F);
305     // FIXME: Need to track down the register allocator issue which causes poor
306     // performance in pathological cases with large numbers of basic blocks.
307     AvoidNewBlocks = F->size() > 1000;
308   }
309   Value *getArgTLSPtr();
310   Value *getArgTLS(unsigned Index, Instruction *Pos);
311   Value *getRetvalTLS();
312   Value *getShadow(Value *V);
313   void setShadow(Instruction *I, Value *Shadow);
314   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
315   Value *combineOperandShadows(Instruction *Inst);
316   Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
317                     Instruction *Pos);
318   void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
319                    Instruction *Pos);
320 };
321 
322 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
323  public:
324   DFSanFunction &DFSF;
DFSanVisitor(DFSanFunction & DFSF)325   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
326 
327   void visitOperandShadowInst(Instruction &I);
328 
329   void visitBinaryOperator(BinaryOperator &BO);
330   void visitCastInst(CastInst &CI);
331   void visitCmpInst(CmpInst &CI);
332   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
333   void visitLoadInst(LoadInst &LI);
334   void visitStoreInst(StoreInst &SI);
335   void visitReturnInst(ReturnInst &RI);
336   void visitCallSite(CallSite CS);
337   void visitPHINode(PHINode &PN);
338   void visitExtractElementInst(ExtractElementInst &I);
339   void visitInsertElementInst(InsertElementInst &I);
340   void visitShuffleVectorInst(ShuffleVectorInst &I);
341   void visitExtractValueInst(ExtractValueInst &I);
342   void visitInsertValueInst(InsertValueInst &I);
343   void visitAllocaInst(AllocaInst &I);
344   void visitSelectInst(SelectInst &I);
345   void visitMemSetInst(MemSetInst &I);
346   void visitMemTransferInst(MemTransferInst &I);
347 };
348 
349 }
350 
351 char DataFlowSanitizer::ID;
352 INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
353                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
354 
355 ModulePass *
createDataFlowSanitizerPass(const std::vector<std::string> & ABIListFiles,void * (* getArgTLS)(),void * (* getRetValTLS)())356 llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
357                                   void *(*getArgTLS)(),
358                                   void *(*getRetValTLS)()) {
359   return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
360 }
361 
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles,void * (* getArgTLS)(),void * (* getRetValTLS)())362 DataFlowSanitizer::DataFlowSanitizer(
363     const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
364     void *(*getRetValTLS)())
365     : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
366   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
367   AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
368                          ClABIListFiles.end());
369   ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
370 }
371 
getArgsFunctionType(FunctionType * T)372 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
373   llvm::SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
374   ArgTypes.append(T->getNumParams(), ShadowTy);
375   if (T->isVarArg())
376     ArgTypes.push_back(ShadowPtrTy);
377   Type *RetType = T->getReturnType();
378   if (!RetType->isVoidTy())
379     RetType = StructType::get(RetType, ShadowTy, (Type *)nullptr);
380   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
381 }
382 
getTrampolineFunctionType(FunctionType * T)383 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
384   assert(!T->isVarArg());
385   llvm::SmallVector<Type *, 4> ArgTypes;
386   ArgTypes.push_back(T->getPointerTo());
387   ArgTypes.append(T->param_begin(), T->param_end());
388   ArgTypes.append(T->getNumParams(), ShadowTy);
389   Type *RetType = T->getReturnType();
390   if (!RetType->isVoidTy())
391     ArgTypes.push_back(ShadowPtrTy);
392   return FunctionType::get(T->getReturnType(), ArgTypes, false);
393 }
394 
getCustomFunctionType(FunctionType * T)395 FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
396   llvm::SmallVector<Type *, 4> ArgTypes;
397   for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
398        i != e; ++i) {
399     FunctionType *FT;
400     if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
401                                      *i)->getElementType()))) {
402       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
403       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
404     } else {
405       ArgTypes.push_back(*i);
406     }
407   }
408   for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
409     ArgTypes.push_back(ShadowTy);
410   if (T->isVarArg())
411     ArgTypes.push_back(ShadowPtrTy);
412   Type *RetType = T->getReturnType();
413   if (!RetType->isVoidTy())
414     ArgTypes.push_back(ShadowPtrTy);
415   return FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg());
416 }
417 
doInitialization(Module & M)418 bool DataFlowSanitizer::doInitialization(Module &M) {
419   llvm::Triple TargetTriple(M.getTargetTriple());
420   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
421   bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
422                   TargetTriple.getArch() == llvm::Triple::mips64el;
423 
424   const DataLayout &DL = M.getDataLayout();
425 
426   Mod = &M;
427   Ctx = &M.getContext();
428   ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
429   ShadowPtrTy = PointerType::getUnqual(ShadowTy);
430   IntptrTy = DL.getIntPtrType(*Ctx);
431   ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
432   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
433   if (IsX86_64)
434     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
435   else if (IsMIPS64)
436     ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
437   else
438     report_fatal_error("unsupported triple");
439 
440   Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
441   DFSanUnionFnTy =
442       FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
443   Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
444   DFSanUnionLoadFnTy =
445       FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
446   DFSanUnimplementedFnTy = FunctionType::get(
447       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
448   Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
449   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
450                                         DFSanSetLabelArgs, /*isVarArg=*/false);
451   DFSanNonzeroLabelFnTy = FunctionType::get(
452       Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
453   DFSanVarargWrapperFnTy = FunctionType::get(
454       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
455 
456   if (GetArgTLSPtr) {
457     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
458     ArgTLS = nullptr;
459     GetArgTLS = ConstantExpr::getIntToPtr(
460         ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
461         PointerType::getUnqual(
462             FunctionType::get(PointerType::getUnqual(ArgTLSTy),
463                               (Type *)nullptr)));
464   }
465   if (GetRetvalTLSPtr) {
466     RetvalTLS = nullptr;
467     GetRetvalTLS = ConstantExpr::getIntToPtr(
468         ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
469         PointerType::getUnqual(
470             FunctionType::get(PointerType::getUnqual(ShadowTy),
471                               (Type *)nullptr)));
472   }
473 
474   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
475   return true;
476 }
477 
isInstrumented(const Function * F)478 bool DataFlowSanitizer::isInstrumented(const Function *F) {
479   return !ABIList.isIn(*F, "uninstrumented");
480 }
481 
isInstrumented(const GlobalAlias * GA)482 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
483   return !ABIList.isIn(*GA, "uninstrumented");
484 }
485 
getInstrumentedABI()486 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
487   return ClArgsABI ? IA_Args : IA_TLS;
488 }
489 
getWrapperKind(Function * F)490 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
491   if (ABIList.isIn(*F, "functional"))
492     return WK_Functional;
493   if (ABIList.isIn(*F, "discard"))
494     return WK_Discard;
495   if (ABIList.isIn(*F, "custom"))
496     return WK_Custom;
497 
498   return WK_Warning;
499 }
500 
addGlobalNamePrefix(GlobalValue * GV)501 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
502   std::string GVName = GV->getName(), Prefix = "dfs$";
503   GV->setName(Prefix + GVName);
504 
505   // Try to change the name of the function in module inline asm.  We only do
506   // this for specific asm directives, currently only ".symver", to try to avoid
507   // corrupting asm which happens to contain the symbol name as a substring.
508   // Note that the substitution for .symver assumes that the versioned symbol
509   // also has an instrumented name.
510   std::string Asm = GV->getParent()->getModuleInlineAsm();
511   std::string SearchStr = ".symver " + GVName + ",";
512   size_t Pos = Asm.find(SearchStr);
513   if (Pos != std::string::npos) {
514     Asm.replace(Pos, SearchStr.size(),
515                 ".symver " + Prefix + GVName + "," + Prefix);
516     GV->getParent()->setModuleInlineAsm(Asm);
517   }
518 }
519 
520 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)521 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
522                                         GlobalValue::LinkageTypes NewFLink,
523                                         FunctionType *NewFT) {
524   FunctionType *FT = F->getFunctionType();
525   Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
526                                     F->getParent());
527   NewF->copyAttributesFrom(F);
528   NewF->removeAttributes(
529       AttributeSet::ReturnIndex,
530       AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
531                                        AttributeSet::ReturnIndex));
532 
533   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
534   if (F->isVarArg()) {
535     NewF->removeAttributes(
536         AttributeSet::FunctionIndex,
537         AttributeSet().addAttribute(*Ctx, AttributeSet::FunctionIndex,
538                                     "split-stack"));
539     CallInst::Create(DFSanVarargWrapperFn,
540                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
541                      BB);
542     new UnreachableInst(*Ctx, BB);
543   } else {
544     std::vector<Value *> Args;
545     unsigned n = FT->getNumParams();
546     for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
547       Args.push_back(&*ai);
548     CallInst *CI = CallInst::Create(F, Args, "", BB);
549     if (FT->getReturnType()->isVoidTy())
550       ReturnInst::Create(*Ctx, BB);
551     else
552       ReturnInst::Create(*Ctx, CI, BB);
553   }
554 
555   return NewF;
556 }
557 
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)558 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
559                                                           StringRef FName) {
560   FunctionType *FTT = getTrampolineFunctionType(FT);
561   Constant *C = Mod->getOrInsertFunction(FName, FTT);
562   Function *F = dyn_cast<Function>(C);
563   if (F && F->isDeclaration()) {
564     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
565     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
566     std::vector<Value *> Args;
567     Function::arg_iterator AI = F->arg_begin(); ++AI;
568     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
569       Args.push_back(&*AI);
570     CallInst *CI =
571         CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
572     ReturnInst *RI;
573     if (FT->getReturnType()->isVoidTy())
574       RI = ReturnInst::Create(*Ctx, BB);
575     else
576       RI = ReturnInst::Create(*Ctx, CI, BB);
577 
578     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
579     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
580     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
581       DFSF.ValShadowMap[ValAI] = ShadowAI;
582     DFSanVisitor(DFSF).visitCallInst(*CI);
583     if (!FT->getReturnType()->isVoidTy())
584       new StoreInst(DFSF.getShadow(RI->getReturnValue()),
585                     &F->getArgumentList().back(), RI);
586   }
587 
588   return C;
589 }
590 
runOnModule(Module & M)591 bool DataFlowSanitizer::runOnModule(Module &M) {
592   if (ABIList.isIn(M, "skip"))
593     return false;
594 
595   FunctionDIs = makeSubprogramMap(M);
596 
597   if (!GetArgTLSPtr) {
598     Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
599     ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
600     if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
601       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
602   }
603   if (!GetRetvalTLSPtr) {
604     RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
605     if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
606       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
607   }
608 
609   DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
610   if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
611     F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
612     F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
613     F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
614     F->addAttribute(1, Attribute::ZExt);
615     F->addAttribute(2, Attribute::ZExt);
616   }
617   DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
618   if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
619     F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
620     F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
621     F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
622     F->addAttribute(1, Attribute::ZExt);
623     F->addAttribute(2, Attribute::ZExt);
624   }
625   DFSanUnionLoadFn =
626       Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
627   if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
628     F->addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
629     F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
630     F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
631   }
632   DFSanUnimplementedFn =
633       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
634   DFSanSetLabelFn =
635       Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
636   if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
637     F->addAttribute(1, Attribute::ZExt);
638   }
639   DFSanNonzeroLabelFn =
640       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
641   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
642                                                   DFSanVarargWrapperFnTy);
643 
644   std::vector<Function *> FnsToInstrument;
645   llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
646   for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
647     if (!i->isIntrinsic() &&
648         i != DFSanUnionFn &&
649         i != DFSanCheckedUnionFn &&
650         i != DFSanUnionLoadFn &&
651         i != DFSanUnimplementedFn &&
652         i != DFSanSetLabelFn &&
653         i != DFSanNonzeroLabelFn &&
654         i != DFSanVarargWrapperFn)
655       FnsToInstrument.push_back(&*i);
656   }
657 
658   // Give function aliases prefixes when necessary, and build wrappers where the
659   // instrumentedness is inconsistent.
660   for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
661     GlobalAlias *GA = &*i;
662     ++i;
663     // Don't stop on weak.  We assume people aren't playing games with the
664     // instrumentedness of overridden weak aliases.
665     if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
666       bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
667       if (GAInst && FInst) {
668         addGlobalNamePrefix(GA);
669       } else if (GAInst != FInst) {
670         // Non-instrumented alias of an instrumented function, or vice versa.
671         // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
672         // below will take care of instrumenting it.
673         Function *NewF =
674             buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
675         GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
676         NewF->takeName(GA);
677         GA->eraseFromParent();
678         FnsToInstrument.push_back(NewF);
679       }
680     }
681   }
682 
683   AttrBuilder B;
684   B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
685   ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
686 
687   // First, change the ABI of every function in the module.  ABI-listed
688   // functions keep their original ABI and get a wrapper function.
689   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
690                                          e = FnsToInstrument.end();
691        i != e; ++i) {
692     Function &F = **i;
693     FunctionType *FT = F.getFunctionType();
694 
695     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
696                               FT->getReturnType()->isVoidTy());
697 
698     if (isInstrumented(&F)) {
699       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
700       // easily identify cases of mismatching ABIs.
701       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
702         FunctionType *NewFT = getArgsFunctionType(FT);
703         Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
704         NewF->copyAttributesFrom(&F);
705         NewF->removeAttributes(
706             AttributeSet::ReturnIndex,
707             AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
708                                              AttributeSet::ReturnIndex));
709         for (Function::arg_iterator FArg = F.arg_begin(),
710                                     NewFArg = NewF->arg_begin(),
711                                     FArgEnd = F.arg_end();
712              FArg != FArgEnd; ++FArg, ++NewFArg) {
713           FArg->replaceAllUsesWith(NewFArg);
714         }
715         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
716 
717         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
718              UI != UE;) {
719           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
720           ++UI;
721           if (BA) {
722             BA->replaceAllUsesWith(
723                 BlockAddress::get(NewF, BA->getBasicBlock()));
724             delete BA;
725           }
726         }
727         F.replaceAllUsesWith(
728             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
729         NewF->takeName(&F);
730         F.eraseFromParent();
731         *i = NewF;
732         addGlobalNamePrefix(NewF);
733       } else {
734         addGlobalNamePrefix(&F);
735       }
736     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
737       // Build a wrapper function for F.  The wrapper simply calls F, and is
738       // added to FnsToInstrument so that any instrumentation according to its
739       // WrapperKind is done in the second pass below.
740       FunctionType *NewFT = getInstrumentedABI() == IA_Args
741                                 ? getArgsFunctionType(FT)
742                                 : FT;
743       Function *NewF = buildWrapperFunction(
744           &F, std::string("dfsw$") + std::string(F.getName()),
745           GlobalValue::LinkOnceODRLinkage, NewFT);
746       if (getInstrumentedABI() == IA_TLS)
747         NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
748 
749       Value *WrappedFnCst =
750           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
751       F.replaceAllUsesWith(WrappedFnCst);
752 
753       // Patch the pointer to LLVM function in debug info descriptor.
754       auto DI = FunctionDIs.find(&F);
755       if (DI != FunctionDIs.end())
756         DI->second->replaceFunction(&F);
757 
758       UnwrappedFnMap[WrappedFnCst] = &F;
759       *i = NewF;
760 
761       if (!F.isDeclaration()) {
762         // This function is probably defining an interposition of an
763         // uninstrumented function and hence needs to keep the original ABI.
764         // But any functions it may call need to use the instrumented ABI, so
765         // we instrument it in a mode which preserves the original ABI.
766         FnsWithNativeABI.insert(&F);
767 
768         // This code needs to rebuild the iterators, as they may be invalidated
769         // by the push_back, taking care that the new range does not include
770         // any functions added by this code.
771         size_t N = i - FnsToInstrument.begin(),
772                Count = e - FnsToInstrument.begin();
773         FnsToInstrument.push_back(&F);
774         i = FnsToInstrument.begin() + N;
775         e = FnsToInstrument.begin() + Count;
776       }
777                // Hopefully, nobody will try to indirectly call a vararg
778                // function... yet.
779     } else if (FT->isVarArg()) {
780       UnwrappedFnMap[&F] = &F;
781       *i = nullptr;
782     }
783   }
784 
785   for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
786                                          e = FnsToInstrument.end();
787        i != e; ++i) {
788     if (!*i || (*i)->isDeclaration())
789       continue;
790 
791     removeUnreachableBlocks(**i);
792 
793     DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
794 
795     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
796     // Build a copy of the list before iterating over it.
797     llvm::SmallVector<BasicBlock *, 4> BBList(
798         depth_first(&(*i)->getEntryBlock()));
799 
800     for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
801                                                       e = BBList.end();
802          i != e; ++i) {
803       Instruction *Inst = &(*i)->front();
804       while (1) {
805         // DFSanVisitor may split the current basic block, changing the current
806         // instruction's next pointer and moving the next instruction to the
807         // tail block from which we should continue.
808         Instruction *Next = Inst->getNextNode();
809         // DFSanVisitor may delete Inst, so keep track of whether it was a
810         // terminator.
811         bool IsTerminator = isa<TerminatorInst>(Inst);
812         if (!DFSF.SkipInsts.count(Inst))
813           DFSanVisitor(DFSF).visit(Inst);
814         if (IsTerminator)
815           break;
816         Inst = Next;
817       }
818     }
819 
820     // We will not necessarily be able to compute the shadow for every phi node
821     // until we have visited every block.  Therefore, the code that handles phi
822     // nodes adds them to the PHIFixups list so that they can be properly
823     // handled here.
824     for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
825              i = DFSF.PHIFixups.begin(),
826              e = DFSF.PHIFixups.end();
827          i != e; ++i) {
828       for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
829            ++val) {
830         i->second->setIncomingValue(
831             val, DFSF.getShadow(i->first->getIncomingValue(val)));
832       }
833     }
834 
835     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
836     // places (i.e. instructions in basic blocks we haven't even begun visiting
837     // yet).  To make our life easier, do this work in a pass after the main
838     // instrumentation.
839     if (ClDebugNonzeroLabels) {
840       for (Value *V : DFSF.NonZeroChecks) {
841         Instruction *Pos;
842         if (Instruction *I = dyn_cast<Instruction>(V))
843           Pos = I->getNextNode();
844         else
845           Pos = DFSF.F->getEntryBlock().begin();
846         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
847           Pos = Pos->getNextNode();
848         IRBuilder<> IRB(Pos);
849         Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
850         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
851             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
852         IRBuilder<> ThenIRB(BI);
853         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn);
854       }
855     }
856   }
857 
858   return false;
859 }
860 
getArgTLSPtr()861 Value *DFSanFunction::getArgTLSPtr() {
862   if (ArgTLSPtr)
863     return ArgTLSPtr;
864   if (DFS.ArgTLS)
865     return ArgTLSPtr = DFS.ArgTLS;
866 
867   IRBuilder<> IRB(F->getEntryBlock().begin());
868   return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS);
869 }
870 
getRetvalTLS()871 Value *DFSanFunction::getRetvalTLS() {
872   if (RetvalTLSPtr)
873     return RetvalTLSPtr;
874   if (DFS.RetvalTLS)
875     return RetvalTLSPtr = DFS.RetvalTLS;
876 
877   IRBuilder<> IRB(F->getEntryBlock().begin());
878   return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS);
879 }
880 
getArgTLS(unsigned Idx,Instruction * Pos)881 Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
882   IRBuilder<> IRB(Pos);
883   return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
884 }
885 
getShadow(Value * V)886 Value *DFSanFunction::getShadow(Value *V) {
887   if (!isa<Argument>(V) && !isa<Instruction>(V))
888     return DFS.ZeroShadow;
889   Value *&Shadow = ValShadowMap[V];
890   if (!Shadow) {
891     if (Argument *A = dyn_cast<Argument>(V)) {
892       if (IsNativeABI)
893         return DFS.ZeroShadow;
894       switch (IA) {
895       case DataFlowSanitizer::IA_TLS: {
896         Value *ArgTLSPtr = getArgTLSPtr();
897         Instruction *ArgTLSPos =
898             DFS.ArgTLS ? &*F->getEntryBlock().begin()
899                        : cast<Instruction>(ArgTLSPtr)->getNextNode();
900         IRBuilder<> IRB(ArgTLSPos);
901         Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
902         break;
903       }
904       case DataFlowSanitizer::IA_Args: {
905         unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
906         Function::arg_iterator i = F->arg_begin();
907         while (ArgIdx--)
908           ++i;
909         Shadow = i;
910         assert(Shadow->getType() == DFS.ShadowTy);
911         break;
912       }
913       }
914       NonZeroChecks.push_back(Shadow);
915     } else {
916       Shadow = DFS.ZeroShadow;
917     }
918   }
919   return Shadow;
920 }
921 
setShadow(Instruction * I,Value * Shadow)922 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
923   assert(!ValShadowMap.count(I));
924   assert(Shadow->getType() == DFS.ShadowTy);
925   ValShadowMap[I] = Shadow;
926 }
927 
getShadowAddress(Value * Addr,Instruction * Pos)928 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
929   assert(Addr != RetvalTLS && "Reinstrumenting?");
930   IRBuilder<> IRB(Pos);
931   return IRB.CreateIntToPtr(
932       IRB.CreateMul(
933           IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
934           ShadowPtrMul),
935       ShadowPtrTy);
936 }
937 
938 // Generates IR to compute the union of the two given shadows, inserting it
939 // before Pos.  Returns the computed union Value.
combineShadows(Value * V1,Value * V2,Instruction * Pos)940 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
941   if (V1 == DFS.ZeroShadow)
942     return V2;
943   if (V2 == DFS.ZeroShadow)
944     return V1;
945   if (V1 == V2)
946     return V1;
947 
948   auto V1Elems = ShadowElements.find(V1);
949   auto V2Elems = ShadowElements.find(V2);
950   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
951     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
952                       V2Elems->second.begin(), V2Elems->second.end())) {
953       return V1;
954     } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
955                              V1Elems->second.begin(), V1Elems->second.end())) {
956       return V2;
957     }
958   } else if (V1Elems != ShadowElements.end()) {
959     if (V1Elems->second.count(V2))
960       return V1;
961   } else if (V2Elems != ShadowElements.end()) {
962     if (V2Elems->second.count(V1))
963       return V2;
964   }
965 
966   auto Key = std::make_pair(V1, V2);
967   if (V1 > V2)
968     std::swap(Key.first, Key.second);
969   CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
970   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
971     return CCS.Shadow;
972 
973   IRBuilder<> IRB(Pos);
974   if (AvoidNewBlocks) {
975     CallInst *Call = IRB.CreateCall2(DFS.DFSanCheckedUnionFn, V1, V2);
976     Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
977     Call->addAttribute(1, Attribute::ZExt);
978     Call->addAttribute(2, Attribute::ZExt);
979 
980     CCS.Block = Pos->getParent();
981     CCS.Shadow = Call;
982   } else {
983     BasicBlock *Head = Pos->getParent();
984     Value *Ne = IRB.CreateICmpNE(V1, V2);
985     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
986         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
987     IRBuilder<> ThenIRB(BI);
988     CallInst *Call = ThenIRB.CreateCall2(DFS.DFSanUnionFn, V1, V2);
989     Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
990     Call->addAttribute(1, Attribute::ZExt);
991     Call->addAttribute(2, Attribute::ZExt);
992 
993     BasicBlock *Tail = BI->getSuccessor(0);
994     PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", Tail->begin());
995     Phi->addIncoming(Call, Call->getParent());
996     Phi->addIncoming(V1, Head);
997 
998     CCS.Block = Tail;
999     CCS.Shadow = Phi;
1000   }
1001 
1002   std::set<Value *> UnionElems;
1003   if (V1Elems != ShadowElements.end()) {
1004     UnionElems = V1Elems->second;
1005   } else {
1006     UnionElems.insert(V1);
1007   }
1008   if (V2Elems != ShadowElements.end()) {
1009     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1010   } else {
1011     UnionElems.insert(V2);
1012   }
1013   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1014 
1015   return CCS.Shadow;
1016 }
1017 
1018 // A convenience function which folds the shadows of each of the operands
1019 // of the provided instruction Inst, inserting the IR before Inst.  Returns
1020 // the computed union Value.
combineOperandShadows(Instruction * Inst)1021 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1022   if (Inst->getNumOperands() == 0)
1023     return DFS.ZeroShadow;
1024 
1025   Value *Shadow = getShadow(Inst->getOperand(0));
1026   for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
1027     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
1028   }
1029   return Shadow;
1030 }
1031 
visitOperandShadowInst(Instruction & I)1032 void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
1033   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1034   DFSF.setShadow(&I, CombinedShadow);
1035 }
1036 
1037 // Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
1038 // Addr has alignment Align, and take the union of each of those shadows.
loadShadow(Value * Addr,uint64_t Size,uint64_t Align,Instruction * Pos)1039 Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
1040                                  Instruction *Pos) {
1041   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1042     llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1043         AllocaShadowMap.find(AI);
1044     if (i != AllocaShadowMap.end()) {
1045       IRBuilder<> IRB(Pos);
1046       return IRB.CreateLoad(i->second);
1047     }
1048   }
1049 
1050   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1051   SmallVector<Value *, 2> Objs;
1052   GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
1053   bool AllConstants = true;
1054   for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
1055        i != e; ++i) {
1056     if (isa<Function>(*i) || isa<BlockAddress>(*i))
1057       continue;
1058     if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
1059       continue;
1060 
1061     AllConstants = false;
1062     break;
1063   }
1064   if (AllConstants)
1065     return DFS.ZeroShadow;
1066 
1067   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1068   switch (Size) {
1069   case 0:
1070     return DFS.ZeroShadow;
1071   case 1: {
1072     LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
1073     LI->setAlignment(ShadowAlign);
1074     return LI;
1075   }
1076   case 2: {
1077     IRBuilder<> IRB(Pos);
1078     Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
1079                                        ConstantInt::get(DFS.IntptrTy, 1));
1080     return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
1081                           IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
1082   }
1083   }
1084   if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
1085     // Fast path for the common case where each byte has identical shadow: load
1086     // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
1087     // shadow is non-equal.
1088     BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
1089     IRBuilder<> FallbackIRB(FallbackBB);
1090     CallInst *FallbackCall = FallbackIRB.CreateCall2(
1091         DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
1092     FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
1093 
1094     // Compare each of the shadows stored in the loaded 64 bits to each other,
1095     // by computing (WideShadow rotl ShadowWidth) == WideShadow.
1096     IRBuilder<> IRB(Pos);
1097     Value *WideAddr =
1098         IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
1099     Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1100     Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
1101     Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
1102     Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
1103     Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
1104     Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
1105 
1106     BasicBlock *Head = Pos->getParent();
1107     BasicBlock *Tail = Head->splitBasicBlock(Pos);
1108 
1109     if (DomTreeNode *OldNode = DT.getNode(Head)) {
1110       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1111 
1112       DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
1113       for (auto Child : Children)
1114         DT.changeImmediateDominator(Child, NewNode);
1115     }
1116 
1117     // In the following code LastBr will refer to the previous basic block's
1118     // conditional branch instruction, whose true successor is fixed up to point
1119     // to the next block during the loop below or to the tail after the final
1120     // iteration.
1121     BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
1122     ReplaceInstWithInst(Head->getTerminator(), LastBr);
1123     DT.addNewBlock(FallbackBB, Head);
1124 
1125     for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
1126          Ofs += 64 / DFS.ShadowWidth) {
1127       BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
1128       DT.addNewBlock(NextBB, LastBr->getParent());
1129       IRBuilder<> NextIRB(NextBB);
1130       WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
1131                                    ConstantInt::get(DFS.IntptrTy, 1));
1132       Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
1133       ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
1134       LastBr->setSuccessor(0, NextBB);
1135       LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
1136     }
1137 
1138     LastBr->setSuccessor(0, Tail);
1139     FallbackIRB.CreateBr(Tail);
1140     PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
1141     Shadow->addIncoming(FallbackCall, FallbackBB);
1142     Shadow->addIncoming(TruncShadow, LastBr->getParent());
1143     return Shadow;
1144   }
1145 
1146   IRBuilder<> IRB(Pos);
1147   CallInst *FallbackCall = IRB.CreateCall2(
1148       DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
1149   FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
1150   return FallbackCall;
1151 }
1152 
visitLoadInst(LoadInst & LI)1153 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
1154   auto &DL = LI.getModule()->getDataLayout();
1155   uint64_t Size = DL.getTypeStoreSize(LI.getType());
1156   if (Size == 0) {
1157     DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
1158     return;
1159   }
1160 
1161   uint64_t Align;
1162   if (ClPreserveAlignment) {
1163     Align = LI.getAlignment();
1164     if (Align == 0)
1165       Align = DL.getABITypeAlignment(LI.getType());
1166   } else {
1167     Align = 1;
1168   }
1169   IRBuilder<> IRB(&LI);
1170   Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
1171   if (ClCombinePointerLabelsOnLoad) {
1172     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
1173     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
1174   }
1175   if (Shadow != DFSF.DFS.ZeroShadow)
1176     DFSF.NonZeroChecks.push_back(Shadow);
1177 
1178   DFSF.setShadow(&LI, Shadow);
1179 }
1180 
storeShadow(Value * Addr,uint64_t Size,uint64_t Align,Value * Shadow,Instruction * Pos)1181 void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
1182                                 Value *Shadow, Instruction *Pos) {
1183   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1184     llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
1185         AllocaShadowMap.find(AI);
1186     if (i != AllocaShadowMap.end()) {
1187       IRBuilder<> IRB(Pos);
1188       IRB.CreateStore(Shadow, i->second);
1189       return;
1190     }
1191   }
1192 
1193   uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1194   IRBuilder<> IRB(Pos);
1195   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1196   if (Shadow == DFS.ZeroShadow) {
1197     IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1198     Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1199     Value *ExtShadowAddr =
1200         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1201     IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1202     return;
1203   }
1204 
1205   const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1206   uint64_t Offset = 0;
1207   if (Size >= ShadowVecSize) {
1208     VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1209     Value *ShadowVec = UndefValue::get(ShadowVecTy);
1210     for (unsigned i = 0; i != ShadowVecSize; ++i) {
1211       ShadowVec = IRB.CreateInsertElement(
1212           ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1213     }
1214     Value *ShadowVecAddr =
1215         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1216     do {
1217       Value *CurShadowVecAddr =
1218           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
1219       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1220       Size -= ShadowVecSize;
1221       ++Offset;
1222     } while (Size >= ShadowVecSize);
1223     Offset *= ShadowVecSize;
1224   }
1225   while (Size > 0) {
1226     Value *CurShadowAddr =
1227         IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
1228     IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1229     --Size;
1230     ++Offset;
1231   }
1232 }
1233 
visitStoreInst(StoreInst & SI)1234 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1235   auto &DL = SI.getModule()->getDataLayout();
1236   uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
1237   if (Size == 0)
1238     return;
1239 
1240   uint64_t Align;
1241   if (ClPreserveAlignment) {
1242     Align = SI.getAlignment();
1243     if (Align == 0)
1244       Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
1245   } else {
1246     Align = 1;
1247   }
1248 
1249   Value* Shadow = DFSF.getShadow(SI.getValueOperand());
1250   if (ClCombinePointerLabelsOnStore) {
1251     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
1252     Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
1253   }
1254   DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
1255 }
1256 
visitBinaryOperator(BinaryOperator & BO)1257 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1258   visitOperandShadowInst(BO);
1259 }
1260 
visitCastInst(CastInst & CI)1261 void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1262 
visitCmpInst(CmpInst & CI)1263 void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1264 
visitGetElementPtrInst(GetElementPtrInst & GEPI)1265 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1266   visitOperandShadowInst(GEPI);
1267 }
1268 
visitExtractElementInst(ExtractElementInst & I)1269 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1270   visitOperandShadowInst(I);
1271 }
1272 
visitInsertElementInst(InsertElementInst & I)1273 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1274   visitOperandShadowInst(I);
1275 }
1276 
visitShuffleVectorInst(ShuffleVectorInst & I)1277 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1278   visitOperandShadowInst(I);
1279 }
1280 
visitExtractValueInst(ExtractValueInst & I)1281 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1282   visitOperandShadowInst(I);
1283 }
1284 
visitInsertValueInst(InsertValueInst & I)1285 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1286   visitOperandShadowInst(I);
1287 }
1288 
visitAllocaInst(AllocaInst & I)1289 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1290   bool AllLoadsStores = true;
1291   for (User *U : I.users()) {
1292     if (isa<LoadInst>(U))
1293       continue;
1294 
1295     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1296       if (SI->getPointerOperand() == &I)
1297         continue;
1298     }
1299 
1300     AllLoadsStores = false;
1301     break;
1302   }
1303   if (AllLoadsStores) {
1304     IRBuilder<> IRB(&I);
1305     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1306   }
1307   DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1308 }
1309 
visitSelectInst(SelectInst & I)1310 void DFSanVisitor::visitSelectInst(SelectInst &I) {
1311   Value *CondShadow = DFSF.getShadow(I.getCondition());
1312   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1313   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1314 
1315   if (isa<VectorType>(I.getCondition()->getType())) {
1316     DFSF.setShadow(
1317         &I,
1318         DFSF.combineShadows(
1319             CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
1320   } else {
1321     Value *ShadowSel;
1322     if (TrueShadow == FalseShadow) {
1323       ShadowSel = TrueShadow;
1324     } else {
1325       ShadowSel =
1326           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1327     }
1328     DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
1329   }
1330 }
1331 
visitMemSetInst(MemSetInst & I)1332 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1333   IRBuilder<> IRB(&I);
1334   Value *ValShadow = DFSF.getShadow(I.getValue());
1335   IRB.CreateCall3(
1336       DFSF.DFS.DFSanSetLabelFn, ValShadow,
1337       IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
1338       IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy));
1339 }
1340 
visitMemTransferInst(MemTransferInst & I)1341 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1342   IRBuilder<> IRB(&I);
1343   Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1344   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1345   Value *LenShadow = IRB.CreateMul(
1346       I.getLength(),
1347       ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1348   Value *AlignShadow;
1349   if (ClPreserveAlignment) {
1350     AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1351                                 ConstantInt::get(I.getAlignmentCst()->getType(),
1352                                                  DFSF.DFS.ShadowWidth / 8));
1353   } else {
1354     AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1355                                    DFSF.DFS.ShadowWidth / 8);
1356   }
1357   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1358   DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1359   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1360   IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow,
1361                   AlignShadow, I.getVolatileCst());
1362 }
1363 
visitReturnInst(ReturnInst & RI)1364 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
1365   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
1366     switch (DFSF.IA) {
1367     case DataFlowSanitizer::IA_TLS: {
1368       Value *S = DFSF.getShadow(RI.getReturnValue());
1369       IRBuilder<> IRB(&RI);
1370       IRB.CreateStore(S, DFSF.getRetvalTLS());
1371       break;
1372     }
1373     case DataFlowSanitizer::IA_Args: {
1374       IRBuilder<> IRB(&RI);
1375       Type *RT = DFSF.F->getFunctionType()->getReturnType();
1376       Value *InsVal =
1377           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1378       Value *InsShadow =
1379           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1380       RI.setOperand(0, InsShadow);
1381       break;
1382     }
1383     }
1384   }
1385 }
1386 
visitCallSite(CallSite CS)1387 void DFSanVisitor::visitCallSite(CallSite CS) {
1388   Function *F = CS.getCalledFunction();
1389   if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1390     visitOperandShadowInst(*CS.getInstruction());
1391     return;
1392   }
1393 
1394   // Calls to this function are synthesized in wrappers, and we shouldn't
1395   // instrument them.
1396   if (F == DFSF.DFS.DFSanVarargWrapperFn)
1397     return;
1398 
1399   assert(!(cast<FunctionType>(
1400       CS.getCalledValue()->getType()->getPointerElementType())->isVarArg() &&
1401            dyn_cast<InvokeInst>(CS.getInstruction())));
1402 
1403   IRBuilder<> IRB(CS.getInstruction());
1404 
1405   DenseMap<Value *, Function *>::iterator i =
1406       DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1407   if (i != DFSF.DFS.UnwrappedFnMap.end()) {
1408     Function *F = i->second;
1409     switch (DFSF.DFS.getWrapperKind(F)) {
1410     case DataFlowSanitizer::WK_Warning: {
1411       CS.setCalledFunction(F);
1412       IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1413                      IRB.CreateGlobalStringPtr(F->getName()));
1414       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1415       return;
1416     }
1417     case DataFlowSanitizer::WK_Discard: {
1418       CS.setCalledFunction(F);
1419       DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1420       return;
1421     }
1422     case DataFlowSanitizer::WK_Functional: {
1423       CS.setCalledFunction(F);
1424       visitOperandShadowInst(*CS.getInstruction());
1425       return;
1426     }
1427     case DataFlowSanitizer::WK_Custom: {
1428       // Don't try to handle invokes of custom functions, it's too complicated.
1429       // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1430       // wrapper.
1431       if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1432         FunctionType *FT = F->getFunctionType();
1433         FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1434         std::string CustomFName = "__dfsw_";
1435         CustomFName += F->getName();
1436         Constant *CustomF =
1437             DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1438         if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1439           CustomFn->copyAttributesFrom(F);
1440 
1441           // Custom functions returning non-void will write to the return label.
1442           if (!FT->getReturnType()->isVoidTy()) {
1443             CustomFn->removeAttributes(AttributeSet::FunctionIndex,
1444                                        DFSF.DFS.ReadOnlyNoneAttrs);
1445           }
1446         }
1447 
1448         std::vector<Value *> Args;
1449 
1450         CallSite::arg_iterator i = CS.arg_begin();
1451         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1452           Type *T = (*i)->getType();
1453           FunctionType *ParamFT;
1454           if (isa<PointerType>(T) &&
1455               (ParamFT = dyn_cast<FunctionType>(
1456                    cast<PointerType>(T)->getElementType()))) {
1457             std::string TName = "dfst";
1458             TName += utostr(FT->getNumParams() - n);
1459             TName += "$";
1460             TName += F->getName();
1461             Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1462             Args.push_back(T);
1463             Args.push_back(
1464                 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1465           } else {
1466             Args.push_back(*i);
1467           }
1468         }
1469 
1470         i = CS.arg_begin();
1471         for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1472           Args.push_back(DFSF.getShadow(*i));
1473 
1474         if (FT->isVarArg()) {
1475           auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
1476                                            CS.arg_size() - FT->getNumParams());
1477           auto *LabelVAAlloca = new AllocaInst(LabelVATy, "labelva",
1478                                                DFSF.F->getEntryBlock().begin());
1479 
1480           for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
1481             auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
1482             IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
1483           }
1484 
1485           Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
1486         }
1487 
1488         if (!FT->getReturnType()->isVoidTy()) {
1489           if (!DFSF.LabelReturnAlloca) {
1490             DFSF.LabelReturnAlloca =
1491                 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
1492                                DFSF.F->getEntryBlock().begin());
1493           }
1494           Args.push_back(DFSF.LabelReturnAlloca);
1495         }
1496 
1497         for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
1498           Args.push_back(*i);
1499 
1500         CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1501         CustomCI->setCallingConv(CI->getCallingConv());
1502         CustomCI->setAttributes(CI->getAttributes());
1503 
1504         if (!FT->getReturnType()->isVoidTy()) {
1505           LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1506           DFSF.setShadow(CustomCI, LabelLoad);
1507         }
1508 
1509         CI->replaceAllUsesWith(CustomCI);
1510         CI->eraseFromParent();
1511         return;
1512       }
1513       break;
1514     }
1515     }
1516   }
1517 
1518   FunctionType *FT = cast<FunctionType>(
1519       CS.getCalledValue()->getType()->getPointerElementType());
1520   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1521     for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1522       IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1523                       DFSF.getArgTLS(i, CS.getInstruction()));
1524     }
1525   }
1526 
1527   Instruction *Next = nullptr;
1528   if (!CS.getType()->isVoidTy()) {
1529     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1530       if (II->getNormalDest()->getSinglePredecessor()) {
1531         Next = II->getNormalDest()->begin();
1532       } else {
1533         BasicBlock *NewBB =
1534             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
1535         Next = NewBB->begin();
1536       }
1537     } else {
1538       Next = CS->getNextNode();
1539     }
1540 
1541     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
1542       IRBuilder<> NextIRB(Next);
1543       LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1544       DFSF.SkipInsts.insert(LI);
1545       DFSF.setShadow(CS.getInstruction(), LI);
1546       DFSF.NonZeroChecks.push_back(LI);
1547     }
1548   }
1549 
1550   // Do all instrumentation for IA_Args down here to defer tampering with the
1551   // CFG in a way that SplitEdge may be able to detect.
1552   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1553     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
1554     Value *Func =
1555         IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1556     std::vector<Value *> Args;
1557 
1558     CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1559     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1560       Args.push_back(*i);
1561 
1562     i = CS.arg_begin();
1563     for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1564       Args.push_back(DFSF.getShadow(*i));
1565 
1566     if (FT->isVarArg()) {
1567       unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1568       ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1569       AllocaInst *VarArgShadow =
1570           new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
1571       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
1572       for (unsigned n = 0; i != e; ++i, ++n) {
1573         IRB.CreateStore(
1574             DFSF.getShadow(*i),
1575             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
1576         Args.push_back(*i);
1577       }
1578     }
1579 
1580     CallSite NewCS;
1581     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1582       NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1583                                Args);
1584     } else {
1585       NewCS = IRB.CreateCall(Func, Args);
1586     }
1587     NewCS.setCallingConv(CS.getCallingConv());
1588     NewCS.setAttributes(CS.getAttributes().removeAttributes(
1589         *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
1590         AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(),
1591                                          AttributeSet::ReturnIndex)));
1592 
1593     if (Next) {
1594       ExtractValueInst *ExVal =
1595           ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1596       DFSF.SkipInsts.insert(ExVal);
1597       ExtractValueInst *ExShadow =
1598           ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1599       DFSF.SkipInsts.insert(ExShadow);
1600       DFSF.setShadow(ExVal, ExShadow);
1601       DFSF.NonZeroChecks.push_back(ExShadow);
1602 
1603       CS.getInstruction()->replaceAllUsesWith(ExVal);
1604     }
1605 
1606     CS.getInstruction()->eraseFromParent();
1607   }
1608 }
1609 
visitPHINode(PHINode & PN)1610 void DFSanVisitor::visitPHINode(PHINode &PN) {
1611   PHINode *ShadowPN =
1612       PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1613 
1614   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1615   Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1616   for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1617        ++i) {
1618     ShadowPN->addIncoming(UndefShadow, *i);
1619   }
1620 
1621   DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1622   DFSF.setShadow(&PN, ShadowPN);
1623 }
1624