1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolution.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/SSAUpdater.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "loop-rotate"
38
39 static cl::opt<unsigned>
40 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
41 cl::desc("The default maximum header size for automatic loop rotation"));
42
43 STATISTIC(NumRotated, "Number of loops rotated");
44 namespace {
45
46 class LoopRotate : public LoopPass {
47 public:
48 static char ID; // Pass ID, replacement for typeid
LoopRotate(int SpecifiedMaxHeaderSize=-1)49 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
50 initializeLoopRotatePass(*PassRegistry::getPassRegistry());
51 if (SpecifiedMaxHeaderSize == -1)
52 MaxHeaderSize = DefaultRotationThreshold;
53 else
54 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
55 }
56
57 // LCSSA form makes instruction renaming easier.
getAnalysisUsage(AnalysisUsage & AU) const58 void getAnalysisUsage(AnalysisUsage &AU) const override {
59 AU.addRequired<AssumptionCacheTracker>();
60 AU.addPreserved<DominatorTreeWrapperPass>();
61 AU.addRequired<LoopInfoWrapperPass>();
62 AU.addPreserved<LoopInfoWrapperPass>();
63 AU.addRequiredID(LoopSimplifyID);
64 AU.addPreservedID(LoopSimplifyID);
65 AU.addRequiredID(LCSSAID);
66 AU.addPreservedID(LCSSAID);
67 AU.addPreserved<ScalarEvolution>();
68 AU.addRequired<TargetTransformInfoWrapperPass>();
69 }
70
71 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
72 bool simplifyLoopLatch(Loop *L);
73 bool rotateLoop(Loop *L, bool SimplifiedLatch);
74
75 private:
76 unsigned MaxHeaderSize;
77 LoopInfo *LI;
78 const TargetTransformInfo *TTI;
79 AssumptionCache *AC;
80 DominatorTree *DT;
81 };
82 }
83
84 char LoopRotate::ID = 0;
85 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)86 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
87 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
88 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
89 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
90 INITIALIZE_PASS_DEPENDENCY(LCSSA)
91 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
92
93 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
94 return new LoopRotate(MaxHeaderSize);
95 }
96
97 /// Rotate Loop L as many times as possible. Return true if
98 /// the loop is rotated at least once.
runOnLoop(Loop * L,LPPassManager & LPM)99 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
100 if (skipOptnoneFunction(L))
101 return false;
102
103 // Save the loop metadata.
104 MDNode *LoopMD = L->getLoopID();
105
106 Function &F = *L->getHeader()->getParent();
107
108 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
109 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
110 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
111 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
112 DT = DTWP ? &DTWP->getDomTree() : nullptr;
113
114 // Simplify the loop latch before attempting to rotate the header
115 // upward. Rotation may not be needed if the loop tail can be folded into the
116 // loop exit.
117 bool SimplifiedLatch = simplifyLoopLatch(L);
118
119 // One loop can be rotated multiple times.
120 bool MadeChange = false;
121 while (rotateLoop(L, SimplifiedLatch)) {
122 MadeChange = true;
123 SimplifiedLatch = false;
124 }
125
126 // Restore the loop metadata.
127 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
128 if ((MadeChange || SimplifiedLatch) && LoopMD)
129 L->setLoopID(LoopMD);
130
131 return MadeChange;
132 }
133
134 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
135 /// old header into the preheader. If there were uses of the values produced by
136 /// these instruction that were outside of the loop, we have to insert PHI nodes
137 /// to merge the two values. Do this now.
RewriteUsesOfClonedInstructions(BasicBlock * OrigHeader,BasicBlock * OrigPreheader,ValueToValueMapTy & ValueMap)138 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
139 BasicBlock *OrigPreheader,
140 ValueToValueMapTy &ValueMap) {
141 // Remove PHI node entries that are no longer live.
142 BasicBlock::iterator I, E = OrigHeader->end();
143 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
144 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
145
146 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
147 // as necessary.
148 SSAUpdater SSA;
149 for (I = OrigHeader->begin(); I != E; ++I) {
150 Value *OrigHeaderVal = I;
151
152 // If there are no uses of the value (e.g. because it returns void), there
153 // is nothing to rewrite.
154 if (OrigHeaderVal->use_empty())
155 continue;
156
157 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
158
159 // The value now exits in two versions: the initial value in the preheader
160 // and the loop "next" value in the original header.
161 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
162 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
163 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
164
165 // Visit each use of the OrigHeader instruction.
166 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
167 UE = OrigHeaderVal->use_end(); UI != UE; ) {
168 // Grab the use before incrementing the iterator.
169 Use &U = *UI;
170
171 // Increment the iterator before removing the use from the list.
172 ++UI;
173
174 // SSAUpdater can't handle a non-PHI use in the same block as an
175 // earlier def. We can easily handle those cases manually.
176 Instruction *UserInst = cast<Instruction>(U.getUser());
177 if (!isa<PHINode>(UserInst)) {
178 BasicBlock *UserBB = UserInst->getParent();
179
180 // The original users in the OrigHeader are already using the
181 // original definitions.
182 if (UserBB == OrigHeader)
183 continue;
184
185 // Users in the OrigPreHeader need to use the value to which the
186 // original definitions are mapped.
187 if (UserBB == OrigPreheader) {
188 U = OrigPreHeaderVal;
189 continue;
190 }
191 }
192
193 // Anything else can be handled by SSAUpdater.
194 SSA.RewriteUse(U);
195 }
196 }
197 }
198
199 /// Determine whether the instructions in this range may be safely and cheaply
200 /// speculated. This is not an important enough situation to develop complex
201 /// heuristics. We handle a single arithmetic instruction along with any type
202 /// conversions.
shouldSpeculateInstrs(BasicBlock::iterator Begin,BasicBlock::iterator End,Loop * L)203 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
204 BasicBlock::iterator End, Loop *L) {
205 bool seenIncrement = false;
206 bool MultiExitLoop = false;
207
208 if (!L->getExitingBlock())
209 MultiExitLoop = true;
210
211 for (BasicBlock::iterator I = Begin; I != End; ++I) {
212
213 if (!isSafeToSpeculativelyExecute(I))
214 return false;
215
216 if (isa<DbgInfoIntrinsic>(I))
217 continue;
218
219 switch (I->getOpcode()) {
220 default:
221 return false;
222 case Instruction::GetElementPtr:
223 // GEPs are cheap if all indices are constant.
224 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
225 return false;
226 // fall-thru to increment case
227 case Instruction::Add:
228 case Instruction::Sub:
229 case Instruction::And:
230 case Instruction::Or:
231 case Instruction::Xor:
232 case Instruction::Shl:
233 case Instruction::LShr:
234 case Instruction::AShr: {
235 Value *IVOpnd = !isa<Constant>(I->getOperand(0))
236 ? I->getOperand(0)
237 : !isa<Constant>(I->getOperand(1))
238 ? I->getOperand(1)
239 : nullptr;
240 if (!IVOpnd)
241 return false;
242
243 // If increment operand is used outside of the loop, this speculation
244 // could cause extra live range interference.
245 if (MultiExitLoop) {
246 for (User *UseI : IVOpnd->users()) {
247 auto *UserInst = cast<Instruction>(UseI);
248 if (!L->contains(UserInst))
249 return false;
250 }
251 }
252
253 if (seenIncrement)
254 return false;
255 seenIncrement = true;
256 break;
257 }
258 case Instruction::Trunc:
259 case Instruction::ZExt:
260 case Instruction::SExt:
261 // ignore type conversions
262 break;
263 }
264 }
265 return true;
266 }
267
268 /// Fold the loop tail into the loop exit by speculating the loop tail
269 /// instructions. Typically, this is a single post-increment. In the case of a
270 /// simple 2-block loop, hoisting the increment can be much better than
271 /// duplicating the entire loop header. In the case of loops with early exits,
272 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
273 /// canonical form so downstream passes can handle it.
274 ///
275 /// I don't believe this invalidates SCEV.
simplifyLoopLatch(Loop * L)276 bool LoopRotate::simplifyLoopLatch(Loop *L) {
277 BasicBlock *Latch = L->getLoopLatch();
278 if (!Latch || Latch->hasAddressTaken())
279 return false;
280
281 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
282 if (!Jmp || !Jmp->isUnconditional())
283 return false;
284
285 BasicBlock *LastExit = Latch->getSinglePredecessor();
286 if (!LastExit || !L->isLoopExiting(LastExit))
287 return false;
288
289 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
290 if (!BI)
291 return false;
292
293 if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L))
294 return false;
295
296 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
297 << LastExit->getName() << "\n");
298
299 // Hoist the instructions from Latch into LastExit.
300 LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
301
302 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
303 BasicBlock *Header = Jmp->getSuccessor(0);
304 assert(Header == L->getHeader() && "expected a backward branch");
305
306 // Remove Latch from the CFG so that LastExit becomes the new Latch.
307 BI->setSuccessor(FallThruPath, Header);
308 Latch->replaceSuccessorsPhiUsesWith(LastExit);
309 Jmp->eraseFromParent();
310
311 // Nuke the Latch block.
312 assert(Latch->empty() && "unable to evacuate Latch");
313 LI->removeBlock(Latch);
314 if (DT)
315 DT->eraseNode(Latch);
316 Latch->eraseFromParent();
317 return true;
318 }
319
320 /// Rotate loop LP. Return true if the loop is rotated.
321 ///
322 /// \param SimplifiedLatch is true if the latch was just folded into the final
323 /// loop exit. In this case we may want to rotate even though the new latch is
324 /// now an exiting branch. This rotation would have happened had the latch not
325 /// been simplified. However, if SimplifiedLatch is false, then we avoid
326 /// rotating loops in which the latch exits to avoid excessive or endless
327 /// rotation. LoopRotate should be repeatable and converge to a canonical
328 /// form. This property is satisfied because simplifying the loop latch can only
329 /// happen once across multiple invocations of the LoopRotate pass.
rotateLoop(Loop * L,bool SimplifiedLatch)330 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
331 // If the loop has only one block then there is not much to rotate.
332 if (L->getBlocks().size() == 1)
333 return false;
334
335 BasicBlock *OrigHeader = L->getHeader();
336 BasicBlock *OrigLatch = L->getLoopLatch();
337
338 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
339 if (!BI || BI->isUnconditional())
340 return false;
341
342 // If the loop header is not one of the loop exiting blocks then
343 // either this loop is already rotated or it is not
344 // suitable for loop rotation transformations.
345 if (!L->isLoopExiting(OrigHeader))
346 return false;
347
348 // If the loop latch already contains a branch that leaves the loop then the
349 // loop is already rotated.
350 if (!OrigLatch)
351 return false;
352
353 // Rotate if either the loop latch does *not* exit the loop, or if the loop
354 // latch was just simplified.
355 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
356 return false;
357
358 // Check size of original header and reject loop if it is very big or we can't
359 // duplicate blocks inside it.
360 {
361 SmallPtrSet<const Value *, 32> EphValues;
362 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
363
364 CodeMetrics Metrics;
365 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
366 if (Metrics.notDuplicatable) {
367 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
368 << " instructions: "; L->dump());
369 return false;
370 }
371 if (Metrics.NumInsts > MaxHeaderSize)
372 return false;
373 }
374
375 // Now, this loop is suitable for rotation.
376 BasicBlock *OrigPreheader = L->getLoopPreheader();
377
378 // If the loop could not be converted to canonical form, it must have an
379 // indirectbr in it, just give up.
380 if (!OrigPreheader)
381 return false;
382
383 // Anything ScalarEvolution may know about this loop or the PHI nodes
384 // in its header will soon be invalidated.
385 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
386 SE->forgetLoop(L);
387
388 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
389
390 // Find new Loop header. NewHeader is a Header's one and only successor
391 // that is inside loop. Header's other successor is outside the
392 // loop. Otherwise loop is not suitable for rotation.
393 BasicBlock *Exit = BI->getSuccessor(0);
394 BasicBlock *NewHeader = BI->getSuccessor(1);
395 if (L->contains(Exit))
396 std::swap(Exit, NewHeader);
397 assert(NewHeader && "Unable to determine new loop header");
398 assert(L->contains(NewHeader) && !L->contains(Exit) &&
399 "Unable to determine loop header and exit blocks");
400
401 // This code assumes that the new header has exactly one predecessor.
402 // Remove any single-entry PHI nodes in it.
403 assert(NewHeader->getSinglePredecessor() &&
404 "New header doesn't have one pred!");
405 FoldSingleEntryPHINodes(NewHeader);
406
407 // Begin by walking OrigHeader and populating ValueMap with an entry for
408 // each Instruction.
409 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
410 ValueToValueMapTy ValueMap;
411
412 // For PHI nodes, the value available in OldPreHeader is just the
413 // incoming value from OldPreHeader.
414 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
415 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
416
417 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
418
419 // For the rest of the instructions, either hoist to the OrigPreheader if
420 // possible or create a clone in the OldPreHeader if not.
421 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
422 while (I != E) {
423 Instruction *Inst = I++;
424
425 // If the instruction's operands are invariant and it doesn't read or write
426 // memory, then it is safe to hoist. Doing this doesn't change the order of
427 // execution in the preheader, but does prevent the instruction from
428 // executing in each iteration of the loop. This means it is safe to hoist
429 // something that might trap, but isn't safe to hoist something that reads
430 // memory (without proving that the loop doesn't write).
431 if (L->hasLoopInvariantOperands(Inst) &&
432 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
433 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
434 !isa<AllocaInst>(Inst)) {
435 Inst->moveBefore(LoopEntryBranch);
436 continue;
437 }
438
439 // Otherwise, create a duplicate of the instruction.
440 Instruction *C = Inst->clone();
441
442 // Eagerly remap the operands of the instruction.
443 RemapInstruction(C, ValueMap,
444 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
445
446 // With the operands remapped, see if the instruction constant folds or is
447 // otherwise simplifyable. This commonly occurs because the entry from PHI
448 // nodes allows icmps and other instructions to fold.
449 // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
450 Value *V = SimplifyInstruction(C, DL);
451 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
452 // If so, then delete the temporary instruction and stick the folded value
453 // in the map.
454 delete C;
455 ValueMap[Inst] = V;
456 } else {
457 // Otherwise, stick the new instruction into the new block!
458 C->setName(Inst->getName());
459 C->insertBefore(LoopEntryBranch);
460 ValueMap[Inst] = C;
461 }
462 }
463
464 // Along with all the other instructions, we just cloned OrigHeader's
465 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
466 // successors by duplicating their incoming values for OrigHeader.
467 TerminatorInst *TI = OrigHeader->getTerminator();
468 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
469 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
470 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
471 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
472
473 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
474 // OrigPreHeader's old terminator (the original branch into the loop), and
475 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
476 LoopEntryBranch->eraseFromParent();
477
478 // If there were any uses of instructions in the duplicated block outside the
479 // loop, update them, inserting PHI nodes as required
480 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
481
482 // NewHeader is now the header of the loop.
483 L->moveToHeader(NewHeader);
484 assert(L->getHeader() == NewHeader && "Latch block is our new header");
485
486
487 // At this point, we've finished our major CFG changes. As part of cloning
488 // the loop into the preheader we've simplified instructions and the
489 // duplicated conditional branch may now be branching on a constant. If it is
490 // branching on a constant and if that constant means that we enter the loop,
491 // then we fold away the cond branch to an uncond branch. This simplifies the
492 // loop in cases important for nested loops, and it also means we don't have
493 // to split as many edges.
494 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
495 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
496 if (!isa<ConstantInt>(PHBI->getCondition()) ||
497 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
498 != NewHeader) {
499 // The conditional branch can't be folded, handle the general case.
500 // Update DominatorTree to reflect the CFG change we just made. Then split
501 // edges as necessary to preserve LoopSimplify form.
502 if (DT) {
503 // Everything that was dominated by the old loop header is now dominated
504 // by the original loop preheader. Conceptually the header was merged
505 // into the preheader, even though we reuse the actual block as a new
506 // loop latch.
507 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
508 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
509 OrigHeaderNode->end());
510 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
511 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
512 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
513
514 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
515 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
516
517 // Update OrigHeader to be dominated by the new header block.
518 DT->changeImmediateDominator(OrigHeader, OrigLatch);
519 }
520
521 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
522 // thus is not a preheader anymore.
523 // Split the edge to form a real preheader.
524 BasicBlock *NewPH = SplitCriticalEdge(
525 OrigPreheader, NewHeader,
526 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
527 NewPH->setName(NewHeader->getName() + ".lr.ph");
528
529 // Preserve canonical loop form, which means that 'Exit' should have only
530 // one predecessor. Note that Exit could be an exit block for multiple
531 // nested loops, causing both of the edges to now be critical and need to
532 // be split.
533 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
534 bool SplitLatchEdge = false;
535 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
536 PE = ExitPreds.end();
537 PI != PE; ++PI) {
538 // We only need to split loop exit edges.
539 Loop *PredLoop = LI->getLoopFor(*PI);
540 if (!PredLoop || PredLoop->contains(Exit))
541 continue;
542 if (isa<IndirectBrInst>((*PI)->getTerminator()))
543 continue;
544 SplitLatchEdge |= L->getLoopLatch() == *PI;
545 BasicBlock *ExitSplit = SplitCriticalEdge(
546 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
547 ExitSplit->moveBefore(Exit);
548 }
549 assert(SplitLatchEdge &&
550 "Despite splitting all preds, failed to split latch exit?");
551 } else {
552 // We can fold the conditional branch in the preheader, this makes things
553 // simpler. The first step is to remove the extra edge to the Exit block.
554 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
555 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
556 NewBI->setDebugLoc(PHBI->getDebugLoc());
557 PHBI->eraseFromParent();
558
559 // With our CFG finalized, update DomTree if it is available.
560 if (DT) {
561 // Update OrigHeader to be dominated by the new header block.
562 DT->changeImmediateDominator(NewHeader, OrigPreheader);
563 DT->changeImmediateDominator(OrigHeader, OrigLatch);
564
565 // Brute force incremental dominator tree update. Call
566 // findNearestCommonDominator on all CFG predecessors of each child of the
567 // original header.
568 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
569 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
570 OrigHeaderNode->end());
571 bool Changed;
572 do {
573 Changed = false;
574 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
575 DomTreeNode *Node = HeaderChildren[I];
576 BasicBlock *BB = Node->getBlock();
577
578 pred_iterator PI = pred_begin(BB);
579 BasicBlock *NearestDom = *PI;
580 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
581 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
582
583 // Remember if this changes the DomTree.
584 if (Node->getIDom()->getBlock() != NearestDom) {
585 DT->changeImmediateDominator(BB, NearestDom);
586 Changed = true;
587 }
588 }
589
590 // If the dominator changed, this may have an effect on other
591 // predecessors, continue until we reach a fixpoint.
592 } while (Changed);
593 }
594 }
595
596 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
597 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
598
599 // Now that the CFG and DomTree are in a consistent state again, try to merge
600 // the OrigHeader block into OrigLatch. This will succeed if they are
601 // connected by an unconditional branch. This is just a cleanup so the
602 // emitted code isn't too gross in this common case.
603 MergeBlockIntoPredecessor(OrigHeader, DT, LI);
604
605 DEBUG(dbgs() << "LoopRotation: into "; L->dump());
606
607 ++NumRotated;
608 return true;
609 }
610