1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include <list>
34 using namespace llvm;
35
36 #define DEBUG_TYPE "memcpyopt"
37
38 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
39 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
40 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
41 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
42
GetOffsetFromIndex(const GEPOperator * GEP,unsigned Idx,bool & VariableIdxFound,const DataLayout & DL)43 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
44 bool &VariableIdxFound,
45 const DataLayout &DL) {
46 // Skip over the first indices.
47 gep_type_iterator GTI = gep_type_begin(GEP);
48 for (unsigned i = 1; i != Idx; ++i, ++GTI)
49 /*skip along*/;
50
51 // Compute the offset implied by the rest of the indices.
52 int64_t Offset = 0;
53 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
54 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
55 if (!OpC)
56 return VariableIdxFound = true;
57 if (OpC->isZero()) continue; // No offset.
58
59 // Handle struct indices, which add their field offset to the pointer.
60 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
61 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
62 continue;
63 }
64
65 // Otherwise, we have a sequential type like an array or vector. Multiply
66 // the index by the ElementSize.
67 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
68 Offset += Size*OpC->getSExtValue();
69 }
70
71 return Offset;
72 }
73
74 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
75 /// constant offset, and return that constant offset. For example, Ptr1 might
76 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
IsPointerOffset(Value * Ptr1,Value * Ptr2,int64_t & Offset,const DataLayout & DL)77 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
78 const DataLayout &DL) {
79 Ptr1 = Ptr1->stripPointerCasts();
80 Ptr2 = Ptr2->stripPointerCasts();
81
82 // Handle the trivial case first.
83 if (Ptr1 == Ptr2) {
84 Offset = 0;
85 return true;
86 }
87
88 GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
89 GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
90
91 bool VariableIdxFound = false;
92
93 // If one pointer is a GEP and the other isn't, then see if the GEP is a
94 // constant offset from the base, as in "P" and "gep P, 1".
95 if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
96 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
97 return !VariableIdxFound;
98 }
99
100 if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
101 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
102 return !VariableIdxFound;
103 }
104
105 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
106 // base. After that base, they may have some number of common (and
107 // potentially variable) indices. After that they handle some constant
108 // offset, which determines their offset from each other. At this point, we
109 // handle no other case.
110 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
111 return false;
112
113 // Skip any common indices and track the GEP types.
114 unsigned Idx = 1;
115 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
116 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
117 break;
118
119 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
120 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
121 if (VariableIdxFound) return false;
122
123 Offset = Offset2-Offset1;
124 return true;
125 }
126
127
128 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
129 /// This allows us to analyze stores like:
130 /// store 0 -> P+1
131 /// store 0 -> P+0
132 /// store 0 -> P+3
133 /// store 0 -> P+2
134 /// which sometimes happens with stores to arrays of structs etc. When we see
135 /// the first store, we make a range [1, 2). The second store extends the range
136 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
137 /// two ranges into [0, 3) which is memset'able.
138 namespace {
139 struct MemsetRange {
140 // Start/End - A semi range that describes the span that this range covers.
141 // The range is closed at the start and open at the end: [Start, End).
142 int64_t Start, End;
143
144 /// StartPtr - The getelementptr instruction that points to the start of the
145 /// range.
146 Value *StartPtr;
147
148 /// Alignment - The known alignment of the first store.
149 unsigned Alignment;
150
151 /// TheStores - The actual stores that make up this range.
152 SmallVector<Instruction*, 16> TheStores;
153
154 bool isProfitableToUseMemset(const DataLayout &DL) const;
155 };
156 } // end anon namespace
157
isProfitableToUseMemset(const DataLayout & DL) const158 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
159 // If we found more than 4 stores to merge or 16 bytes, use memset.
160 if (TheStores.size() >= 4 || End-Start >= 16) return true;
161
162 // If there is nothing to merge, don't do anything.
163 if (TheStores.size() < 2) return false;
164
165 // If any of the stores are a memset, then it is always good to extend the
166 // memset.
167 for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
168 if (!isa<StoreInst>(TheStores[i]))
169 return true;
170
171 // Assume that the code generator is capable of merging pairs of stores
172 // together if it wants to.
173 if (TheStores.size() == 2) return false;
174
175 // If we have fewer than 8 stores, it can still be worthwhile to do this.
176 // For example, merging 4 i8 stores into an i32 store is useful almost always.
177 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
178 // memset will be split into 2 32-bit stores anyway) and doing so can
179 // pessimize the llvm optimizer.
180 //
181 // Since we don't have perfect knowledge here, make some assumptions: assume
182 // the maximum GPR width is the same size as the largest legal integer
183 // size. If so, check to see whether we will end up actually reducing the
184 // number of stores used.
185 unsigned Bytes = unsigned(End-Start);
186 unsigned MaxIntSize = DL.getLargestLegalIntTypeSize();
187 if (MaxIntSize == 0)
188 MaxIntSize = 1;
189 unsigned NumPointerStores = Bytes / MaxIntSize;
190
191 // Assume the remaining bytes if any are done a byte at a time.
192 unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
193
194 // If we will reduce the # stores (according to this heuristic), do the
195 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
196 // etc.
197 return TheStores.size() > NumPointerStores+NumByteStores;
198 }
199
200
201 namespace {
202 class MemsetRanges {
203 /// Ranges - A sorted list of the memset ranges. We use std::list here
204 /// because each element is relatively large and expensive to copy.
205 std::list<MemsetRange> Ranges;
206 typedef std::list<MemsetRange>::iterator range_iterator;
207 const DataLayout &DL;
208 public:
MemsetRanges(const DataLayout & DL)209 MemsetRanges(const DataLayout &DL) : DL(DL) {}
210
211 typedef std::list<MemsetRange>::const_iterator const_iterator;
begin() const212 const_iterator begin() const { return Ranges.begin(); }
end() const213 const_iterator end() const { return Ranges.end(); }
empty() const214 bool empty() const { return Ranges.empty(); }
215
addInst(int64_t OffsetFromFirst,Instruction * Inst)216 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
217 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
218 addStore(OffsetFromFirst, SI);
219 else
220 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
221 }
222
addStore(int64_t OffsetFromFirst,StoreInst * SI)223 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
224 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
225
226 addRange(OffsetFromFirst, StoreSize,
227 SI->getPointerOperand(), SI->getAlignment(), SI);
228 }
229
addMemSet(int64_t OffsetFromFirst,MemSetInst * MSI)230 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
231 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
232 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
233 }
234
235 void addRange(int64_t Start, int64_t Size, Value *Ptr,
236 unsigned Alignment, Instruction *Inst);
237
238 };
239
240 } // end anon namespace
241
242
243 /// addRange - Add a new store to the MemsetRanges data structure. This adds a
244 /// new range for the specified store at the specified offset, merging into
245 /// existing ranges as appropriate.
246 ///
247 /// Do a linear search of the ranges to see if this can be joined and/or to
248 /// find the insertion point in the list. We keep the ranges sorted for
249 /// simplicity here. This is a linear search of a linked list, which is ugly,
250 /// however the number of ranges is limited, so this won't get crazy slow.
addRange(int64_t Start,int64_t Size,Value * Ptr,unsigned Alignment,Instruction * Inst)251 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
252 unsigned Alignment, Instruction *Inst) {
253 int64_t End = Start+Size;
254 range_iterator I = Ranges.begin(), E = Ranges.end();
255
256 while (I != E && Start > I->End)
257 ++I;
258
259 // We now know that I == E, in which case we didn't find anything to merge
260 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
261 // to insert a new range. Handle this now.
262 if (I == E || End < I->Start) {
263 MemsetRange &R = *Ranges.insert(I, MemsetRange());
264 R.Start = Start;
265 R.End = End;
266 R.StartPtr = Ptr;
267 R.Alignment = Alignment;
268 R.TheStores.push_back(Inst);
269 return;
270 }
271
272 // This store overlaps with I, add it.
273 I->TheStores.push_back(Inst);
274
275 // At this point, we may have an interval that completely contains our store.
276 // If so, just add it to the interval and return.
277 if (I->Start <= Start && I->End >= End)
278 return;
279
280 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
281 // but is not entirely contained within the range.
282
283 // See if the range extends the start of the range. In this case, it couldn't
284 // possibly cause it to join the prior range, because otherwise we would have
285 // stopped on *it*.
286 if (Start < I->Start) {
287 I->Start = Start;
288 I->StartPtr = Ptr;
289 I->Alignment = Alignment;
290 }
291
292 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
293 // is in or right at the end of I), and that End >= I->Start. Extend I out to
294 // End.
295 if (End > I->End) {
296 I->End = End;
297 range_iterator NextI = I;
298 while (++NextI != E && End >= NextI->Start) {
299 // Merge the range in.
300 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
301 if (NextI->End > I->End)
302 I->End = NextI->End;
303 Ranges.erase(NextI);
304 NextI = I;
305 }
306 }
307 }
308
309 //===----------------------------------------------------------------------===//
310 // MemCpyOpt Pass
311 //===----------------------------------------------------------------------===//
312
313 namespace {
314 class MemCpyOpt : public FunctionPass {
315 MemoryDependenceAnalysis *MD;
316 TargetLibraryInfo *TLI;
317 public:
318 static char ID; // Pass identification, replacement for typeid
MemCpyOpt()319 MemCpyOpt() : FunctionPass(ID) {
320 initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
321 MD = nullptr;
322 TLI = nullptr;
323 }
324
325 bool runOnFunction(Function &F) override;
326
327 private:
328 // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const329 void getAnalysisUsage(AnalysisUsage &AU) const override {
330 AU.setPreservesCFG();
331 AU.addRequired<AssumptionCacheTracker>();
332 AU.addRequired<DominatorTreeWrapperPass>();
333 AU.addRequired<MemoryDependenceAnalysis>();
334 AU.addRequired<AliasAnalysis>();
335 AU.addRequired<TargetLibraryInfoWrapperPass>();
336 AU.addPreserved<AliasAnalysis>();
337 AU.addPreserved<MemoryDependenceAnalysis>();
338 }
339
340 // Helper fuctions
341 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
342 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
343 bool processMemCpy(MemCpyInst *M);
344 bool processMemMove(MemMoveInst *M);
345 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
346 uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
347 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
348 uint64_t MSize);
349 bool processByValArgument(CallSite CS, unsigned ArgNo);
350 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
351 Value *ByteVal);
352
353 bool iterateOnFunction(Function &F);
354 };
355
356 char MemCpyOpt::ID = 0;
357 }
358
359 // createMemCpyOptPass - The public interface to this file...
createMemCpyOptPass()360 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
361
362 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
363 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)364 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
365 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
366 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
367 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
368 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
369 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
370 false, false)
371
372 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
373 /// some other patterns to fold away. In particular, this looks for stores to
374 /// neighboring locations of memory. If it sees enough consecutive ones, it
375 /// attempts to merge them together into a memcpy/memset.
376 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
377 Value *StartPtr, Value *ByteVal) {
378 const DataLayout &DL = StartInst->getModule()->getDataLayout();
379
380 // Okay, so we now have a single store that can be splatable. Scan to find
381 // all subsequent stores of the same value to offset from the same pointer.
382 // Join these together into ranges, so we can decide whether contiguous blocks
383 // are stored.
384 MemsetRanges Ranges(DL);
385
386 BasicBlock::iterator BI = StartInst;
387 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
388 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
389 // If the instruction is readnone, ignore it, otherwise bail out. We
390 // don't even allow readonly here because we don't want something like:
391 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
392 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
393 break;
394 continue;
395 }
396
397 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
398 // If this is a store, see if we can merge it in.
399 if (!NextStore->isSimple()) break;
400
401 // Check to see if this stored value is of the same byte-splattable value.
402 if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
403 break;
404
405 // Check to see if this store is to a constant offset from the start ptr.
406 int64_t Offset;
407 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
408 DL))
409 break;
410
411 Ranges.addStore(Offset, NextStore);
412 } else {
413 MemSetInst *MSI = cast<MemSetInst>(BI);
414
415 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
416 !isa<ConstantInt>(MSI->getLength()))
417 break;
418
419 // Check to see if this store is to a constant offset from the start ptr.
420 int64_t Offset;
421 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
422 break;
423
424 Ranges.addMemSet(Offset, MSI);
425 }
426 }
427
428 // If we have no ranges, then we just had a single store with nothing that
429 // could be merged in. This is a very common case of course.
430 if (Ranges.empty())
431 return nullptr;
432
433 // If we had at least one store that could be merged in, add the starting
434 // store as well. We try to avoid this unless there is at least something
435 // interesting as a small compile-time optimization.
436 Ranges.addInst(0, StartInst);
437
438 // If we create any memsets, we put it right before the first instruction that
439 // isn't part of the memset block. This ensure that the memset is dominated
440 // by any addressing instruction needed by the start of the block.
441 IRBuilder<> Builder(BI);
442
443 // Now that we have full information about ranges, loop over the ranges and
444 // emit memset's for anything big enough to be worthwhile.
445 Instruction *AMemSet = nullptr;
446 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
447 I != E; ++I) {
448 const MemsetRange &Range = *I;
449
450 if (Range.TheStores.size() == 1) continue;
451
452 // If it is profitable to lower this range to memset, do so now.
453 if (!Range.isProfitableToUseMemset(DL))
454 continue;
455
456 // Otherwise, we do want to transform this! Create a new memset.
457 // Get the starting pointer of the block.
458 StartPtr = Range.StartPtr;
459
460 // Determine alignment
461 unsigned Alignment = Range.Alignment;
462 if (Alignment == 0) {
463 Type *EltType =
464 cast<PointerType>(StartPtr->getType())->getElementType();
465 Alignment = DL.getABITypeAlignment(EltType);
466 }
467
468 AMemSet =
469 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
470
471 DEBUG(dbgs() << "Replace stores:\n";
472 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
473 dbgs() << *Range.TheStores[i] << '\n';
474 dbgs() << "With: " << *AMemSet << '\n');
475
476 if (!Range.TheStores.empty())
477 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
478
479 // Zap all the stores.
480 for (SmallVectorImpl<Instruction *>::const_iterator
481 SI = Range.TheStores.begin(),
482 SE = Range.TheStores.end(); SI != SE; ++SI) {
483 MD->removeInstruction(*SI);
484 (*SI)->eraseFromParent();
485 }
486 ++NumMemSetInfer;
487 }
488
489 return AMemSet;
490 }
491
492
processStore(StoreInst * SI,BasicBlock::iterator & BBI)493 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
494 if (!SI->isSimple()) return false;
495 const DataLayout &DL = SI->getModule()->getDataLayout();
496
497 // Detect cases where we're performing call slot forwarding, but
498 // happen to be using a load-store pair to implement it, rather than
499 // a memcpy.
500 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
501 if (LI->isSimple() && LI->hasOneUse() &&
502 LI->getParent() == SI->getParent()) {
503 MemDepResult ldep = MD->getDependency(LI);
504 CallInst *C = nullptr;
505 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
506 C = dyn_cast<CallInst>(ldep.getInst());
507
508 if (C) {
509 // Check that nothing touches the dest of the "copy" between
510 // the call and the store.
511 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
512 AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
513 for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
514 E = C; I != E; --I) {
515 if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
516 C = nullptr;
517 break;
518 }
519 }
520 }
521
522 if (C) {
523 unsigned storeAlign = SI->getAlignment();
524 if (!storeAlign)
525 storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
526 unsigned loadAlign = LI->getAlignment();
527 if (!loadAlign)
528 loadAlign = DL.getABITypeAlignment(LI->getType());
529
530 bool changed = performCallSlotOptzn(
531 LI, SI->getPointerOperand()->stripPointerCasts(),
532 LI->getPointerOperand()->stripPointerCasts(),
533 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
534 std::min(storeAlign, loadAlign), C);
535 if (changed) {
536 MD->removeInstruction(SI);
537 SI->eraseFromParent();
538 MD->removeInstruction(LI);
539 LI->eraseFromParent();
540 ++NumMemCpyInstr;
541 return true;
542 }
543 }
544 }
545 }
546
547 // There are two cases that are interesting for this code to handle: memcpy
548 // and memset. Right now we only handle memset.
549
550 // Ensure that the value being stored is something that can be memset'able a
551 // byte at a time like "0" or "-1" or any width, as well as things like
552 // 0xA0A0A0A0 and 0.0.
553 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
554 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
555 ByteVal)) {
556 BBI = I; // Don't invalidate iterator.
557 return true;
558 }
559
560 return false;
561 }
562
processMemSet(MemSetInst * MSI,BasicBlock::iterator & BBI)563 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
564 // See if there is another memset or store neighboring this memset which
565 // allows us to widen out the memset to do a single larger store.
566 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
567 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
568 MSI->getValue())) {
569 BBI = I; // Don't invalidate iterator.
570 return true;
571 }
572 return false;
573 }
574
575
576 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
577 /// and checks for the possibility of a call slot optimization by having
578 /// the call write its result directly into the destination of the memcpy.
performCallSlotOptzn(Instruction * cpy,Value * cpyDest,Value * cpySrc,uint64_t cpyLen,unsigned cpyAlign,CallInst * C)579 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
580 Value *cpyDest, Value *cpySrc,
581 uint64_t cpyLen, unsigned cpyAlign,
582 CallInst *C) {
583 // The general transformation to keep in mind is
584 //
585 // call @func(..., src, ...)
586 // memcpy(dest, src, ...)
587 //
588 // ->
589 //
590 // memcpy(dest, src, ...)
591 // call @func(..., dest, ...)
592 //
593 // Since moving the memcpy is technically awkward, we additionally check that
594 // src only holds uninitialized values at the moment of the call, meaning that
595 // the memcpy can be discarded rather than moved.
596
597 // Deliberately get the source and destination with bitcasts stripped away,
598 // because we'll need to do type comparisons based on the underlying type.
599 CallSite CS(C);
600
601 // Require that src be an alloca. This simplifies the reasoning considerably.
602 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
603 if (!srcAlloca)
604 return false;
605
606 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
607 if (!srcArraySize)
608 return false;
609
610 const DataLayout &DL = cpy->getModule()->getDataLayout();
611 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
612 srcArraySize->getZExtValue();
613
614 if (cpyLen < srcSize)
615 return false;
616
617 // Check that accessing the first srcSize bytes of dest will not cause a
618 // trap. Otherwise the transform is invalid since it might cause a trap
619 // to occur earlier than it otherwise would.
620 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
621 // The destination is an alloca. Check it is larger than srcSize.
622 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
623 if (!destArraySize)
624 return false;
625
626 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
627 destArraySize->getZExtValue();
628
629 if (destSize < srcSize)
630 return false;
631 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
632 if (A->getDereferenceableBytes() < srcSize) {
633 // If the destination is an sret parameter then only accesses that are
634 // outside of the returned struct type can trap.
635 if (!A->hasStructRetAttr())
636 return false;
637
638 Type *StructTy = cast<PointerType>(A->getType())->getElementType();
639 if (!StructTy->isSized()) {
640 // The call may never return and hence the copy-instruction may never
641 // be executed, and therefore it's not safe to say "the destination
642 // has at least <cpyLen> bytes, as implied by the copy-instruction",
643 return false;
644 }
645
646 uint64_t destSize = DL.getTypeAllocSize(StructTy);
647 if (destSize < srcSize)
648 return false;
649 }
650 } else {
651 return false;
652 }
653
654 // Check that dest points to memory that is at least as aligned as src.
655 unsigned srcAlign = srcAlloca->getAlignment();
656 if (!srcAlign)
657 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
658 bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
659 // If dest is not aligned enough and we can't increase its alignment then
660 // bail out.
661 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
662 return false;
663
664 // Check that src is not accessed except via the call and the memcpy. This
665 // guarantees that it holds only undefined values when passed in (so the final
666 // memcpy can be dropped), that it is not read or written between the call and
667 // the memcpy, and that writing beyond the end of it is undefined.
668 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
669 srcAlloca->user_end());
670 while (!srcUseList.empty()) {
671 User *U = srcUseList.pop_back_val();
672
673 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
674 for (User *UU : U->users())
675 srcUseList.push_back(UU);
676 continue;
677 }
678 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
679 if (!G->hasAllZeroIndices())
680 return false;
681
682 for (User *UU : U->users())
683 srcUseList.push_back(UU);
684 continue;
685 }
686 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
687 if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
688 IT->getIntrinsicID() == Intrinsic::lifetime_end)
689 continue;
690
691 if (U != C && U != cpy)
692 return false;
693 }
694
695 // Check that src isn't captured by the called function since the
696 // transformation can cause aliasing issues in that case.
697 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
698 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
699 return false;
700
701 // Since we're changing the parameter to the callsite, we need to make sure
702 // that what would be the new parameter dominates the callsite.
703 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
704 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
705 if (!DT.dominates(cpyDestInst, C))
706 return false;
707
708 // In addition to knowing that the call does not access src in some
709 // unexpected manner, for example via a global, which we deduce from
710 // the use analysis, we also need to know that it does not sneakily
711 // access dest. We rely on AA to figure this out for us.
712 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
713 AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
714 // If necessary, perform additional analysis.
715 if (MR != AliasAnalysis::NoModRef)
716 MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
717 if (MR != AliasAnalysis::NoModRef)
718 return false;
719
720 // All the checks have passed, so do the transformation.
721 bool changedArgument = false;
722 for (unsigned i = 0; i < CS.arg_size(); ++i)
723 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
724 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
725 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
726 cpyDest->getName(), C);
727 changedArgument = true;
728 if (CS.getArgument(i)->getType() == Dest->getType())
729 CS.setArgument(i, Dest);
730 else
731 CS.setArgument(i, CastInst::CreatePointerCast(Dest,
732 CS.getArgument(i)->getType(), Dest->getName(), C));
733 }
734
735 if (!changedArgument)
736 return false;
737
738 // If the destination wasn't sufficiently aligned then increase its alignment.
739 if (!isDestSufficientlyAligned) {
740 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
741 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
742 }
743
744 // Drop any cached information about the call, because we may have changed
745 // its dependence information by changing its parameter.
746 MD->removeInstruction(C);
747
748 // Update AA metadata
749 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
750 // handled here, but combineMetadata doesn't support them yet
751 unsigned KnownIDs[] = {
752 LLVMContext::MD_tbaa,
753 LLVMContext::MD_alias_scope,
754 LLVMContext::MD_noalias,
755 };
756 combineMetadata(C, cpy, KnownIDs);
757
758 // Remove the memcpy.
759 MD->removeInstruction(cpy);
760 ++NumMemCpyInstr;
761
762 return true;
763 }
764
765 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
766 /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
767 /// copy from MDep's input if we can. MSize is the size of M's copy.
768 ///
processMemCpyMemCpyDependence(MemCpyInst * M,MemCpyInst * MDep,uint64_t MSize)769 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
770 uint64_t MSize) {
771 // We can only transforms memcpy's where the dest of one is the source of the
772 // other.
773 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
774 return false;
775
776 // If dep instruction is reading from our current input, then it is a noop
777 // transfer and substituting the input won't change this instruction. Just
778 // ignore the input and let someone else zap MDep. This handles cases like:
779 // memcpy(a <- a)
780 // memcpy(b <- a)
781 if (M->getSource() == MDep->getSource())
782 return false;
783
784 // Second, the length of the memcpy's must be the same, or the preceding one
785 // must be larger than the following one.
786 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
787 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
788 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
789 return false;
790
791 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
792
793 // Verify that the copied-from memory doesn't change in between the two
794 // transfers. For example, in:
795 // memcpy(a <- b)
796 // *b = 42;
797 // memcpy(c <- a)
798 // It would be invalid to transform the second memcpy into memcpy(c <- b).
799 //
800 // TODO: If the code between M and MDep is transparent to the destination "c",
801 // then we could still perform the xform by moving M up to the first memcpy.
802 //
803 // NOTE: This is conservative, it will stop on any read from the source loc,
804 // not just the defining memcpy.
805 MemDepResult SourceDep =
806 MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
807 false, M, M->getParent());
808 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
809 return false;
810
811 // If the dest of the second might alias the source of the first, then the
812 // source and dest might overlap. We still want to eliminate the intermediate
813 // value, but we have to generate a memmove instead of memcpy.
814 bool UseMemMove = false;
815 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
816 UseMemMove = true;
817
818 // If all checks passed, then we can transform M.
819
820 // Make sure to use the lesser of the alignment of the source and the dest
821 // since we're changing where we're reading from, but don't want to increase
822 // the alignment past what can be read from or written to.
823 // TODO: Is this worth it if we're creating a less aligned memcpy? For
824 // example we could be moving from movaps -> movq on x86.
825 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
826
827 IRBuilder<> Builder(M);
828 if (UseMemMove)
829 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
830 Align, M->isVolatile());
831 else
832 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
833 Align, M->isVolatile());
834
835 // Remove the instruction we're replacing.
836 MD->removeInstruction(M);
837 M->eraseFromParent();
838 ++NumMemCpyInstr;
839 return true;
840 }
841
842
843 /// processMemCpy - perform simplification of memcpy's. If we have memcpy A
844 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
845 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
846 /// circumstances). This allows later passes to remove the first memcpy
847 /// altogether.
processMemCpy(MemCpyInst * M)848 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
849 // We can only optimize non-volatile memcpy's.
850 if (M->isVolatile()) return false;
851
852 // If the source and destination of the memcpy are the same, then zap it.
853 if (M->getSource() == M->getDest()) {
854 MD->removeInstruction(M);
855 M->eraseFromParent();
856 return false;
857 }
858
859 // If copying from a constant, try to turn the memcpy into a memset.
860 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
861 if (GV->isConstant() && GV->hasDefinitiveInitializer())
862 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
863 IRBuilder<> Builder(M);
864 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
865 M->getAlignment(), false);
866 MD->removeInstruction(M);
867 M->eraseFromParent();
868 ++NumCpyToSet;
869 return true;
870 }
871
872 // The optimizations after this point require the memcpy size.
873 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
874 if (!CopySize) return false;
875
876 // The are three possible optimizations we can do for memcpy:
877 // a) memcpy-memcpy xform which exposes redundance for DSE.
878 // b) call-memcpy xform for return slot optimization.
879 // c) memcpy from freshly alloca'd space or space that has just started its
880 // lifetime copies undefined data, and we can therefore eliminate the
881 // memcpy in favor of the data that was already at the destination.
882 MemDepResult DepInfo = MD->getDependency(M);
883 if (DepInfo.isClobber()) {
884 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
885 if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
886 CopySize->getZExtValue(), M->getAlignment(),
887 C)) {
888 MD->removeInstruction(M);
889 M->eraseFromParent();
890 return true;
891 }
892 }
893 }
894
895 AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
896 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
897 M, M->getParent());
898 if (SrcDepInfo.isClobber()) {
899 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
900 return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
901 } else if (SrcDepInfo.isDef()) {
902 Instruction *I = SrcDepInfo.getInst();
903 bool hasUndefContents = false;
904
905 if (isa<AllocaInst>(I)) {
906 hasUndefContents = true;
907 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
908 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
909 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
910 if (LTSize->getZExtValue() >= CopySize->getZExtValue())
911 hasUndefContents = true;
912 }
913
914 if (hasUndefContents) {
915 MD->removeInstruction(M);
916 M->eraseFromParent();
917 ++NumMemCpyInstr;
918 return true;
919 }
920 }
921
922 return false;
923 }
924
925 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
926 /// are guaranteed not to alias.
processMemMove(MemMoveInst * M)927 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
928 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
929
930 if (!TLI->has(LibFunc::memmove))
931 return false;
932
933 // See if the pointers alias.
934 if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
935 return false;
936
937 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
938
939 // If not, then we know we can transform this.
940 Module *Mod = M->getParent()->getParent()->getParent();
941 Type *ArgTys[3] = { M->getRawDest()->getType(),
942 M->getRawSource()->getType(),
943 M->getLength()->getType() };
944 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
945 ArgTys));
946
947 // MemDep may have over conservative information about this instruction, just
948 // conservatively flush it from the cache.
949 MD->removeInstruction(M);
950
951 ++NumMoveToCpy;
952 return true;
953 }
954
955 /// processByValArgument - This is called on every byval argument in call sites.
processByValArgument(CallSite CS,unsigned ArgNo)956 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
957 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
958 // Find out what feeds this byval argument.
959 Value *ByValArg = CS.getArgument(ArgNo);
960 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
961 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
962 MemDepResult DepInfo =
963 MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
964 true, CS.getInstruction(),
965 CS.getInstruction()->getParent());
966 if (!DepInfo.isClobber())
967 return false;
968
969 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
970 // a memcpy, see if we can byval from the source of the memcpy instead of the
971 // result.
972 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
973 if (!MDep || MDep->isVolatile() ||
974 ByValArg->stripPointerCasts() != MDep->getDest())
975 return false;
976
977 // The length of the memcpy must be larger or equal to the size of the byval.
978 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
979 if (!C1 || C1->getValue().getZExtValue() < ByValSize)
980 return false;
981
982 // Get the alignment of the byval. If the call doesn't specify the alignment,
983 // then it is some target specific value that we can't know.
984 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
985 if (ByValAlign == 0) return false;
986
987 // If it is greater than the memcpy, then we check to see if we can force the
988 // source of the memcpy to the alignment we need. If we fail, we bail out.
989 AssumptionCache &AC =
990 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
991 *CS->getParent()->getParent());
992 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
993 if (MDep->getAlignment() < ByValAlign &&
994 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
995 CS.getInstruction(), &AC, &DT) < ByValAlign)
996 return false;
997
998 // Verify that the copied-from memory doesn't change in between the memcpy and
999 // the byval call.
1000 // memcpy(a <- b)
1001 // *b = 42;
1002 // foo(*a)
1003 // It would be invalid to transform the second memcpy into foo(*b).
1004 //
1005 // NOTE: This is conservative, it will stop on any read from the source loc,
1006 // not just the defining memcpy.
1007 MemDepResult SourceDep =
1008 MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
1009 false, CS.getInstruction(), MDep->getParent());
1010 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1011 return false;
1012
1013 Value *TmpCast = MDep->getSource();
1014 if (MDep->getSource()->getType() != ByValArg->getType())
1015 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1016 "tmpcast", CS.getInstruction());
1017
1018 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
1019 << " " << *MDep << "\n"
1020 << " " << *CS.getInstruction() << "\n");
1021
1022 // Otherwise we're good! Update the byval argument.
1023 CS.setArgument(ArgNo, TmpCast);
1024 ++NumMemCpyInstr;
1025 return true;
1026 }
1027
1028 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
iterateOnFunction(Function & F)1029 bool MemCpyOpt::iterateOnFunction(Function &F) {
1030 bool MadeChange = false;
1031
1032 // Walk all instruction in the function.
1033 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
1034 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
1035 // Avoid invalidating the iterator.
1036 Instruction *I = BI++;
1037
1038 bool RepeatInstruction = false;
1039
1040 if (StoreInst *SI = dyn_cast<StoreInst>(I))
1041 MadeChange |= processStore(SI, BI);
1042 else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1043 RepeatInstruction = processMemSet(M, BI);
1044 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1045 RepeatInstruction = processMemCpy(M);
1046 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1047 RepeatInstruction = processMemMove(M);
1048 else if (auto CS = CallSite(I)) {
1049 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1050 if (CS.isByValArgument(i))
1051 MadeChange |= processByValArgument(CS, i);
1052 }
1053
1054 // Reprocess the instruction if desired.
1055 if (RepeatInstruction) {
1056 if (BI != BB->begin()) --BI;
1057 MadeChange = true;
1058 }
1059 }
1060 }
1061
1062 return MadeChange;
1063 }
1064
1065 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
1066 // function.
1067 //
runOnFunction(Function & F)1068 bool MemCpyOpt::runOnFunction(Function &F) {
1069 if (skipOptnoneFunction(F))
1070 return false;
1071
1072 bool MadeChange = false;
1073 MD = &getAnalysis<MemoryDependenceAnalysis>();
1074 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1075
1076 // If we don't have at least memset and memcpy, there is little point of doing
1077 // anything here. These are required by a freestanding implementation, so if
1078 // even they are disabled, there is no point in trying hard.
1079 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
1080 return false;
1081
1082 while (1) {
1083 if (!iterateOnFunction(F))
1084 break;
1085 MadeChange = true;
1086 }
1087
1088 MD = nullptr;
1089 return MadeChange;
1090 }
1091