1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 // to indicate the weights of each edge coming out of the branch.
19 // The weight of each edge is the weight of the target block for
20 // that edge. The weight of a block B is computed as the maximum
21 // number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/PostDominators.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/Pass.h"
44 #include "llvm/ProfileData/SampleProfReader.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cctype>
49
50 using namespace llvm;
51 using namespace sampleprof;
52
53 #define DEBUG_TYPE "sample-profile"
54
55 // Command line option to specify the file to read samples from. This is
56 // mainly used for debugging.
57 static cl::opt<std::string> SampleProfileFile(
58 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
59 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
60 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
61 "sample-profile-max-propagate-iterations", cl::init(100),
62 cl::desc("Maximum number of iterations to go through when propagating "
63 "sample block/edge weights through the CFG."));
64
65 namespace {
66 typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
67 typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
68 typedef std::pair<BasicBlock *, BasicBlock *> Edge;
69 typedef DenseMap<Edge, unsigned> EdgeWeightMap;
70 typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
71
72 /// \brief Sample profile pass.
73 ///
74 /// This pass reads profile data from the file specified by
75 /// -sample-profile-file and annotates every affected function with the
76 /// profile information found in that file.
77 class SampleProfileLoader : public FunctionPass {
78 public:
79 // Class identification, replacement for typeinfo
80 static char ID;
81
SampleProfileLoader(StringRef Name=SampleProfileFile)82 SampleProfileLoader(StringRef Name = SampleProfileFile)
83 : FunctionPass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Ctx(nullptr),
84 Reader(), Samples(nullptr), Filename(Name), ProfileIsValid(false) {
85 initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
86 }
87
88 bool doInitialization(Module &M) override;
89
dump()90 void dump() { Reader->dump(); }
91
getPassName() const92 const char *getPassName() const override { return "Sample profile pass"; }
93
94 bool runOnFunction(Function &F) override;
95
getAnalysisUsage(AnalysisUsage & AU) const96 void getAnalysisUsage(AnalysisUsage &AU) const override {
97 AU.setPreservesCFG();
98 AU.addRequired<LoopInfoWrapperPass>();
99 AU.addRequired<DominatorTreeWrapperPass>();
100 AU.addRequired<PostDominatorTree>();
101 }
102
103 protected:
104 unsigned getFunctionLoc(Function &F);
105 bool emitAnnotations(Function &F);
106 unsigned getInstWeight(Instruction &I);
107 unsigned getBlockWeight(BasicBlock *BB);
108 void printEdgeWeight(raw_ostream &OS, Edge E);
109 void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
110 void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
111 bool computeBlockWeights(Function &F);
112 void findEquivalenceClasses(Function &F);
113 void findEquivalencesFor(BasicBlock *BB1,
114 SmallVector<BasicBlock *, 8> Descendants,
115 DominatorTreeBase<BasicBlock> *DomTree);
116 void propagateWeights(Function &F);
117 unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
118 void buildEdges(Function &F);
119 bool propagateThroughEdges(Function &F);
120
121 /// \brief Line number for the function header. Used to compute absolute
122 /// line numbers from the relative line numbers found in the profile.
123 unsigned HeaderLineno;
124
125 /// \brief Map basic blocks to their computed weights.
126 ///
127 /// The weight of a basic block is defined to be the maximum
128 /// of all the instruction weights in that block.
129 BlockWeightMap BlockWeights;
130
131 /// \brief Map edges to their computed weights.
132 ///
133 /// Edge weights are computed by propagating basic block weights in
134 /// SampleProfile::propagateWeights.
135 EdgeWeightMap EdgeWeights;
136
137 /// \brief Set of visited blocks during propagation.
138 SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
139
140 /// \brief Set of visited edges during propagation.
141 SmallSet<Edge, 128> VisitedEdges;
142
143 /// \brief Equivalence classes for block weights.
144 ///
145 /// Two blocks BB1 and BB2 are in the same equivalence class if they
146 /// dominate and post-dominate each other, and they are in the same loop
147 /// nest. When this happens, the two blocks are guaranteed to execute
148 /// the same number of times.
149 EquivalenceClassMap EquivalenceClass;
150
151 /// \brief Dominance, post-dominance and loop information.
152 DominatorTree *DT;
153 PostDominatorTree *PDT;
154 LoopInfo *LI;
155
156 /// \brief Predecessors for each basic block in the CFG.
157 BlockEdgeMap Predecessors;
158
159 /// \brief Successors for each basic block in the CFG.
160 BlockEdgeMap Successors;
161
162 /// \brief LLVM context holding the debug data we need.
163 LLVMContext *Ctx;
164
165 /// \brief Profile reader object.
166 std::unique_ptr<SampleProfileReader> Reader;
167
168 /// \brief Samples collected for the body of this function.
169 FunctionSamples *Samples;
170
171 /// \brief Name of the profile file to load.
172 StringRef Filename;
173
174 /// \brief Flag indicating whether the profile input loaded successfully.
175 bool ProfileIsValid;
176 };
177 }
178
179 /// \brief Print the weight of edge \p E on stream \p OS.
180 ///
181 /// \param OS Stream to emit the output to.
182 /// \param E Edge to print.
printEdgeWeight(raw_ostream & OS,Edge E)183 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
184 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
185 << "]: " << EdgeWeights[E] << "\n";
186 }
187
188 /// \brief Print the equivalence class of block \p BB on stream \p OS.
189 ///
190 /// \param OS Stream to emit the output to.
191 /// \param BB Block to print.
printBlockEquivalence(raw_ostream & OS,BasicBlock * BB)192 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
193 BasicBlock *BB) {
194 BasicBlock *Equiv = EquivalenceClass[BB];
195 OS << "equivalence[" << BB->getName()
196 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
197 }
198
199 /// \brief Print the weight of block \p BB on stream \p OS.
200 ///
201 /// \param OS Stream to emit the output to.
202 /// \param BB Block to print.
printBlockWeight(raw_ostream & OS,BasicBlock * BB)203 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
204 OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
205 }
206
207 /// \brief Get the weight for an instruction.
208 ///
209 /// The "weight" of an instruction \p Inst is the number of samples
210 /// collected on that instruction at runtime. To retrieve it, we
211 /// need to compute the line number of \p Inst relative to the start of its
212 /// function. We use HeaderLineno to compute the offset. We then
213 /// look up the samples collected for \p Inst using BodySamples.
214 ///
215 /// \param Inst Instruction to query.
216 ///
217 /// \returns The profiled weight of I.
getInstWeight(Instruction & Inst)218 unsigned SampleProfileLoader::getInstWeight(Instruction &Inst) {
219 DebugLoc DLoc = Inst.getDebugLoc();
220 if (!DLoc)
221 return 0;
222
223 unsigned Lineno = DLoc.getLine();
224 if (Lineno < HeaderLineno)
225 return 0;
226
227 DILocation DIL = DLoc.get();
228 int LOffset = Lineno - HeaderLineno;
229 unsigned Discriminator = DIL->getDiscriminator();
230 unsigned Weight = Samples->samplesAt(LOffset, Discriminator);
231 DEBUG(dbgs() << " " << Lineno << "." << Discriminator << ":" << Inst
232 << " (line offset: " << LOffset << "." << Discriminator
233 << " - weight: " << Weight << ")\n");
234 return Weight;
235 }
236
237 /// \brief Compute the weight of a basic block.
238 ///
239 /// The weight of basic block \p BB is the maximum weight of all the
240 /// instructions in BB. The weight of \p BB is computed and cached in
241 /// the BlockWeights map.
242 ///
243 /// \param BB The basic block to query.
244 ///
245 /// \returns The computed weight of BB.
getBlockWeight(BasicBlock * BB)246 unsigned SampleProfileLoader::getBlockWeight(BasicBlock *BB) {
247 // If we've computed BB's weight before, return it.
248 std::pair<BlockWeightMap::iterator, bool> Entry =
249 BlockWeights.insert(std::make_pair(BB, 0));
250 if (!Entry.second)
251 return Entry.first->second;
252
253 // Otherwise, compute and cache BB's weight.
254 unsigned Weight = 0;
255 for (auto &I : BB->getInstList()) {
256 unsigned InstWeight = getInstWeight(I);
257 if (InstWeight > Weight)
258 Weight = InstWeight;
259 }
260 Entry.first->second = Weight;
261 return Weight;
262 }
263
264 /// \brief Compute and store the weights of every basic block.
265 ///
266 /// This populates the BlockWeights map by computing
267 /// the weights of every basic block in the CFG.
268 ///
269 /// \param F The function to query.
computeBlockWeights(Function & F)270 bool SampleProfileLoader::computeBlockWeights(Function &F) {
271 bool Changed = false;
272 DEBUG(dbgs() << "Block weights\n");
273 for (auto &BB : F) {
274 unsigned Weight = getBlockWeight(&BB);
275 Changed |= (Weight > 0);
276 DEBUG(printBlockWeight(dbgs(), &BB));
277 }
278
279 return Changed;
280 }
281
282 /// \brief Find equivalence classes for the given block.
283 ///
284 /// This finds all the blocks that are guaranteed to execute the same
285 /// number of times as \p BB1. To do this, it traverses all the the
286 /// descendants of \p BB1 in the dominator or post-dominator tree.
287 ///
288 /// A block BB2 will be in the same equivalence class as \p BB1 if
289 /// the following holds:
290 ///
291 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
292 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
293 /// dominate BB1 in the post-dominator tree.
294 ///
295 /// 2- Both BB2 and \p BB1 must be in the same loop.
296 ///
297 /// For every block BB2 that meets those two requirements, we set BB2's
298 /// equivalence class to \p BB1.
299 ///
300 /// \param BB1 Block to check.
301 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
302 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
303 /// with blocks from \p BB1's dominator tree, then
304 /// this is the post-dominator tree, and vice versa.
findEquivalencesFor(BasicBlock * BB1,SmallVector<BasicBlock *,8> Descendants,DominatorTreeBase<BasicBlock> * DomTree)305 void SampleProfileLoader::findEquivalencesFor(
306 BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
307 DominatorTreeBase<BasicBlock> *DomTree) {
308 for (auto *BB2 : Descendants) {
309 bool IsDomParent = DomTree->dominates(BB2, BB1);
310 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
311 if (BB1 != BB2 && VisitedBlocks.insert(BB2).second && IsDomParent &&
312 IsInSameLoop) {
313 EquivalenceClass[BB2] = BB1;
314
315 // If BB2 is heavier than BB1, make BB2 have the same weight
316 // as BB1.
317 //
318 // Note that we don't worry about the opposite situation here
319 // (when BB2 is lighter than BB1). We will deal with this
320 // during the propagation phase. Right now, we just want to
321 // make sure that BB1 has the largest weight of all the
322 // members of its equivalence set.
323 unsigned &BB1Weight = BlockWeights[BB1];
324 unsigned &BB2Weight = BlockWeights[BB2];
325 BB1Weight = std::max(BB1Weight, BB2Weight);
326 }
327 }
328 }
329
330 /// \brief Find equivalence classes.
331 ///
332 /// Since samples may be missing from blocks, we can fill in the gaps by setting
333 /// the weights of all the blocks in the same equivalence class to the same
334 /// weight. To compute the concept of equivalence, we use dominance and loop
335 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
336 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
337 ///
338 /// \param F The function to query.
findEquivalenceClasses(Function & F)339 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
340 SmallVector<BasicBlock *, 8> DominatedBBs;
341 DEBUG(dbgs() << "\nBlock equivalence classes\n");
342 // Find equivalence sets based on dominance and post-dominance information.
343 for (auto &BB : F) {
344 BasicBlock *BB1 = &BB;
345
346 // Compute BB1's equivalence class once.
347 if (EquivalenceClass.count(BB1)) {
348 DEBUG(printBlockEquivalence(dbgs(), BB1));
349 continue;
350 }
351
352 // By default, blocks are in their own equivalence class.
353 EquivalenceClass[BB1] = BB1;
354
355 // Traverse all the blocks dominated by BB1. We are looking for
356 // every basic block BB2 such that:
357 //
358 // 1- BB1 dominates BB2.
359 // 2- BB2 post-dominates BB1.
360 // 3- BB1 and BB2 are in the same loop nest.
361 //
362 // If all those conditions hold, it means that BB2 is executed
363 // as many times as BB1, so they are placed in the same equivalence
364 // class by making BB2's equivalence class be BB1.
365 DominatedBBs.clear();
366 DT->getDescendants(BB1, DominatedBBs);
367 findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
368
369 // Repeat the same logic for all the blocks post-dominated by BB1.
370 // We are looking for every basic block BB2 such that:
371 //
372 // 1- BB1 post-dominates BB2.
373 // 2- BB2 dominates BB1.
374 // 3- BB1 and BB2 are in the same loop nest.
375 //
376 // If all those conditions hold, BB2's equivalence class is BB1.
377 DominatedBBs.clear();
378 PDT->getDescendants(BB1, DominatedBBs);
379 findEquivalencesFor(BB1, DominatedBBs, DT);
380
381 DEBUG(printBlockEquivalence(dbgs(), BB1));
382 }
383
384 // Assign weights to equivalence classes.
385 //
386 // All the basic blocks in the same equivalence class will execute
387 // the same number of times. Since we know that the head block in
388 // each equivalence class has the largest weight, assign that weight
389 // to all the blocks in that equivalence class.
390 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
391 for (auto &BI : F) {
392 BasicBlock *BB = &BI;
393 BasicBlock *EquivBB = EquivalenceClass[BB];
394 if (BB != EquivBB)
395 BlockWeights[BB] = BlockWeights[EquivBB];
396 DEBUG(printBlockWeight(dbgs(), BB));
397 }
398 }
399
400 /// \brief Visit the given edge to decide if it has a valid weight.
401 ///
402 /// If \p E has not been visited before, we copy to \p UnknownEdge
403 /// and increment the count of unknown edges.
404 ///
405 /// \param E Edge to visit.
406 /// \param NumUnknownEdges Current number of unknown edges.
407 /// \param UnknownEdge Set if E has not been visited before.
408 ///
409 /// \returns E's weight, if known. Otherwise, return 0.
visitEdge(Edge E,unsigned * NumUnknownEdges,Edge * UnknownEdge)410 unsigned SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
411 Edge *UnknownEdge) {
412 if (!VisitedEdges.count(E)) {
413 (*NumUnknownEdges)++;
414 *UnknownEdge = E;
415 return 0;
416 }
417
418 return EdgeWeights[E];
419 }
420
421 /// \brief Propagate weights through incoming/outgoing edges.
422 ///
423 /// If the weight of a basic block is known, and there is only one edge
424 /// with an unknown weight, we can calculate the weight of that edge.
425 ///
426 /// Similarly, if all the edges have a known count, we can calculate the
427 /// count of the basic block, if needed.
428 ///
429 /// \param F Function to process.
430 ///
431 /// \returns True if new weights were assigned to edges or blocks.
propagateThroughEdges(Function & F)432 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
433 bool Changed = false;
434 DEBUG(dbgs() << "\nPropagation through edges\n");
435 for (auto &BI : F) {
436 BasicBlock *BB = &BI;
437
438 // Visit all the predecessor and successor edges to determine
439 // which ones have a weight assigned already. Note that it doesn't
440 // matter that we only keep track of a single unknown edge. The
441 // only case we are interested in handling is when only a single
442 // edge is unknown (see setEdgeOrBlockWeight).
443 for (unsigned i = 0; i < 2; i++) {
444 unsigned TotalWeight = 0;
445 unsigned NumUnknownEdges = 0;
446 Edge UnknownEdge, SelfReferentialEdge;
447
448 if (i == 0) {
449 // First, visit all predecessor edges.
450 for (auto *Pred : Predecessors[BB]) {
451 Edge E = std::make_pair(Pred, BB);
452 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
453 if (E.first == E.second)
454 SelfReferentialEdge = E;
455 }
456 } else {
457 // On the second round, visit all successor edges.
458 for (auto *Succ : Successors[BB]) {
459 Edge E = std::make_pair(BB, Succ);
460 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
461 }
462 }
463
464 // After visiting all the edges, there are three cases that we
465 // can handle immediately:
466 //
467 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
468 // In this case, we simply check that the sum of all the edges
469 // is the same as BB's weight. If not, we change BB's weight
470 // to match. Additionally, if BB had not been visited before,
471 // we mark it visited.
472 //
473 // - Only one edge is unknown and BB has already been visited.
474 // In this case, we can compute the weight of the edge by
475 // subtracting the total block weight from all the known
476 // edge weights. If the edges weight more than BB, then the
477 // edge of the last remaining edge is set to zero.
478 //
479 // - There exists a self-referential edge and the weight of BB is
480 // known. In this case, this edge can be based on BB's weight.
481 // We add up all the other known edges and set the weight on
482 // the self-referential edge as we did in the previous case.
483 //
484 // In any other case, we must continue iterating. Eventually,
485 // all edges will get a weight, or iteration will stop when
486 // it reaches SampleProfileMaxPropagateIterations.
487 if (NumUnknownEdges <= 1) {
488 unsigned &BBWeight = BlockWeights[BB];
489 if (NumUnknownEdges == 0) {
490 // If we already know the weight of all edges, the weight of the
491 // basic block can be computed. It should be no larger than the sum
492 // of all edge weights.
493 if (TotalWeight > BBWeight) {
494 BBWeight = TotalWeight;
495 Changed = true;
496 DEBUG(dbgs() << "All edge weights for " << BB->getName()
497 << " known. Set weight for block: ";
498 printBlockWeight(dbgs(), BB););
499 }
500 if (VisitedBlocks.insert(BB).second)
501 Changed = true;
502 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
503 // If there is a single unknown edge and the block has been
504 // visited, then we can compute E's weight.
505 if (BBWeight >= TotalWeight)
506 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
507 else
508 EdgeWeights[UnknownEdge] = 0;
509 VisitedEdges.insert(UnknownEdge);
510 Changed = true;
511 DEBUG(dbgs() << "Set weight for edge: ";
512 printEdgeWeight(dbgs(), UnknownEdge));
513 }
514 } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
515 unsigned &BBWeight = BlockWeights[BB];
516 // We have a self-referential edge and the weight of BB is known.
517 if (BBWeight >= TotalWeight)
518 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
519 else
520 EdgeWeights[SelfReferentialEdge] = 0;
521 VisitedEdges.insert(SelfReferentialEdge);
522 Changed = true;
523 DEBUG(dbgs() << "Set self-referential edge weight to: ";
524 printEdgeWeight(dbgs(), SelfReferentialEdge));
525 }
526 }
527 }
528
529 return Changed;
530 }
531
532 /// \brief Build in/out edge lists for each basic block in the CFG.
533 ///
534 /// We are interested in unique edges. If a block B1 has multiple
535 /// edges to another block B2, we only add a single B1->B2 edge.
buildEdges(Function & F)536 void SampleProfileLoader::buildEdges(Function &F) {
537 for (auto &BI : F) {
538 BasicBlock *B1 = &BI;
539
540 // Add predecessors for B1.
541 SmallPtrSet<BasicBlock *, 16> Visited;
542 if (!Predecessors[B1].empty())
543 llvm_unreachable("Found a stale predecessors list in a basic block.");
544 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
545 BasicBlock *B2 = *PI;
546 if (Visited.insert(B2).second)
547 Predecessors[B1].push_back(B2);
548 }
549
550 // Add successors for B1.
551 Visited.clear();
552 if (!Successors[B1].empty())
553 llvm_unreachable("Found a stale successors list in a basic block.");
554 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
555 BasicBlock *B2 = *SI;
556 if (Visited.insert(B2).second)
557 Successors[B1].push_back(B2);
558 }
559 }
560 }
561
562 /// \brief Propagate weights into edges
563 ///
564 /// The following rules are applied to every block BB in the CFG:
565 ///
566 /// - If BB has a single predecessor/successor, then the weight
567 /// of that edge is the weight of the block.
568 ///
569 /// - If all incoming or outgoing edges are known except one, and the
570 /// weight of the block is already known, the weight of the unknown
571 /// edge will be the weight of the block minus the sum of all the known
572 /// edges. If the sum of all the known edges is larger than BB's weight,
573 /// we set the unknown edge weight to zero.
574 ///
575 /// - If there is a self-referential edge, and the weight of the block is
576 /// known, the weight for that edge is set to the weight of the block
577 /// minus the weight of the other incoming edges to that block (if
578 /// known).
propagateWeights(Function & F)579 void SampleProfileLoader::propagateWeights(Function &F) {
580 bool Changed = true;
581 unsigned i = 0;
582
583 // Before propagation starts, build, for each block, a list of
584 // unique predecessors and successors. This is necessary to handle
585 // identical edges in multiway branches. Since we visit all blocks and all
586 // edges of the CFG, it is cleaner to build these lists once at the start
587 // of the pass.
588 buildEdges(F);
589
590 // Propagate until we converge or we go past the iteration limit.
591 while (Changed && i++ < SampleProfileMaxPropagateIterations) {
592 Changed = propagateThroughEdges(F);
593 }
594
595 // Generate MD_prof metadata for every branch instruction using the
596 // edge weights computed during propagation.
597 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
598 MDBuilder MDB(F.getContext());
599 for (auto &BI : F) {
600 BasicBlock *BB = &BI;
601 TerminatorInst *TI = BB->getTerminator();
602 if (TI->getNumSuccessors() == 1)
603 continue;
604 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
605 continue;
606
607 DEBUG(dbgs() << "\nGetting weights for branch at line "
608 << TI->getDebugLoc().getLine() << ".\n");
609 SmallVector<unsigned, 4> Weights;
610 bool AllWeightsZero = true;
611 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
612 BasicBlock *Succ = TI->getSuccessor(I);
613 Edge E = std::make_pair(BB, Succ);
614 unsigned Weight = EdgeWeights[E];
615 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
616 Weights.push_back(Weight);
617 if (Weight != 0)
618 AllWeightsZero = false;
619 }
620
621 // Only set weights if there is at least one non-zero weight.
622 // In any other case, let the analyzer set weights.
623 if (!AllWeightsZero) {
624 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
625 TI->setMetadata(llvm::LLVMContext::MD_prof,
626 MDB.createBranchWeights(Weights));
627 } else {
628 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
629 }
630 }
631 }
632
633 /// \brief Get the line number for the function header.
634 ///
635 /// This looks up function \p F in the current compilation unit and
636 /// retrieves the line number where the function is defined. This is
637 /// line 0 for all the samples read from the profile file. Every line
638 /// number is relative to this line.
639 ///
640 /// \param F Function object to query.
641 ///
642 /// \returns the line number where \p F is defined. If it returns 0,
643 /// it means that there is no debug information available for \p F.
getFunctionLoc(Function & F)644 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
645 if (MDSubprogram *S = getDISubprogram(&F))
646 return S->getLine();
647
648 // If could not find the start of \p F, emit a diagnostic to inform the user
649 // about the missed opportunity.
650 F.getContext().diagnose(DiagnosticInfoSampleProfile(
651 "No debug information found in function " + F.getName() +
652 ": Function profile not used",
653 DS_Warning));
654 return 0;
655 }
656
657 /// \brief Generate branch weight metadata for all branches in \p F.
658 ///
659 /// Branch weights are computed out of instruction samples using a
660 /// propagation heuristic. Propagation proceeds in 3 phases:
661 ///
662 /// 1- Assignment of block weights. All the basic blocks in the function
663 /// are initial assigned the same weight as their most frequently
664 /// executed instruction.
665 ///
666 /// 2- Creation of equivalence classes. Since samples may be missing from
667 /// blocks, we can fill in the gaps by setting the weights of all the
668 /// blocks in the same equivalence class to the same weight. To compute
669 /// the concept of equivalence, we use dominance and loop information.
670 /// Two blocks B1 and B2 are in the same equivalence class if B1
671 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
672 ///
673 /// 3- Propagation of block weights into edges. This uses a simple
674 /// propagation heuristic. The following rules are applied to every
675 /// block BB in the CFG:
676 ///
677 /// - If BB has a single predecessor/successor, then the weight
678 /// of that edge is the weight of the block.
679 ///
680 /// - If all the edges are known except one, and the weight of the
681 /// block is already known, the weight of the unknown edge will
682 /// be the weight of the block minus the sum of all the known
683 /// edges. If the sum of all the known edges is larger than BB's weight,
684 /// we set the unknown edge weight to zero.
685 ///
686 /// - If there is a self-referential edge, and the weight of the block is
687 /// known, the weight for that edge is set to the weight of the block
688 /// minus the weight of the other incoming edges to that block (if
689 /// known).
690 ///
691 /// Since this propagation is not guaranteed to finalize for every CFG, we
692 /// only allow it to proceed for a limited number of iterations (controlled
693 /// by -sample-profile-max-propagate-iterations).
694 ///
695 /// FIXME: Try to replace this propagation heuristic with a scheme
696 /// that is guaranteed to finalize. A work-list approach similar to
697 /// the standard value propagation algorithm used by SSA-CCP might
698 /// work here.
699 ///
700 /// Once all the branch weights are computed, we emit the MD_prof
701 /// metadata on BB using the computed values for each of its branches.
702 ///
703 /// \param F The function to query.
704 ///
705 /// \returns true if \p F was modified. Returns false, otherwise.
emitAnnotations(Function & F)706 bool SampleProfileLoader::emitAnnotations(Function &F) {
707 bool Changed = false;
708
709 // Initialize invariants used during computation and propagation.
710 HeaderLineno = getFunctionLoc(F);
711 if (HeaderLineno == 0)
712 return false;
713
714 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
715 << ": " << HeaderLineno << "\n");
716
717 // Compute basic block weights.
718 Changed |= computeBlockWeights(F);
719
720 if (Changed) {
721 // Find equivalence classes.
722 findEquivalenceClasses(F);
723
724 // Propagate weights to all edges.
725 propagateWeights(F);
726 }
727
728 return Changed;
729 }
730
731 char SampleProfileLoader::ID = 0;
732 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
733 "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)734 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
735 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
736 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
737 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
738 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
739 "Sample Profile loader", false, false)
740
741 bool SampleProfileLoader::doInitialization(Module &M) {
742 auto ReaderOrErr = SampleProfileReader::create(Filename, M.getContext());
743 if (std::error_code EC = ReaderOrErr.getError()) {
744 std::string Msg = "Could not open profile: " + EC.message();
745 M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
746 return false;
747 }
748 Reader = std::move(ReaderOrErr.get());
749 ProfileIsValid = (Reader->read() == sampleprof_error::success);
750 return true;
751 }
752
createSampleProfileLoaderPass()753 FunctionPass *llvm::createSampleProfileLoaderPass() {
754 return new SampleProfileLoader(SampleProfileFile);
755 }
756
createSampleProfileLoaderPass(StringRef Name)757 FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
758 return new SampleProfileLoader(Name);
759 }
760
runOnFunction(Function & F)761 bool SampleProfileLoader::runOnFunction(Function &F) {
762 if (!ProfileIsValid)
763 return false;
764
765 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
766 PDT = &getAnalysis<PostDominatorTree>();
767 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
768 Ctx = &F.getParent()->getContext();
769 Samples = Reader->getSamplesFor(F);
770 if (!Samples->empty())
771 return emitAnnotations(F);
772 return false;
773 }
774