1 //===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loop unrolling may create many similar GEPs for array accesses.
11 // e.g., a 2-level loop
12 //
13 // float a[32][32]; // global variable
14 //
15 // for (int i = 0; i < 2; ++i) {
16 // for (int j = 0; j < 2; ++j) {
17 // ...
18 // ... = a[x + i][y + j];
19 // ...
20 // }
21 // }
22 //
23 // will probably be unrolled to:
24 //
25 // gep %a, 0, %x, %y; load
26 // gep %a, 0, %x, %y + 1; load
27 // gep %a, 0, %x + 1, %y; load
28 // gep %a, 0, %x + 1, %y + 1; load
29 //
30 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
31 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
32 // significant slowdown in targets with limited addressing modes. For instance,
33 // because the PTX target does not support the reg+reg addressing mode, the
34 // NVPTX backend emits PTX code that literally computes the pointer address of
35 // each GEP, wasting tons of registers. It emits the following PTX for the
36 // first load and similar PTX for other loads.
37 //
38 // mov.u32 %r1, %x;
39 // mov.u32 %r2, %y;
40 // mul.wide.u32 %rl2, %r1, 128;
41 // mov.u64 %rl3, a;
42 // add.s64 %rl4, %rl3, %rl2;
43 // mul.wide.u32 %rl5, %r2, 4;
44 // add.s64 %rl6, %rl4, %rl5;
45 // ld.global.f32 %f1, [%rl6];
46 //
47 // To reduce the register pressure, the optimization implemented in this file
48 // merges the common part of a group of GEPs, so we can compute each pointer
49 // address by adding a simple offset to the common part, saving many registers.
50 //
51 // It works by splitting each GEP into a variadic base and a constant offset.
52 // The variadic base can be computed once and reused by multiple GEPs, and the
53 // constant offsets can be nicely folded into the reg+immediate addressing mode
54 // (supported by most targets) without using any extra register.
55 //
56 // For instance, we transform the four GEPs and four loads in the above example
57 // into:
58 //
59 // base = gep a, 0, x, y
60 // load base
61 // laod base + 1 * sizeof(float)
62 // load base + 32 * sizeof(float)
63 // load base + 33 * sizeof(float)
64 //
65 // Given the transformed IR, a backend that supports the reg+immediate
66 // addressing mode can easily fold the pointer arithmetics into the loads. For
67 // example, the NVPTX backend can easily fold the pointer arithmetics into the
68 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 //
70 // mov.u32 %r1, %tid.x;
71 // mov.u32 %r2, %tid.y;
72 // mul.wide.u32 %rl2, %r1, 128;
73 // mov.u64 %rl3, a;
74 // add.s64 %rl4, %rl3, %rl2;
75 // mul.wide.u32 %rl5, %r2, 4;
76 // add.s64 %rl6, %rl4, %rl5;
77 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
78 // ld.global.f32 %f2, [%rl6+4]; // much better
79 // ld.global.f32 %f3, [%rl6+128]; // much better
80 // ld.global.f32 %f4, [%rl6+132]; // much better
81 //
82 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
83 // multiple indices to either multiple GEPs with a single index or arithmetic
84 // operations (depending on whether the target uses alias analysis in codegen).
85 // Such transformation can have following benefits:
86 // (1) It can always extract constants in the indices of structure type.
87 // (2) After such Lowering, there are more optimization opportunities such as
88 // CSE, LICM and CGP.
89 //
90 // E.g. The following GEPs have multiple indices:
91 // BB1:
92 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
93 // load %p
94 // ...
95 // BB2:
96 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
97 // load %p2
98 // ...
99 //
100 // We can not do CSE for to the common part related to index "i64 %i". Lowering
101 // GEPs can achieve such goals.
102 // If the target does not use alias analysis in codegen, this pass will
103 // lower a GEP with multiple indices into arithmetic operations:
104 // BB1:
105 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
106 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
107 // %3 = add i64 %1, %2 ; CSE opportunity
108 // %4 = mul i64 %j1, length_of_struct
109 // %5 = add i64 %3, %4
110 // %6 = add i64 %3, struct_field_3 ; Constant offset
111 // %p = inttoptr i64 %6 to i32*
112 // load %p
113 // ...
114 // BB2:
115 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
116 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
117 // %9 = add i64 %7, %8 ; CSE opportunity
118 // %10 = mul i64 %j2, length_of_struct
119 // %11 = add i64 %9, %10
120 // %12 = add i64 %11, struct_field_2 ; Constant offset
121 // %p = inttoptr i64 %12 to i32*
122 // load %p2
123 // ...
124 //
125 // If the target uses alias analysis in codegen, this pass will lower a GEP
126 // with multiple indices into multiple GEPs with a single index:
127 // BB1:
128 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
129 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
130 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
131 // %4 = mul i64 %j1, length_of_struct
132 // %5 = getelementptr i8* %3, i64 %4
133 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
134 // %p = bitcast i8* %6 to i32*
135 // load %p
136 // ...
137 // BB2:
138 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
139 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
140 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
141 // %10 = mul i64 %j2, length_of_struct
142 // %11 = getelementptr i8* %9, i64 %10
143 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
144 // %p2 = bitcast i8* %12 to i32*
145 // load %p2
146 // ...
147 //
148 // Lowering GEPs can also benefit other passes such as LICM and CGP.
149 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
150 // indices if one of the index is variant. If we lower such GEP into invariant
151 // parts and variant parts, LICM can hoist/sink those invariant parts.
152 // CGP (CodeGen Prepare) tries to sink address calculations that match the
153 // target's addressing modes. A GEP with multiple indices may not match and will
154 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
155 // them. So we end up with a better addressing mode.
156 //
157 //===----------------------------------------------------------------------===//
158
159 #include "llvm/Analysis/TargetTransformInfo.h"
160 #include "llvm/Analysis/ValueTracking.h"
161 #include "llvm/IR/Constants.h"
162 #include "llvm/IR/DataLayout.h"
163 #include "llvm/IR/Instructions.h"
164 #include "llvm/IR/LLVMContext.h"
165 #include "llvm/IR/Module.h"
166 #include "llvm/IR/Operator.h"
167 #include "llvm/Support/CommandLine.h"
168 #include "llvm/Support/raw_ostream.h"
169 #include "llvm/Transforms/Scalar.h"
170 #include "llvm/Target/TargetMachine.h"
171 #include "llvm/Target/TargetSubtargetInfo.h"
172 #include "llvm/IR/IRBuilder.h"
173
174 using namespace llvm;
175
176 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
177 "disable-separate-const-offset-from-gep", cl::init(false),
178 cl::desc("Do not separate the constant offset from a GEP instruction"),
179 cl::Hidden);
180
181 namespace {
182
183 /// \brief A helper class for separating a constant offset from a GEP index.
184 ///
185 /// In real programs, a GEP index may be more complicated than a simple addition
186 /// of something and a constant integer which can be trivially splitted. For
187 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
188 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
189 ///
190 /// Therefore, this class looks into the expression that computes a given GEP
191 /// index, and tries to find a constant integer that can be hoisted to the
192 /// outermost level of the expression as an addition. Not every constant in an
193 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
194 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
195 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
196 class ConstantOffsetExtractor {
197 public:
198 /// Extracts a constant offset from the given GEP index. It returns the
199 /// new index representing the remainder (equal to the original index minus
200 /// the constant offset), or nullptr if we cannot extract a constant offset.
201 /// \p Idx The given GEP index
202 /// \p GEP The given GEP
203 static Value *Extract(Value *Idx, GetElementPtrInst *GEP);
204 /// Looks for a constant offset from the given GEP index without extracting
205 /// it. It returns the numeric value of the extracted constant offset (0 if
206 /// failed). The meaning of the arguments are the same as Extract.
207 static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
208
209 private:
ConstantOffsetExtractor(Instruction * InsertionPt)210 ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
211 /// Searches the expression that computes V for a non-zero constant C s.t.
212 /// V can be reassociated into the form V' + C. If the searching is
213 /// successful, returns C and update UserChain as a def-use chain from C to V;
214 /// otherwise, UserChain is empty.
215 ///
216 /// \p V The given expression
217 /// \p SignExtended Whether V will be sign-extended in the computation of the
218 /// GEP index
219 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
220 /// GEP index
221 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
222 /// an index of an inbounds GEP is guaranteed to be
223 /// non-negative. Levaraging this, we can better split
224 /// inbounds GEPs.
225 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
226 /// A helper function to look into both operands of a binary operator.
227 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
228 bool ZeroExtended);
229 /// After finding the constant offset C from the GEP index I, we build a new
230 /// index I' s.t. I' + C = I. This function builds and returns the new
231 /// index I' according to UserChain produced by function "find".
232 ///
233 /// The building conceptually takes two steps:
234 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
235 /// that computes I
236 /// 2) reassociate the expression tree to the form I' + C.
237 ///
238 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
239 /// sext to a, b and 5 so that we have
240 /// sext(a) + (sext(b) + 5).
241 /// Then, we reassociate it to
242 /// (sext(a) + sext(b)) + 5.
243 /// Given this form, we know I' is sext(a) + sext(b).
244 Value *rebuildWithoutConstOffset();
245 /// After the first step of rebuilding the GEP index without the constant
246 /// offset, distribute s/zext to the operands of all operators in UserChain.
247 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
248 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
249 ///
250 /// The function also updates UserChain to point to new subexpressions after
251 /// distributing s/zext. e.g., the old UserChain of the above example is
252 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
253 /// and the new UserChain is
254 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
255 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
256 ///
257 /// \p ChainIndex The index to UserChain. ChainIndex is initially
258 /// UserChain.size() - 1, and is decremented during
259 /// the recursion.
260 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
261 /// Reassociates the GEP index to the form I' + C and returns I'.
262 Value *removeConstOffset(unsigned ChainIndex);
263 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
264 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
265 /// returns "sext i32 (zext i16 V to i32) to i64".
266 Value *applyExts(Value *V);
267
268 /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0.
269 bool NoCommonBits(Value *LHS, Value *RHS) const;
270 /// Computes which bits are known to be one or zero.
271 /// \p KnownOne Mask of all bits that are known to be one.
272 /// \p KnownZero Mask of all bits that are known to be zero.
273 void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
274 /// A helper function that returns whether we can trace into the operands
275 /// of binary operator BO for a constant offset.
276 ///
277 /// \p SignExtended Whether BO is surrounded by sext
278 /// \p ZeroExtended Whether BO is surrounded by zext
279 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
280 /// array index.
281 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
282 bool NonNegative);
283
284 /// The path from the constant offset to the old GEP index. e.g., if the GEP
285 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
286 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
287 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
288 ///
289 /// This path helps to rebuild the new GEP index.
290 SmallVector<User *, 8> UserChain;
291 /// A data structure used in rebuildWithoutConstOffset. Contains all
292 /// sext/zext instructions along UserChain.
293 SmallVector<CastInst *, 16> ExtInsts;
294 Instruction *IP; /// Insertion position of cloned instructions.
295 };
296
297 /// \brief A pass that tries to split every GEP in the function into a variadic
298 /// base and a constant offset. It is a FunctionPass because searching for the
299 /// constant offset may inspect other basic blocks.
300 class SeparateConstOffsetFromGEP : public FunctionPass {
301 public:
302 static char ID;
SeparateConstOffsetFromGEP(const TargetMachine * TM=nullptr,bool LowerGEP=false)303 SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
304 bool LowerGEP = false)
305 : FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
306 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
307 }
308
getAnalysisUsage(AnalysisUsage & AU) const309 void getAnalysisUsage(AnalysisUsage &AU) const override {
310 AU.addRequired<TargetTransformInfoWrapperPass>();
311 AU.setPreservesCFG();
312 }
313
314 bool runOnFunction(Function &F) override;
315
316 private:
317 /// Tries to split the given GEP into a variadic base and a constant offset,
318 /// and returns true if the splitting succeeds.
319 bool splitGEP(GetElementPtrInst *GEP);
320 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
321 /// Function splitGEP already split the original GEP into a variadic part and
322 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
323 /// variadic part into a set of GEPs with a single index and applies
324 /// AccumulativeByteOffset to it.
325 /// \p Variadic The variadic part of the original GEP.
326 /// \p AccumulativeByteOffset The constant offset.
327 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
328 int64_t AccumulativeByteOffset);
329 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
330 /// Function splitGEP already split the original GEP into a variadic part and
331 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
332 /// variadic part into a set of arithmetic operations and applies
333 /// AccumulativeByteOffset to it.
334 /// \p Variadic The variadic part of the original GEP.
335 /// \p AccumulativeByteOffset The constant offset.
336 void lowerToArithmetics(GetElementPtrInst *Variadic,
337 int64_t AccumulativeByteOffset);
338 /// Finds the constant offset within each index and accumulates them. If
339 /// LowerGEP is true, it finds in indices of both sequential and structure
340 /// types, otherwise it only finds in sequential indices. The output
341 /// NeedsExtraction indicates whether we successfully find a non-zero constant
342 /// offset.
343 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
344 /// Canonicalize array indices to pointer-size integers. This helps to
345 /// simplify the logic of splitting a GEP. For example, if a + b is a
346 /// pointer-size integer, we have
347 /// gep base, a + b = gep (gep base, a), b
348 /// However, this equality may not hold if the size of a + b is smaller than
349 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
350 /// pointer size before computing the address
351 /// (http://llvm.org/docs/LangRef.html#id181).
352 ///
353 /// This canonicalization is very likely already done in clang and
354 /// instcombine. Therefore, the program will probably remain the same.
355 ///
356 /// Returns true if the module changes.
357 ///
358 /// Verified in @i32_add in split-gep.ll
359 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
360
361 const TargetMachine *TM;
362 /// Whether to lower a GEP with multiple indices into arithmetic operations or
363 /// multiple GEPs with a single index.
364 bool LowerGEP;
365 };
366 } // anonymous namespace
367
368 char SeparateConstOffsetFromGEP::ID = 0;
369 INITIALIZE_PASS_BEGIN(
370 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
371 "Split GEPs to a variadic base and a constant offset for better CSE", false,
372 false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)373 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
374 INITIALIZE_PASS_END(
375 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
376 "Split GEPs to a variadic base and a constant offset for better CSE", false,
377 false)
378
379 FunctionPass *
380 llvm::createSeparateConstOffsetFromGEPPass(const TargetMachine *TM,
381 bool LowerGEP) {
382 return new SeparateConstOffsetFromGEP(TM, LowerGEP);
383 }
384
CanTraceInto(bool SignExtended,bool ZeroExtended,BinaryOperator * BO,bool NonNegative)385 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
386 bool ZeroExtended,
387 BinaryOperator *BO,
388 bool NonNegative) {
389 // We only consider ADD, SUB and OR, because a non-zero constant found in
390 // expressions composed of these operations can be easily hoisted as a
391 // constant offset by reassociation.
392 if (BO->getOpcode() != Instruction::Add &&
393 BO->getOpcode() != Instruction::Sub &&
394 BO->getOpcode() != Instruction::Or) {
395 return false;
396 }
397
398 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
399 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
400 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
401 if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
402 return false;
403
404 // In addition, tracing into BO requires that its surrounding s/zext (if
405 // any) is distributable to both operands.
406 //
407 // Suppose BO = A op B.
408 // SignExtended | ZeroExtended | Distributable?
409 // --------------+--------------+----------------------------------
410 // 0 | 0 | true because no s/zext exists
411 // 0 | 1 | zext(BO) == zext(A) op zext(B)
412 // 1 | 0 | sext(BO) == sext(A) op sext(B)
413 // 1 | 1 | zext(sext(BO)) ==
414 // | | zext(sext(A)) op zext(sext(B))
415 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
416 // If a + b >= 0 and (a >= 0 or b >= 0), then
417 // sext(a + b) = sext(a) + sext(b)
418 // even if the addition is not marked nsw.
419 //
420 // Leveraging this invarient, we can trace into an sext'ed inbound GEP
421 // index if the constant offset is non-negative.
422 //
423 // Verified in @sext_add in split-gep.ll.
424 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
425 if (!ConstLHS->isNegative())
426 return true;
427 }
428 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
429 if (!ConstRHS->isNegative())
430 return true;
431 }
432 }
433
434 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
435 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
436 if (BO->getOpcode() == Instruction::Add ||
437 BO->getOpcode() == Instruction::Sub) {
438 if (SignExtended && !BO->hasNoSignedWrap())
439 return false;
440 if (ZeroExtended && !BO->hasNoUnsignedWrap())
441 return false;
442 }
443
444 return true;
445 }
446
findInEitherOperand(BinaryOperator * BO,bool SignExtended,bool ZeroExtended)447 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
448 bool SignExtended,
449 bool ZeroExtended) {
450 // BO being non-negative does not shed light on whether its operands are
451 // non-negative. Clear the NonNegative flag here.
452 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
453 /* NonNegative */ false);
454 // If we found a constant offset in the left operand, stop and return that.
455 // This shortcut might cause us to miss opportunities of combining the
456 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
457 // However, such cases are probably already handled by -instcombine,
458 // given this pass runs after the standard optimizations.
459 if (ConstantOffset != 0) return ConstantOffset;
460 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
461 /* NonNegative */ false);
462 // If U is a sub operator, negate the constant offset found in the right
463 // operand.
464 if (BO->getOpcode() == Instruction::Sub)
465 ConstantOffset = -ConstantOffset;
466 return ConstantOffset;
467 }
468
find(Value * V,bool SignExtended,bool ZeroExtended,bool NonNegative)469 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
470 bool ZeroExtended, bool NonNegative) {
471 // TODO(jingyue): We could trace into integer/pointer casts, such as
472 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
473 // integers because it gives good enough results for our benchmarks.
474 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
475
476 // We cannot do much with Values that are not a User, such as an Argument.
477 User *U = dyn_cast<User>(V);
478 if (U == nullptr) return APInt(BitWidth, 0);
479
480 APInt ConstantOffset(BitWidth, 0);
481 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
482 // Hooray, we found it!
483 ConstantOffset = CI->getValue();
484 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
485 // Trace into subexpressions for more hoisting opportunities.
486 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
487 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
488 }
489 } else if (isa<SExtInst>(V)) {
490 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
491 ZeroExtended, NonNegative).sext(BitWidth);
492 } else if (isa<ZExtInst>(V)) {
493 // As an optimization, we can clear the SignExtended flag because
494 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
495 //
496 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
497 ConstantOffset =
498 find(U->getOperand(0), /* SignExtended */ false,
499 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
500 }
501
502 // If we found a non-zero constant offset, add it to the path for
503 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
504 // help this optimization.
505 if (ConstantOffset != 0)
506 UserChain.push_back(U);
507 return ConstantOffset;
508 }
509
applyExts(Value * V)510 Value *ConstantOffsetExtractor::applyExts(Value *V) {
511 Value *Current = V;
512 // ExtInsts is built in the use-def order. Therefore, we apply them to V
513 // in the reversed order.
514 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
515 if (Constant *C = dyn_cast<Constant>(Current)) {
516 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
517 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
518 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
519 } else {
520 Instruction *Ext = (*I)->clone();
521 Ext->setOperand(0, Current);
522 Ext->insertBefore(IP);
523 Current = Ext;
524 }
525 }
526 return Current;
527 }
528
rebuildWithoutConstOffset()529 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
530 distributeExtsAndCloneChain(UserChain.size() - 1);
531 // Remove all nullptrs (used to be s/zext) from UserChain.
532 unsigned NewSize = 0;
533 for (auto I = UserChain.begin(), E = UserChain.end(); I != E; ++I) {
534 if (*I != nullptr) {
535 UserChain[NewSize] = *I;
536 NewSize++;
537 }
538 }
539 UserChain.resize(NewSize);
540 return removeConstOffset(UserChain.size() - 1);
541 }
542
543 Value *
distributeExtsAndCloneChain(unsigned ChainIndex)544 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
545 User *U = UserChain[ChainIndex];
546 if (ChainIndex == 0) {
547 assert(isa<ConstantInt>(U));
548 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
549 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
550 }
551
552 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
553 assert((isa<SExtInst>(Cast) || isa<ZExtInst>(Cast)) &&
554 "We only traced into two types of CastInst: sext and zext");
555 ExtInsts.push_back(Cast);
556 UserChain[ChainIndex] = nullptr;
557 return distributeExtsAndCloneChain(ChainIndex - 1);
558 }
559
560 // Function find only trace into BinaryOperator and CastInst.
561 BinaryOperator *BO = cast<BinaryOperator>(U);
562 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
563 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
564 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
565 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
566
567 BinaryOperator *NewBO = nullptr;
568 if (OpNo == 0) {
569 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
570 BO->getName(), IP);
571 } else {
572 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
573 BO->getName(), IP);
574 }
575 return UserChain[ChainIndex] = NewBO;
576 }
577
removeConstOffset(unsigned ChainIndex)578 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
579 if (ChainIndex == 0) {
580 assert(isa<ConstantInt>(UserChain[ChainIndex]));
581 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
582 }
583
584 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
585 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
586 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
587 Value *NextInChain = removeConstOffset(ChainIndex - 1);
588 Value *TheOther = BO->getOperand(1 - OpNo);
589
590 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
591 // sub-expression to be just TheOther.
592 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
593 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
594 return TheOther;
595 }
596
597 if (BO->getOpcode() == Instruction::Or) {
598 // Rebuild "or" as "add", because "or" may be invalid for the new
599 // epxression.
600 //
601 // For instance, given
602 // a | (b + 5) where a and b + 5 have no common bits,
603 // we can extract 5 as the constant offset.
604 //
605 // However, reusing the "or" in the new index would give us
606 // (a | b) + 5
607 // which does not equal a | (b + 5).
608 //
609 // Replacing the "or" with "add" is fine, because
610 // a | (b + 5) = a + (b + 5) = (a + b) + 5
611 if (OpNo == 0) {
612 return BinaryOperator::CreateAdd(NextInChain, TheOther, BO->getName(),
613 IP);
614 } else {
615 return BinaryOperator::CreateAdd(TheOther, NextInChain, BO->getName(),
616 IP);
617 }
618 }
619
620 // We can reuse BO in this case, because the new expression shares the same
621 // instruction type and BO is used at most once.
622 assert(BO->getNumUses() <= 1 &&
623 "distributeExtsAndCloneChain clones each BinaryOperator in "
624 "UserChain, so no one should be used more than "
625 "once");
626 BO->setOperand(OpNo, NextInChain);
627 BO->setHasNoSignedWrap(false);
628 BO->setHasNoUnsignedWrap(false);
629 // Make sure it appears after all instructions we've inserted so far.
630 BO->moveBefore(IP);
631 return BO;
632 }
633
Extract(Value * Idx,GetElementPtrInst * GEP)634 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP) {
635 ConstantOffsetExtractor Extractor(GEP);
636 // Find a non-zero constant offset first.
637 APInt ConstantOffset =
638 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
639 GEP->isInBounds());
640 if (ConstantOffset == 0)
641 return nullptr;
642 // Separates the constant offset from the GEP index.
643 return Extractor.rebuildWithoutConstOffset();
644 }
645
Find(Value * Idx,GetElementPtrInst * GEP)646 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
647 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
648 return ConstantOffsetExtractor(GEP)
649 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
650 GEP->isInBounds())
651 .getSExtValue();
652 }
653
ComputeKnownBits(Value * V,APInt & KnownOne,APInt & KnownZero) const654 void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
655 APInt &KnownZero) const {
656 IntegerType *IT = cast<IntegerType>(V->getType());
657 KnownOne = APInt(IT->getBitWidth(), 0);
658 KnownZero = APInt(IT->getBitWidth(), 0);
659 const DataLayout &DL = IP->getModule()->getDataLayout();
660 llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
661 }
662
NoCommonBits(Value * LHS,Value * RHS) const663 bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
664 assert(LHS->getType() == RHS->getType() &&
665 "LHS and RHS should have the same type");
666 APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
667 ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
668 ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
669 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
670 }
671
canonicalizeArrayIndicesToPointerSize(GetElementPtrInst * GEP)672 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
673 GetElementPtrInst *GEP) {
674 bool Changed = false;
675 const DataLayout &DL = GEP->getModule()->getDataLayout();
676 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
677 gep_type_iterator GTI = gep_type_begin(*GEP);
678 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
679 I != E; ++I, ++GTI) {
680 // Skip struct member indices which must be i32.
681 if (isa<SequentialType>(*GTI)) {
682 if ((*I)->getType() != IntPtrTy) {
683 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
684 Changed = true;
685 }
686 }
687 }
688 return Changed;
689 }
690
691 int64_t
accumulateByteOffset(GetElementPtrInst * GEP,bool & NeedsExtraction)692 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
693 bool &NeedsExtraction) {
694 NeedsExtraction = false;
695 int64_t AccumulativeByteOffset = 0;
696 gep_type_iterator GTI = gep_type_begin(*GEP);
697 const DataLayout &DL = GEP->getModule()->getDataLayout();
698 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
699 if (isa<SequentialType>(*GTI)) {
700 // Tries to extract a constant offset from this GEP index.
701 int64_t ConstantOffset =
702 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
703 if (ConstantOffset != 0) {
704 NeedsExtraction = true;
705 // A GEP may have multiple indices. We accumulate the extracted
706 // constant offset to a byte offset, and later offset the remainder of
707 // the original GEP with this byte offset.
708 AccumulativeByteOffset +=
709 ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
710 }
711 } else if (LowerGEP) {
712 StructType *StTy = cast<StructType>(*GTI);
713 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
714 // Skip field 0 as the offset is always 0.
715 if (Field != 0) {
716 NeedsExtraction = true;
717 AccumulativeByteOffset +=
718 DL.getStructLayout(StTy)->getElementOffset(Field);
719 }
720 }
721 }
722 return AccumulativeByteOffset;
723 }
724
lowerToSingleIndexGEPs(GetElementPtrInst * Variadic,int64_t AccumulativeByteOffset)725 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
726 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
727 IRBuilder<> Builder(Variadic);
728 const DataLayout &DL = Variadic->getModule()->getDataLayout();
729 Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
730
731 Type *I8PtrTy =
732 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
733 Value *ResultPtr = Variadic->getOperand(0);
734 if (ResultPtr->getType() != I8PtrTy)
735 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
736
737 gep_type_iterator GTI = gep_type_begin(*Variadic);
738 // Create an ugly GEP for each sequential index. We don't create GEPs for
739 // structure indices, as they are accumulated in the constant offset index.
740 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
741 if (isa<SequentialType>(*GTI)) {
742 Value *Idx = Variadic->getOperand(I);
743 // Skip zero indices.
744 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
745 if (CI->isZero())
746 continue;
747
748 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
749 DL.getTypeAllocSize(GTI.getIndexedType()));
750 // Scale the index by element size.
751 if (ElementSize != 1) {
752 if (ElementSize.isPowerOf2()) {
753 Idx = Builder.CreateShl(
754 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
755 } else {
756 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
757 }
758 }
759 // Create an ugly GEP with a single index for each index.
760 ResultPtr =
761 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
762 }
763 }
764
765 // Create a GEP with the constant offset index.
766 if (AccumulativeByteOffset != 0) {
767 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
768 ResultPtr =
769 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
770 }
771 if (ResultPtr->getType() != Variadic->getType())
772 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
773
774 Variadic->replaceAllUsesWith(ResultPtr);
775 Variadic->eraseFromParent();
776 }
777
778 void
lowerToArithmetics(GetElementPtrInst * Variadic,int64_t AccumulativeByteOffset)779 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
780 int64_t AccumulativeByteOffset) {
781 IRBuilder<> Builder(Variadic);
782 const DataLayout &DL = Variadic->getModule()->getDataLayout();
783 Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
784
785 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
786 gep_type_iterator GTI = gep_type_begin(*Variadic);
787 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
788 // don't create arithmetics for structure indices, as they are accumulated
789 // in the constant offset index.
790 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
791 if (isa<SequentialType>(*GTI)) {
792 Value *Idx = Variadic->getOperand(I);
793 // Skip zero indices.
794 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
795 if (CI->isZero())
796 continue;
797
798 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
799 DL.getTypeAllocSize(GTI.getIndexedType()));
800 // Scale the index by element size.
801 if (ElementSize != 1) {
802 if (ElementSize.isPowerOf2()) {
803 Idx = Builder.CreateShl(
804 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
805 } else {
806 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
807 }
808 }
809 // Create an ADD for each index.
810 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
811 }
812 }
813
814 // Create an ADD for the constant offset index.
815 if (AccumulativeByteOffset != 0) {
816 ResultPtr = Builder.CreateAdd(
817 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
818 }
819
820 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
821 Variadic->replaceAllUsesWith(ResultPtr);
822 Variadic->eraseFromParent();
823 }
824
splitGEP(GetElementPtrInst * GEP)825 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
826 // Skip vector GEPs.
827 if (GEP->getType()->isVectorTy())
828 return false;
829
830 // The backend can already nicely handle the case where all indices are
831 // constant.
832 if (GEP->hasAllConstantIndices())
833 return false;
834
835 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
836
837 bool NeedsExtraction;
838 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
839
840 if (!NeedsExtraction)
841 return Changed;
842 // If LowerGEP is disabled, before really splitting the GEP, check whether the
843 // backend supports the addressing mode we are about to produce. If no, this
844 // splitting probably won't be beneficial.
845 // If LowerGEP is enabled, even the extracted constant offset can not match
846 // the addressing mode, we can still do optimizations to other lowered parts
847 // of variable indices. Therefore, we don't check for addressing modes in that
848 // case.
849 if (!LowerGEP) {
850 TargetTransformInfo &TTI =
851 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
852 *GEP->getParent()->getParent());
853 if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(),
854 /*BaseGV=*/nullptr, AccumulativeByteOffset,
855 /*HasBaseReg=*/true, /*Scale=*/0)) {
856 return Changed;
857 }
858 }
859
860 // Remove the constant offset in each sequential index. The resultant GEP
861 // computes the variadic base.
862 // Notice that we don't remove struct field indices here. If LowerGEP is
863 // disabled, a structure index is not accumulated and we still use the old
864 // one. If LowerGEP is enabled, a structure index is accumulated in the
865 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
866 // handle the constant offset and won't need a new structure index.
867 gep_type_iterator GTI = gep_type_begin(*GEP);
868 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
869 if (isa<SequentialType>(*GTI)) {
870 // Splits this GEP index into a variadic part and a constant offset, and
871 // uses the variadic part as the new index.
872 Value *NewIdx = ConstantOffsetExtractor::Extract(GEP->getOperand(I), GEP);
873 if (NewIdx != nullptr) {
874 GEP->setOperand(I, NewIdx);
875 }
876 }
877 }
878
879 // Clear the inbounds attribute because the new index may be off-bound.
880 // e.g.,
881 //
882 // b = add i64 a, 5
883 // addr = gep inbounds float* p, i64 b
884 //
885 // is transformed to:
886 //
887 // addr2 = gep float* p, i64 a
888 // addr = gep float* addr2, i64 5
889 //
890 // If a is -4, although the old index b is in bounds, the new index a is
891 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
892 // inbounds keyword is not present, the offsets are added to the base
893 // address with silently-wrapping two's complement arithmetic".
894 // Therefore, the final code will be a semantically equivalent.
895 //
896 // TODO(jingyue): do some range analysis to keep as many inbounds as
897 // possible. GEPs with inbounds are more friendly to alias analysis.
898 GEP->setIsInBounds(false);
899
900 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
901 if (LowerGEP) {
902 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
903 // arithmetic operations if the target uses alias analysis in codegen.
904 if (TM && TM->getSubtargetImpl(*GEP->getParent()->getParent())->useAA())
905 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
906 else
907 lowerToArithmetics(GEP, AccumulativeByteOffset);
908 return true;
909 }
910
911 // No need to create another GEP if the accumulative byte offset is 0.
912 if (AccumulativeByteOffset == 0)
913 return true;
914
915 // Offsets the base with the accumulative byte offset.
916 //
917 // %gep ; the base
918 // ... %gep ...
919 //
920 // => add the offset
921 //
922 // %gep2 ; clone of %gep
923 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
924 // %gep ; will be removed
925 // ... %gep ...
926 //
927 // => replace all uses of %gep with %new.gep and remove %gep
928 //
929 // %gep2 ; clone of %gep
930 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
931 // ... %new.gep ...
932 //
933 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
934 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
935 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
936 // type of %gep.
937 //
938 // %gep2 ; clone of %gep
939 // %0 = bitcast %gep2 to i8*
940 // %uglygep = gep %0, <offset>
941 // %new.gep = bitcast %uglygep to <type of %gep>
942 // ... %new.gep ...
943 Instruction *NewGEP = GEP->clone();
944 NewGEP->insertBefore(GEP);
945
946 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
947 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
948 // used with unsigned integers later.
949 const DataLayout &DL = GEP->getModule()->getDataLayout();
950 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
951 DL.getTypeAllocSize(GEP->getType()->getElementType()));
952 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
953 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
954 // Very likely. As long as %gep is natually aligned, the byte offset we
955 // extracted should be a multiple of sizeof(*%gep).
956 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
957 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
958 ConstantInt::get(IntPtrTy, Index, true),
959 GEP->getName(), GEP);
960 } else {
961 // Unlikely but possible. For example,
962 // #pragma pack(1)
963 // struct S {
964 // int a[3];
965 // int64 b[8];
966 // };
967 // #pragma pack()
968 //
969 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
970 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
971 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
972 // sizeof(int64).
973 //
974 // Emit an uglygep in this case.
975 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
976 GEP->getPointerAddressSpace());
977 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
978 NewGEP = GetElementPtrInst::Create(
979 Type::getInt8Ty(GEP->getContext()), NewGEP,
980 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
981 GEP);
982 if (GEP->getType() != I8PtrTy)
983 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
984 }
985
986 GEP->replaceAllUsesWith(NewGEP);
987 GEP->eraseFromParent();
988
989 return true;
990 }
991
runOnFunction(Function & F)992 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
993 if (skipOptnoneFunction(F))
994 return false;
995
996 if (DisableSeparateConstOffsetFromGEP)
997 return false;
998
999 bool Changed = false;
1000 for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
1001 for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
1002 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) {
1003 Changed |= splitGEP(GEP);
1004 }
1005 // No need to split GEP ConstantExprs because all its indices are constant
1006 // already.
1007 }
1008 }
1009 return Changed;
1010 }
1011