1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block. This pass may be "required" by passes that
12 // cannot deal with critical edges. For this usage, the structure type is
13 // forward declared. This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 using namespace llvm;
32
33 #define DEBUG_TYPE "break-crit-edges"
34
35 STATISTIC(NumBroken, "Number of blocks inserted");
36
37 namespace {
38 struct BreakCriticalEdges : public FunctionPass {
39 static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon4fc7a4880111::BreakCriticalEdges40 BreakCriticalEdges() : FunctionPass(ID) {
41 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
42 }
43
runOnFunction__anon4fc7a4880111::BreakCriticalEdges44 bool runOnFunction(Function &F) override {
45 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
46 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
47 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
48 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
49 unsigned N =
50 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
51 NumBroken += N;
52 return N > 0;
53 }
54
getAnalysisUsage__anon4fc7a4880111::BreakCriticalEdges55 void getAnalysisUsage(AnalysisUsage &AU) const override {
56 AU.addPreserved<DominatorTreeWrapperPass>();
57 AU.addPreserved<LoopInfoWrapperPass>();
58
59 // No loop canonicalization guarantees are broken by this pass.
60 AU.addPreservedID(LoopSimplifyID);
61 }
62 };
63 }
64
65 char BreakCriticalEdges::ID = 0;
66 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
67 "Break critical edges in CFG", false, false)
68
69 // Publicly exposed interface to pass...
70 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()71 FunctionPass *llvm::createBreakCriticalEdgesPass() {
72 return new BreakCriticalEdges();
73 }
74
75 //===----------------------------------------------------------------------===//
76 // Implementation of the external critical edge manipulation functions
77 //===----------------------------------------------------------------------===//
78
79 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
80 /// may require new PHIs in the new exit block. This function inserts the
81 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
82 /// is the new loop exit block, and DestBB is the old loop exit, now the
83 /// successor of SplitBB.
createPHIsForSplitLoopExit(ArrayRef<BasicBlock * > Preds,BasicBlock * SplitBB,BasicBlock * DestBB)84 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
85 BasicBlock *SplitBB,
86 BasicBlock *DestBB) {
87 // SplitBB shouldn't have anything non-trivial in it yet.
88 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
89 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
90
91 // For each PHI in the destination block.
92 for (BasicBlock::iterator I = DestBB->begin();
93 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
94 unsigned Idx = PN->getBasicBlockIndex(SplitBB);
95 Value *V = PN->getIncomingValue(Idx);
96
97 // If the input is a PHI which already satisfies LCSSA, don't create
98 // a new one.
99 if (const PHINode *VP = dyn_cast<PHINode>(V))
100 if (VP->getParent() == SplitBB)
101 continue;
102
103 // Otherwise a new PHI is needed. Create one and populate it.
104 PHINode *NewPN =
105 PHINode::Create(PN->getType(), Preds.size(), "split",
106 SplitBB->isLandingPad() ?
107 SplitBB->begin() : SplitBB->getTerminator());
108 for (unsigned i = 0, e = Preds.size(); i != e; ++i)
109 NewPN->addIncoming(V, Preds[i]);
110
111 // Update the original PHI.
112 PN->setIncomingValue(Idx, NewPN);
113 }
114 }
115
116 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
117 /// split the critical edge. This will update DominatorTree information if it
118 /// is available, thus calling this pass will not invalidate either of them.
119 /// This returns the new block if the edge was split, null otherwise.
120 ///
121 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
122 /// specified successor will be merged into the same critical edge block.
123 /// This is most commonly interesting with switch instructions, which may
124 /// have many edges to any one destination. This ensures that all edges to that
125 /// dest go to one block instead of each going to a different block, but isn't
126 /// the standard definition of a "critical edge".
127 ///
128 /// It is invalid to call this function on a critical edge that starts at an
129 /// IndirectBrInst. Splitting these edges will almost always create an invalid
130 /// program because the address of the new block won't be the one that is jumped
131 /// to.
132 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,const CriticalEdgeSplittingOptions & Options)133 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
134 const CriticalEdgeSplittingOptions &Options) {
135 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
136 return nullptr;
137
138 assert(!isa<IndirectBrInst>(TI) &&
139 "Cannot split critical edge from IndirectBrInst");
140
141 BasicBlock *TIBB = TI->getParent();
142 BasicBlock *DestBB = TI->getSuccessor(SuccNum);
143
144 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
145 // it in this generic function.
146 if (DestBB->isLandingPad()) return nullptr;
147
148 // Create a new basic block, linking it into the CFG.
149 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
150 TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
151 // Create our unconditional branch.
152 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
153 NewBI->setDebugLoc(TI->getDebugLoc());
154
155 // Branch to the new block, breaking the edge.
156 TI->setSuccessor(SuccNum, NewBB);
157
158 // Insert the block into the function... right after the block TI lives in.
159 Function &F = *TIBB->getParent();
160 Function::iterator FBBI = TIBB;
161 F.getBasicBlockList().insert(++FBBI, NewBB);
162
163 // If there are any PHI nodes in DestBB, we need to update them so that they
164 // merge incoming values from NewBB instead of from TIBB.
165 {
166 unsigned BBIdx = 0;
167 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
168 // We no longer enter through TIBB, now we come in through NewBB.
169 // Revector exactly one entry in the PHI node that used to come from
170 // TIBB to come from NewBB.
171 PHINode *PN = cast<PHINode>(I);
172
173 // Reuse the previous value of BBIdx if it lines up. In cases where we
174 // have multiple phi nodes with *lots* of predecessors, this is a speed
175 // win because we don't have to scan the PHI looking for TIBB. This
176 // happens because the BB list of PHI nodes are usually in the same
177 // order.
178 if (PN->getIncomingBlock(BBIdx) != TIBB)
179 BBIdx = PN->getBasicBlockIndex(TIBB);
180 PN->setIncomingBlock(BBIdx, NewBB);
181 }
182 }
183
184 // If there are any other edges from TIBB to DestBB, update those to go
185 // through the split block, making those edges non-critical as well (and
186 // reducing the number of phi entries in the DestBB if relevant).
187 if (Options.MergeIdenticalEdges) {
188 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
189 if (TI->getSuccessor(i) != DestBB) continue;
190
191 // Remove an entry for TIBB from DestBB phi nodes.
192 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
193
194 // We found another edge to DestBB, go to NewBB instead.
195 TI->setSuccessor(i, NewBB);
196 }
197 }
198
199 // If we have nothing to update, just return.
200 auto *AA = Options.AA;
201 auto *DT = Options.DT;
202 auto *LI = Options.LI;
203 if (!DT && !LI)
204 return NewBB;
205
206 // Now update analysis information. Since the only predecessor of NewBB is
207 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
208 // anything, as there are other successors of DestBB. However, if all other
209 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
210 // loop header) then NewBB dominates DestBB.
211 SmallVector<BasicBlock*, 8> OtherPreds;
212
213 // If there is a PHI in the block, loop over predecessors with it, which is
214 // faster than iterating pred_begin/end.
215 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
216 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
217 if (PN->getIncomingBlock(i) != NewBB)
218 OtherPreds.push_back(PN->getIncomingBlock(i));
219 } else {
220 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
221 I != E; ++I) {
222 BasicBlock *P = *I;
223 if (P != NewBB)
224 OtherPreds.push_back(P);
225 }
226 }
227
228 bool NewBBDominatesDestBB = true;
229
230 // Should we update DominatorTree information?
231 if (DT) {
232 DomTreeNode *TINode = DT->getNode(TIBB);
233
234 // The new block is not the immediate dominator for any other nodes, but
235 // TINode is the immediate dominator for the new node.
236 //
237 if (TINode) { // Don't break unreachable code!
238 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
239 DomTreeNode *DestBBNode = nullptr;
240
241 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
242 if (!OtherPreds.empty()) {
243 DestBBNode = DT->getNode(DestBB);
244 while (!OtherPreds.empty() && NewBBDominatesDestBB) {
245 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
246 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
247 OtherPreds.pop_back();
248 }
249 OtherPreds.clear();
250 }
251
252 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
253 // doesn't dominate anything.
254 if (NewBBDominatesDestBB) {
255 if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
256 DT->changeImmediateDominator(DestBBNode, NewBBNode);
257 }
258 }
259 }
260
261 // Update LoopInfo if it is around.
262 if (LI) {
263 if (Loop *TIL = LI->getLoopFor(TIBB)) {
264 // If one or the other blocks were not in a loop, the new block is not
265 // either, and thus LI doesn't need to be updated.
266 if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
267 if (TIL == DestLoop) {
268 // Both in the same loop, the NewBB joins loop.
269 DestLoop->addBasicBlockToLoop(NewBB, *LI);
270 } else if (TIL->contains(DestLoop)) {
271 // Edge from an outer loop to an inner loop. Add to the outer loop.
272 TIL->addBasicBlockToLoop(NewBB, *LI);
273 } else if (DestLoop->contains(TIL)) {
274 // Edge from an inner loop to an outer loop. Add to the outer loop.
275 DestLoop->addBasicBlockToLoop(NewBB, *LI);
276 } else {
277 // Edge from two loops with no containment relation. Because these
278 // are natural loops, we know that the destination block must be the
279 // header of its loop (adding a branch into a loop elsewhere would
280 // create an irreducible loop).
281 assert(DestLoop->getHeader() == DestBB &&
282 "Should not create irreducible loops!");
283 if (Loop *P = DestLoop->getParentLoop())
284 P->addBasicBlockToLoop(NewBB, *LI);
285 }
286 }
287
288 // If TIBB is in a loop and DestBB is outside of that loop, we may need
289 // to update LoopSimplify form and LCSSA form.
290 if (!TIL->contains(DestBB)) {
291 assert(!TIL->contains(NewBB) &&
292 "Split point for loop exit is contained in loop!");
293
294 // Update LCSSA form in the newly created exit block.
295 if (Options.PreserveLCSSA) {
296 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
297 }
298
299 // The only that we can break LoopSimplify form by splitting a critical
300 // edge is if after the split there exists some edge from TIL to DestBB
301 // *and* the only edge into DestBB from outside of TIL is that of
302 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
303 // is the new exit block and it has no non-loop predecessors. If the
304 // second isn't true, then DestBB was not in LoopSimplify form prior to
305 // the split as it had a non-loop predecessor. In both of these cases,
306 // the predecessor must be directly in TIL, not in a subloop, or again
307 // LoopSimplify doesn't hold.
308 SmallVector<BasicBlock *, 4> LoopPreds;
309 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
310 ++I) {
311 BasicBlock *P = *I;
312 if (P == NewBB)
313 continue; // The new block is known.
314 if (LI->getLoopFor(P) != TIL) {
315 // No need to re-simplify, it wasn't to start with.
316 LoopPreds.clear();
317 break;
318 }
319 LoopPreds.push_back(P);
320 }
321 if (!LoopPreds.empty()) {
322 assert(!DestBB->isLandingPad() &&
323 "We don't split edges to landing pads!");
324 BasicBlock *NewExitBB = SplitBlockPredecessors(
325 DestBB, LoopPreds, "split", AA, DT, LI, Options.PreserveLCSSA);
326 if (Options.PreserveLCSSA)
327 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
328 }
329 }
330 }
331 }
332
333 return NewBB;
334 }
335