1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches. This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 using namespace llvm;
40
41 #define DEBUG_TYPE "loop-unroll"
42
43 // TODO: Should these be here or in LoopUnroll?
44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46
47 /// RemapInstruction - Convert the instruction operands from referencing the
48 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)49 static inline void RemapInstruction(Instruction *I,
50 ValueToValueMapTy &VMap) {
51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
52 Value *Op = I->getOperand(op);
53 ValueToValueMapTy::iterator It = VMap.find(Op);
54 if (It != VMap.end())
55 I->setOperand(op, It->second);
56 }
57
58 if (PHINode *PN = dyn_cast<PHINode>(I)) {
59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
61 if (It != VMap.end())
62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
63 }
64 }
65 }
66
67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
68 /// only has one predecessor, and that predecessor only has one successor.
69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is
70 /// successful references to the containing loop must be removed from
71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
72 /// references to the eliminated BB. The argument ForgottenLoops contains a set
73 /// of loops that have already been forgotten to prevent redundant, expensive
74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
75 static BasicBlock *
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,LPPassManager * LPM,SmallPtrSetImpl<Loop * > & ForgottenLoops)76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
77 SmallPtrSetImpl<Loop *> &ForgottenLoops) {
78 // Merge basic blocks into their predecessor if there is only one distinct
79 // pred, and if there is only one distinct successor of the predecessor, and
80 // if there are no PHI nodes.
81 BasicBlock *OnlyPred = BB->getSinglePredecessor();
82 if (!OnlyPred) return nullptr;
83
84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
85 return nullptr;
86
87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
88
89 // Resolve any PHI nodes at the start of the block. They are all
90 // guaranteed to have exactly one entry if they exist, unless there are
91 // multiple duplicate (but guaranteed to be equal) entries for the
92 // incoming edges. This occurs when there are multiple edges from
93 // OnlyPred to OnlySucc.
94 FoldSingleEntryPHINodes(BB);
95
96 // Delete the unconditional branch from the predecessor...
97 OnlyPred->getInstList().pop_back();
98
99 // Make all PHI nodes that referred to BB now refer to Pred as their
100 // source...
101 BB->replaceAllUsesWith(OnlyPred);
102
103 // Move all definitions in the successor to the predecessor...
104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
105
106 // OldName will be valid until erased.
107 StringRef OldName = BB->getName();
108
109 // Erase basic block from the function...
110
111 // ScalarEvolution holds references to loop exit blocks.
112 if (LPM) {
113 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
114 if (Loop *L = LI->getLoopFor(BB)) {
115 if (ForgottenLoops.insert(L).second)
116 SE->forgetLoop(L);
117 }
118 }
119 }
120 LI->removeBlock(BB);
121
122 // Inherit predecessor's name if it exists...
123 if (!OldName.empty() && !OnlyPred->hasName())
124 OnlyPred->setName(OldName);
125
126 BB->eraseFromParent();
127
128 return OnlyPred;
129 }
130
131 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
132 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
133 /// can only fail when the loop's latch block is not terminated by a conditional
134 /// branch instruction. However, if the trip count (and multiple) are not known,
135 /// loop unrolling will mostly produce more code that is no faster.
136 ///
137 /// TripCount is generally defined as the number of times the loop header
138 /// executes. UnrollLoop relaxes the definition to permit early exits: here
139 /// TripCount is the iteration on which control exits LatchBlock if no early
140 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
141 /// terminates LatchBlock in order to remove unnecesssary instances of the
142 /// test. In other words, control may exit the loop prior to TripCount
143 /// iterations via an early branch, but control may not exit the loop from the
144 /// LatchBlock's terminator prior to TripCount iterations.
145 ///
146 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
147 /// execute without exiting the loop.
148 ///
149 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
150 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these
151 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
152 /// iterations before branching into the unrolled loop. UnrollLoop will not
153 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
154 /// AllowExpensiveTripCount is false.
155 ///
156 /// The LoopInfo Analysis that is passed will be kept consistent.
157 ///
158 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
159 /// removed from the LoopPassManager as well. LPM can also be NULL.
160 ///
161 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
162 /// available from the Pass it must also preserve those analyses.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool AllowRuntime,bool AllowExpensiveTripCount,unsigned TripMultiple,LoopInfo * LI,Pass * PP,LPPassManager * LPM,AssumptionCache * AC)163 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
164 bool AllowRuntime, bool AllowExpensiveTripCount,
165 unsigned TripMultiple, LoopInfo *LI, Pass *PP,
166 LPPassManager *LPM, AssumptionCache *AC) {
167 BasicBlock *Preheader = L->getLoopPreheader();
168 if (!Preheader) {
169 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
170 return false;
171 }
172
173 BasicBlock *LatchBlock = L->getLoopLatch();
174 if (!LatchBlock) {
175 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
176 return false;
177 }
178
179 // Loops with indirectbr cannot be cloned.
180 if (!L->isSafeToClone()) {
181 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
182 return false;
183 }
184
185 BasicBlock *Header = L->getHeader();
186 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
187
188 if (!BI || BI->isUnconditional()) {
189 // The loop-rotate pass can be helpful to avoid this in many cases.
190 DEBUG(dbgs() <<
191 " Can't unroll; loop not terminated by a conditional branch.\n");
192 return false;
193 }
194
195 if (Header->hasAddressTaken()) {
196 // The loop-rotate pass can be helpful to avoid this in many cases.
197 DEBUG(dbgs() <<
198 " Won't unroll loop: address of header block is taken.\n");
199 return false;
200 }
201
202 if (TripCount != 0)
203 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
204 if (TripMultiple != 1)
205 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
206
207 // Effectively "DCE" unrolled iterations that are beyond the tripcount
208 // and will never be executed.
209 if (TripCount != 0 && Count > TripCount)
210 Count = TripCount;
211
212 // Don't enter the unroll code if there is nothing to do. This way we don't
213 // need to support "partial unrolling by 1".
214 if (TripCount == 0 && Count < 2)
215 return false;
216
217 assert(Count > 0);
218 assert(TripMultiple > 0);
219 assert(TripCount == 0 || TripCount % TripMultiple == 0);
220
221 // Are we eliminating the loop control altogether?
222 bool CompletelyUnroll = Count == TripCount;
223
224 // We assume a run-time trip count if the compiler cannot
225 // figure out the loop trip count and the unroll-runtime
226 // flag is specified.
227 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
228
229 if (RuntimeTripCount &&
230 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM))
231 return false;
232
233 // Notify ScalarEvolution that the loop will be substantially changed,
234 // if not outright eliminated.
235 ScalarEvolution *SE =
236 PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr;
237 if (SE)
238 SE->forgetLoop(L);
239
240 // If we know the trip count, we know the multiple...
241 unsigned BreakoutTrip = 0;
242 if (TripCount != 0) {
243 BreakoutTrip = TripCount % Count;
244 TripMultiple = 0;
245 } else {
246 // Figure out what multiple to use.
247 BreakoutTrip = TripMultiple =
248 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
249 }
250
251 // Report the unrolling decision.
252 DebugLoc LoopLoc = L->getStartLoc();
253 Function *F = Header->getParent();
254 LLVMContext &Ctx = F->getContext();
255
256 if (CompletelyUnroll) {
257 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
258 << " with trip count " << TripCount << "!\n");
259 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
260 Twine("completely unrolled loop with ") +
261 Twine(TripCount) + " iterations");
262 } else {
263 auto EmitDiag = [&](const Twine &T) {
264 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
265 "unrolled loop by a factor of " + Twine(Count) +
266 T);
267 };
268
269 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
270 << " by " << Count);
271 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
272 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
273 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
274 } else if (TripMultiple != 1) {
275 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
276 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
277 } else if (RuntimeTripCount) {
278 DEBUG(dbgs() << " with run-time trip count");
279 EmitDiag(" with run-time trip count");
280 }
281 DEBUG(dbgs() << "!\n");
282 }
283
284 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
285 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
286
287 // For the first iteration of the loop, we should use the precloned values for
288 // PHI nodes. Insert associations now.
289 ValueToValueMapTy LastValueMap;
290 std::vector<PHINode*> OrigPHINode;
291 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
292 OrigPHINode.push_back(cast<PHINode>(I));
293 }
294
295 std::vector<BasicBlock*> Headers;
296 std::vector<BasicBlock*> Latches;
297 Headers.push_back(Header);
298 Latches.push_back(LatchBlock);
299
300 // The current on-the-fly SSA update requires blocks to be processed in
301 // reverse postorder so that LastValueMap contains the correct value at each
302 // exit.
303 LoopBlocksDFS DFS(L);
304 DFS.perform(LI);
305
306 // Stash the DFS iterators before adding blocks to the loop.
307 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
308 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
309
310 for (unsigned It = 1; It != Count; ++It) {
311 std::vector<BasicBlock*> NewBlocks;
312 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
313 NewLoops[L] = L;
314
315 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
316 ValueToValueMapTy VMap;
317 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
318 Header->getParent()->getBasicBlockList().push_back(New);
319
320 // Tell LI about New.
321 if (*BB == Header) {
322 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
323 L->addBasicBlockToLoop(New, *LI);
324 } else {
325 // Figure out which loop New is in.
326 const Loop *OldLoop = LI->getLoopFor(*BB);
327 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
328
329 Loop *&NewLoop = NewLoops[OldLoop];
330 if (!NewLoop) {
331 // Found a new sub-loop.
332 assert(*BB == OldLoop->getHeader() &&
333 "Header should be first in RPO");
334
335 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
336 assert(NewLoopParent &&
337 "Expected parent loop before sub-loop in RPO");
338 NewLoop = new Loop;
339 NewLoopParent->addChildLoop(NewLoop);
340
341 // Forget the old loop, since its inputs may have changed.
342 if (SE)
343 SE->forgetLoop(OldLoop);
344 }
345 NewLoop->addBasicBlockToLoop(New, *LI);
346 }
347
348 if (*BB == Header)
349 // Loop over all of the PHI nodes in the block, changing them to use
350 // the incoming values from the previous block.
351 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
352 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
353 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
354 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
355 if (It > 1 && L->contains(InValI))
356 InVal = LastValueMap[InValI];
357 VMap[OrigPHINode[i]] = InVal;
358 New->getInstList().erase(NewPHI);
359 }
360
361 // Update our running map of newest clones
362 LastValueMap[*BB] = New;
363 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
364 VI != VE; ++VI)
365 LastValueMap[VI->first] = VI->second;
366
367 // Add phi entries for newly created values to all exit blocks.
368 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
369 SI != SE; ++SI) {
370 if (L->contains(*SI))
371 continue;
372 for (BasicBlock::iterator BBI = (*SI)->begin();
373 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
374 Value *Incoming = phi->getIncomingValueForBlock(*BB);
375 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
376 if (It != LastValueMap.end())
377 Incoming = It->second;
378 phi->addIncoming(Incoming, New);
379 }
380 }
381 // Keep track of new headers and latches as we create them, so that
382 // we can insert the proper branches later.
383 if (*BB == Header)
384 Headers.push_back(New);
385 if (*BB == LatchBlock)
386 Latches.push_back(New);
387
388 NewBlocks.push_back(New);
389 }
390
391 // Remap all instructions in the most recent iteration
392 for (unsigned i = 0; i < NewBlocks.size(); ++i)
393 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
394 E = NewBlocks[i]->end(); I != E; ++I)
395 ::RemapInstruction(I, LastValueMap);
396 }
397
398 // Loop over the PHI nodes in the original block, setting incoming values.
399 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
400 PHINode *PN = OrigPHINode[i];
401 if (CompletelyUnroll) {
402 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
403 Header->getInstList().erase(PN);
404 }
405 else if (Count > 1) {
406 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
407 // If this value was defined in the loop, take the value defined by the
408 // last iteration of the loop.
409 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
410 if (L->contains(InValI))
411 InVal = LastValueMap[InVal];
412 }
413 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
414 PN->addIncoming(InVal, Latches.back());
415 }
416 }
417
418 // Now that all the basic blocks for the unrolled iterations are in place,
419 // set up the branches to connect them.
420 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
421 // The original branch was replicated in each unrolled iteration.
422 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
423
424 // The branch destination.
425 unsigned j = (i + 1) % e;
426 BasicBlock *Dest = Headers[j];
427 bool NeedConditional = true;
428
429 if (RuntimeTripCount && j != 0) {
430 NeedConditional = false;
431 }
432
433 // For a complete unroll, make the last iteration end with a branch
434 // to the exit block.
435 if (CompletelyUnroll && j == 0) {
436 Dest = LoopExit;
437 NeedConditional = false;
438 }
439
440 // If we know the trip count or a multiple of it, we can safely use an
441 // unconditional branch for some iterations.
442 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
443 NeedConditional = false;
444 }
445
446 if (NeedConditional) {
447 // Update the conditional branch's successor for the following
448 // iteration.
449 Term->setSuccessor(!ContinueOnTrue, Dest);
450 } else {
451 // Remove phi operands at this loop exit
452 if (Dest != LoopExit) {
453 BasicBlock *BB = Latches[i];
454 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
455 SI != SE; ++SI) {
456 if (*SI == Headers[i])
457 continue;
458 for (BasicBlock::iterator BBI = (*SI)->begin();
459 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
460 Phi->removeIncomingValue(BB, false);
461 }
462 }
463 }
464 // Replace the conditional branch with an unconditional one.
465 BranchInst::Create(Dest, Term);
466 Term->eraseFromParent();
467 }
468 }
469
470 // Merge adjacent basic blocks, if possible.
471 SmallPtrSet<Loop *, 4> ForgottenLoops;
472 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
473 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
474 if (Term->isUnconditional()) {
475 BasicBlock *Dest = Term->getSuccessor(0);
476 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM,
477 ForgottenLoops))
478 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
479 }
480 }
481
482 // FIXME: We could register any cloned assumptions instead of clearing the
483 // whole function's cache.
484 AC->clear();
485
486 DominatorTree *DT = nullptr;
487 if (PP) {
488 // FIXME: Reconstruct dom info, because it is not preserved properly.
489 // Incrementally updating domtree after loop unrolling would be easy.
490 if (DominatorTreeWrapperPass *DTWP =
491 PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
492 DT = &DTWP->getDomTree();
493 DT->recalculate(*L->getHeader()->getParent());
494 }
495
496 // Simplify any new induction variables in the partially unrolled loop.
497 if (SE && !CompletelyUnroll) {
498 SmallVector<WeakVH, 16> DeadInsts;
499 simplifyLoopIVs(L, SE, LPM, DeadInsts);
500
501 // Aggressively clean up dead instructions that simplifyLoopIVs already
502 // identified. Any remaining should be cleaned up below.
503 while (!DeadInsts.empty())
504 if (Instruction *Inst =
505 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
506 RecursivelyDeleteTriviallyDeadInstructions(Inst);
507 }
508 }
509 // At this point, the code is well formed. We now do a quick sweep over the
510 // inserted code, doing constant propagation and dead code elimination as we
511 // go.
512 const DataLayout &DL = Header->getModule()->getDataLayout();
513 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
514 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
515 BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
516 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
517 Instruction *Inst = I++;
518
519 if (isInstructionTriviallyDead(Inst))
520 (*BB)->getInstList().erase(Inst);
521 else if (Value *V = SimplifyInstruction(Inst, DL))
522 if (LI->replacementPreservesLCSSAForm(Inst, V)) {
523 Inst->replaceAllUsesWith(V);
524 (*BB)->getInstList().erase(Inst);
525 }
526 }
527
528 NumCompletelyUnrolled += CompletelyUnroll;
529 ++NumUnrolled;
530
531 Loop *OuterL = L->getParentLoop();
532 // Remove the loop from the LoopPassManager if it's completely removed.
533 if (CompletelyUnroll && LPM != nullptr)
534 LPM->deleteLoopFromQueue(L);
535
536 // If we have a pass and a DominatorTree we should re-simplify impacted loops
537 // to ensure subsequent analyses can rely on this form. We want to simplify
538 // at least one layer outside of the loop that was unrolled so that any
539 // changes to the parent loop exposed by the unrolling are considered.
540 if (PP && DT) {
541 if (!OuterL && !CompletelyUnroll)
542 OuterL = L;
543 if (OuterL) {
544 simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, AC);
545
546 // LCSSA must be performed on the outermost affected loop. The unrolled
547 // loop's last loop latch is guaranteed to be in the outermost loop after
548 // deleteLoopFromQueue updates LoopInfo.
549 Loop *LatchLoop = LI->getLoopFor(Latches.back());
550 if (!OuterL->contains(LatchLoop))
551 while (OuterL->getParentLoop() != LatchLoop)
552 OuterL = OuterL->getParentLoop();
553
554 formLCSSARecursively(*OuterL, *DT, LI, SE);
555 }
556 }
557
558 return true;
559 }
560
561 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
562 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
563 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)564 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
565 // First operand should refer to the loop id itself.
566 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
567 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
568
569 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
570 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
571 if (!MD)
572 continue;
573
574 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
575 if (!S)
576 continue;
577
578 if (Name.equals(S->getString()))
579 return MD;
580 }
581 return nullptr;
582 }
583