1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnrollLoop.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/LoopUtils.h"
38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "loop-unroll"
42 
43 // TODO: Should these be here or in LoopUnroll?
44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
46 
47 /// RemapInstruction - Convert the instruction operands from referencing the
48 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)49 static inline void RemapInstruction(Instruction *I,
50                                     ValueToValueMapTy &VMap) {
51   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
52     Value *Op = I->getOperand(op);
53     ValueToValueMapTy::iterator It = VMap.find(Op);
54     if (It != VMap.end())
55       I->setOperand(op, It->second);
56   }
57 
58   if (PHINode *PN = dyn_cast<PHINode>(I)) {
59     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
60       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
61       if (It != VMap.end())
62         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
63     }
64   }
65 }
66 
67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
68 /// only has one predecessor, and that predecessor only has one successor.
69 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
70 /// successful references to the containing loop must be removed from
71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
72 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
73 /// of loops that have already been forgotten to prevent redundant, expensive
74 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
75 static BasicBlock *
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,LPPassManager * LPM,SmallPtrSetImpl<Loop * > & ForgottenLoops)76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
77                          SmallPtrSetImpl<Loop *> &ForgottenLoops) {
78   // Merge basic blocks into their predecessor if there is only one distinct
79   // pred, and if there is only one distinct successor of the predecessor, and
80   // if there are no PHI nodes.
81   BasicBlock *OnlyPred = BB->getSinglePredecessor();
82   if (!OnlyPred) return nullptr;
83 
84   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
85     return nullptr;
86 
87   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
88 
89   // Resolve any PHI nodes at the start of the block.  They are all
90   // guaranteed to have exactly one entry if they exist, unless there are
91   // multiple duplicate (but guaranteed to be equal) entries for the
92   // incoming edges.  This occurs when there are multiple edges from
93   // OnlyPred to OnlySucc.
94   FoldSingleEntryPHINodes(BB);
95 
96   // Delete the unconditional branch from the predecessor...
97   OnlyPred->getInstList().pop_back();
98 
99   // Make all PHI nodes that referred to BB now refer to Pred as their
100   // source...
101   BB->replaceAllUsesWith(OnlyPred);
102 
103   // Move all definitions in the successor to the predecessor...
104   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
105 
106   // OldName will be valid until erased.
107   StringRef OldName = BB->getName();
108 
109   // Erase basic block from the function...
110 
111   // ScalarEvolution holds references to loop exit blocks.
112   if (LPM) {
113     if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
114       if (Loop *L = LI->getLoopFor(BB)) {
115         if (ForgottenLoops.insert(L).second)
116           SE->forgetLoop(L);
117       }
118     }
119   }
120   LI->removeBlock(BB);
121 
122   // Inherit predecessor's name if it exists...
123   if (!OldName.empty() && !OnlyPred->hasName())
124     OnlyPred->setName(OldName);
125 
126   BB->eraseFromParent();
127 
128   return OnlyPred;
129 }
130 
131 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
132 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
133 /// can only fail when the loop's latch block is not terminated by a conditional
134 /// branch instruction. However, if the trip count (and multiple) are not known,
135 /// loop unrolling will mostly produce more code that is no faster.
136 ///
137 /// TripCount is generally defined as the number of times the loop header
138 /// executes. UnrollLoop relaxes the definition to permit early exits: here
139 /// TripCount is the iteration on which control exits LatchBlock if no early
140 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
141 /// terminates LatchBlock in order to remove unnecesssary instances of the
142 /// test. In other words, control may exit the loop prior to TripCount
143 /// iterations via an early branch, but control may not exit the loop from the
144 /// LatchBlock's terminator prior to TripCount iterations.
145 ///
146 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
147 /// execute without exiting the loop.
148 ///
149 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
150 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
151 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
152 /// iterations before branching into the unrolled loop.  UnrollLoop will not
153 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
154 /// AllowExpensiveTripCount is false.
155 ///
156 /// The LoopInfo Analysis that is passed will be kept consistent.
157 ///
158 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
159 /// removed from the LoopPassManager as well. LPM can also be NULL.
160 ///
161 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
162 /// available from the Pass it must also preserve those analyses.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,bool AllowRuntime,bool AllowExpensiveTripCount,unsigned TripMultiple,LoopInfo * LI,Pass * PP,LPPassManager * LPM,AssumptionCache * AC)163 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
164                       bool AllowRuntime, bool AllowExpensiveTripCount,
165                       unsigned TripMultiple, LoopInfo *LI, Pass *PP,
166                       LPPassManager *LPM, AssumptionCache *AC) {
167   BasicBlock *Preheader = L->getLoopPreheader();
168   if (!Preheader) {
169     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
170     return false;
171   }
172 
173   BasicBlock *LatchBlock = L->getLoopLatch();
174   if (!LatchBlock) {
175     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
176     return false;
177   }
178 
179   // Loops with indirectbr cannot be cloned.
180   if (!L->isSafeToClone()) {
181     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
182     return false;
183   }
184 
185   BasicBlock *Header = L->getHeader();
186   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
187 
188   if (!BI || BI->isUnconditional()) {
189     // The loop-rotate pass can be helpful to avoid this in many cases.
190     DEBUG(dbgs() <<
191              "  Can't unroll; loop not terminated by a conditional branch.\n");
192     return false;
193   }
194 
195   if (Header->hasAddressTaken()) {
196     // The loop-rotate pass can be helpful to avoid this in many cases.
197     DEBUG(dbgs() <<
198           "  Won't unroll loop: address of header block is taken.\n");
199     return false;
200   }
201 
202   if (TripCount != 0)
203     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
204   if (TripMultiple != 1)
205     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
206 
207   // Effectively "DCE" unrolled iterations that are beyond the tripcount
208   // and will never be executed.
209   if (TripCount != 0 && Count > TripCount)
210     Count = TripCount;
211 
212   // Don't enter the unroll code if there is nothing to do. This way we don't
213   // need to support "partial unrolling by 1".
214   if (TripCount == 0 && Count < 2)
215     return false;
216 
217   assert(Count > 0);
218   assert(TripMultiple > 0);
219   assert(TripCount == 0 || TripCount % TripMultiple == 0);
220 
221   // Are we eliminating the loop control altogether?
222   bool CompletelyUnroll = Count == TripCount;
223 
224   // We assume a run-time trip count if the compiler cannot
225   // figure out the loop trip count and the unroll-runtime
226   // flag is specified.
227   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
228 
229   if (RuntimeTripCount &&
230       !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM))
231     return false;
232 
233   // Notify ScalarEvolution that the loop will be substantially changed,
234   // if not outright eliminated.
235   ScalarEvolution *SE =
236       PP ? PP->getAnalysisIfAvailable<ScalarEvolution>() : nullptr;
237   if (SE)
238     SE->forgetLoop(L);
239 
240   // If we know the trip count, we know the multiple...
241   unsigned BreakoutTrip = 0;
242   if (TripCount != 0) {
243     BreakoutTrip = TripCount % Count;
244     TripMultiple = 0;
245   } else {
246     // Figure out what multiple to use.
247     BreakoutTrip = TripMultiple =
248       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
249   }
250 
251   // Report the unrolling decision.
252   DebugLoc LoopLoc = L->getStartLoc();
253   Function *F = Header->getParent();
254   LLVMContext &Ctx = F->getContext();
255 
256   if (CompletelyUnroll) {
257     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
258           << " with trip count " << TripCount << "!\n");
259     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
260                            Twine("completely unrolled loop with ") +
261                                Twine(TripCount) + " iterations");
262   } else {
263     auto EmitDiag = [&](const Twine &T) {
264       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
265                              "unrolled loop by a factor of " + Twine(Count) +
266                                  T);
267     };
268 
269     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
270           << " by " << Count);
271     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
272       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
273       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
274     } else if (TripMultiple != 1) {
275       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
276       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
277     } else if (RuntimeTripCount) {
278       DEBUG(dbgs() << " with run-time trip count");
279       EmitDiag(" with run-time trip count");
280     }
281     DEBUG(dbgs() << "!\n");
282   }
283 
284   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
285   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
286 
287   // For the first iteration of the loop, we should use the precloned values for
288   // PHI nodes.  Insert associations now.
289   ValueToValueMapTy LastValueMap;
290   std::vector<PHINode*> OrigPHINode;
291   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
292     OrigPHINode.push_back(cast<PHINode>(I));
293   }
294 
295   std::vector<BasicBlock*> Headers;
296   std::vector<BasicBlock*> Latches;
297   Headers.push_back(Header);
298   Latches.push_back(LatchBlock);
299 
300   // The current on-the-fly SSA update requires blocks to be processed in
301   // reverse postorder so that LastValueMap contains the correct value at each
302   // exit.
303   LoopBlocksDFS DFS(L);
304   DFS.perform(LI);
305 
306   // Stash the DFS iterators before adding blocks to the loop.
307   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
308   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
309 
310   for (unsigned It = 1; It != Count; ++It) {
311     std::vector<BasicBlock*> NewBlocks;
312     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
313     NewLoops[L] = L;
314 
315     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
316       ValueToValueMapTy VMap;
317       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
318       Header->getParent()->getBasicBlockList().push_back(New);
319 
320       // Tell LI about New.
321       if (*BB == Header) {
322         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
323         L->addBasicBlockToLoop(New, *LI);
324       } else {
325         // Figure out which loop New is in.
326         const Loop *OldLoop = LI->getLoopFor(*BB);
327         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
328 
329         Loop *&NewLoop = NewLoops[OldLoop];
330         if (!NewLoop) {
331           // Found a new sub-loop.
332           assert(*BB == OldLoop->getHeader() &&
333                  "Header should be first in RPO");
334 
335           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
336           assert(NewLoopParent &&
337                  "Expected parent loop before sub-loop in RPO");
338           NewLoop = new Loop;
339           NewLoopParent->addChildLoop(NewLoop);
340 
341           // Forget the old loop, since its inputs may have changed.
342           if (SE)
343             SE->forgetLoop(OldLoop);
344         }
345         NewLoop->addBasicBlockToLoop(New, *LI);
346       }
347 
348       if (*BB == Header)
349         // Loop over all of the PHI nodes in the block, changing them to use
350         // the incoming values from the previous block.
351         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
352           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
353           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
354           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
355             if (It > 1 && L->contains(InValI))
356               InVal = LastValueMap[InValI];
357           VMap[OrigPHINode[i]] = InVal;
358           New->getInstList().erase(NewPHI);
359         }
360 
361       // Update our running map of newest clones
362       LastValueMap[*BB] = New;
363       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
364            VI != VE; ++VI)
365         LastValueMap[VI->first] = VI->second;
366 
367       // Add phi entries for newly created values to all exit blocks.
368       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
369            SI != SE; ++SI) {
370         if (L->contains(*SI))
371           continue;
372         for (BasicBlock::iterator BBI = (*SI)->begin();
373              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
374           Value *Incoming = phi->getIncomingValueForBlock(*BB);
375           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
376           if (It != LastValueMap.end())
377             Incoming = It->second;
378           phi->addIncoming(Incoming, New);
379         }
380       }
381       // Keep track of new headers and latches as we create them, so that
382       // we can insert the proper branches later.
383       if (*BB == Header)
384         Headers.push_back(New);
385       if (*BB == LatchBlock)
386         Latches.push_back(New);
387 
388       NewBlocks.push_back(New);
389     }
390 
391     // Remap all instructions in the most recent iteration
392     for (unsigned i = 0; i < NewBlocks.size(); ++i)
393       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
394            E = NewBlocks[i]->end(); I != E; ++I)
395         ::RemapInstruction(I, LastValueMap);
396   }
397 
398   // Loop over the PHI nodes in the original block, setting incoming values.
399   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
400     PHINode *PN = OrigPHINode[i];
401     if (CompletelyUnroll) {
402       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
403       Header->getInstList().erase(PN);
404     }
405     else if (Count > 1) {
406       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
407       // If this value was defined in the loop, take the value defined by the
408       // last iteration of the loop.
409       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
410         if (L->contains(InValI))
411           InVal = LastValueMap[InVal];
412       }
413       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
414       PN->addIncoming(InVal, Latches.back());
415     }
416   }
417 
418   // Now that all the basic blocks for the unrolled iterations are in place,
419   // set up the branches to connect them.
420   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
421     // The original branch was replicated in each unrolled iteration.
422     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
423 
424     // The branch destination.
425     unsigned j = (i + 1) % e;
426     BasicBlock *Dest = Headers[j];
427     bool NeedConditional = true;
428 
429     if (RuntimeTripCount && j != 0) {
430       NeedConditional = false;
431     }
432 
433     // For a complete unroll, make the last iteration end with a branch
434     // to the exit block.
435     if (CompletelyUnroll && j == 0) {
436       Dest = LoopExit;
437       NeedConditional = false;
438     }
439 
440     // If we know the trip count or a multiple of it, we can safely use an
441     // unconditional branch for some iterations.
442     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
443       NeedConditional = false;
444     }
445 
446     if (NeedConditional) {
447       // Update the conditional branch's successor for the following
448       // iteration.
449       Term->setSuccessor(!ContinueOnTrue, Dest);
450     } else {
451       // Remove phi operands at this loop exit
452       if (Dest != LoopExit) {
453         BasicBlock *BB = Latches[i];
454         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
455              SI != SE; ++SI) {
456           if (*SI == Headers[i])
457             continue;
458           for (BasicBlock::iterator BBI = (*SI)->begin();
459                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
460             Phi->removeIncomingValue(BB, false);
461           }
462         }
463       }
464       // Replace the conditional branch with an unconditional one.
465       BranchInst::Create(Dest, Term);
466       Term->eraseFromParent();
467     }
468   }
469 
470   // Merge adjacent basic blocks, if possible.
471   SmallPtrSet<Loop *, 4> ForgottenLoops;
472   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
473     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
474     if (Term->isUnconditional()) {
475       BasicBlock *Dest = Term->getSuccessor(0);
476       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM,
477                                                       ForgottenLoops))
478         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
479     }
480   }
481 
482   // FIXME: We could register any cloned assumptions instead of clearing the
483   // whole function's cache.
484   AC->clear();
485 
486   DominatorTree *DT = nullptr;
487   if (PP) {
488     // FIXME: Reconstruct dom info, because it is not preserved properly.
489     // Incrementally updating domtree after loop unrolling would be easy.
490     if (DominatorTreeWrapperPass *DTWP =
491             PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
492       DT = &DTWP->getDomTree();
493       DT->recalculate(*L->getHeader()->getParent());
494     }
495 
496     // Simplify any new induction variables in the partially unrolled loop.
497     if (SE && !CompletelyUnroll) {
498       SmallVector<WeakVH, 16> DeadInsts;
499       simplifyLoopIVs(L, SE, LPM, DeadInsts);
500 
501       // Aggressively clean up dead instructions that simplifyLoopIVs already
502       // identified. Any remaining should be cleaned up below.
503       while (!DeadInsts.empty())
504         if (Instruction *Inst =
505             dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
506           RecursivelyDeleteTriviallyDeadInstructions(Inst);
507     }
508   }
509   // At this point, the code is well formed.  We now do a quick sweep over the
510   // inserted code, doing constant propagation and dead code elimination as we
511   // go.
512   const DataLayout &DL = Header->getModule()->getDataLayout();
513   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
514   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
515        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
516     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
517       Instruction *Inst = I++;
518 
519       if (isInstructionTriviallyDead(Inst))
520         (*BB)->getInstList().erase(Inst);
521       else if (Value *V = SimplifyInstruction(Inst, DL))
522         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
523           Inst->replaceAllUsesWith(V);
524           (*BB)->getInstList().erase(Inst);
525         }
526     }
527 
528   NumCompletelyUnrolled += CompletelyUnroll;
529   ++NumUnrolled;
530 
531   Loop *OuterL = L->getParentLoop();
532   // Remove the loop from the LoopPassManager if it's completely removed.
533   if (CompletelyUnroll && LPM != nullptr)
534     LPM->deleteLoopFromQueue(L);
535 
536   // If we have a pass and a DominatorTree we should re-simplify impacted loops
537   // to ensure subsequent analyses can rely on this form. We want to simplify
538   // at least one layer outside of the loop that was unrolled so that any
539   // changes to the parent loop exposed by the unrolling are considered.
540   if (PP && DT) {
541     if (!OuterL && !CompletelyUnroll)
542       OuterL = L;
543     if (OuterL) {
544       simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, AC);
545 
546       // LCSSA must be performed on the outermost affected loop. The unrolled
547       // loop's last loop latch is guaranteed to be in the outermost loop after
548       // deleteLoopFromQueue updates LoopInfo.
549       Loop *LatchLoop = LI->getLoopFor(Latches.back());
550       if (!OuterL->contains(LatchLoop))
551         while (OuterL->getParentLoop() != LatchLoop)
552           OuterL = OuterL->getParentLoop();
553 
554       formLCSSARecursively(*OuterL, *DT, LI, SE);
555     }
556   }
557 
558   return true;
559 }
560 
561 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
562 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
563 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)564 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
565   // First operand should refer to the loop id itself.
566   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
567   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
568 
569   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
570     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
571     if (!MD)
572       continue;
573 
574     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
575     if (!S)
576       continue;
577 
578     if (Name.equals(S->getString()))
579       return MD;
580   }
581   return nullptr;
582 }
583