1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Metadata.h"
21 using namespace llvm;
22 
23 // Out of line method to get vtable etc for class.
anchor()24 void ValueMapTypeRemapper::anchor() {}
anchor()25 void ValueMaterializer::anchor() {}
26 
MapValue(const Value * V,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)27 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
28                       ValueMapTypeRemapper *TypeMapper,
29                       ValueMaterializer *Materializer) {
30   ValueToValueMapTy::iterator I = VM.find(V);
31 
32   // If the value already exists in the map, use it.
33   if (I != VM.end() && I->second) return I->second;
34 
35   // If we have a materializer and it can materialize a value, use that.
36   if (Materializer) {
37     if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V)))
38       return VM[V] = NewV;
39   }
40 
41   // Global values do not need to be seeded into the VM if they
42   // are using the identity mapping.
43   if (isa<GlobalValue>(V))
44     return VM[V] = const_cast<Value*>(V);
45 
46   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
47     // Inline asm may need *type* remapping.
48     FunctionType *NewTy = IA->getFunctionType();
49     if (TypeMapper) {
50       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
51 
52       if (NewTy != IA->getFunctionType())
53         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
54                            IA->hasSideEffects(), IA->isAlignStack());
55     }
56 
57     return VM[V] = const_cast<Value*>(V);
58   }
59 
60   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
61     const Metadata *MD = MDV->getMetadata();
62     // If this is a module-level metadata and we know that nothing at the module
63     // level is changing, then use an identity mapping.
64     if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
65       return VM[V] = const_cast<Value *>(V);
66 
67     auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
68     if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
69       return VM[V] = const_cast<Value *>(V);
70 
71     // FIXME: This assert crashes during bootstrap, but I think it should be
72     // correct.  For now, just match behaviour from before the metadata/value
73     // split.
74     //
75     //    assert(MappedMD && "Referenced metadata value not in value map");
76     return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
77   }
78 
79   // Okay, this either must be a constant (which may or may not be mappable) or
80   // is something that is not in the mapping table.
81   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
82   if (!C)
83     return nullptr;
84 
85   if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
86     Function *F =
87       cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
88     BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
89                                                        Flags, TypeMapper, Materializer));
90     return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
91   }
92 
93   // Otherwise, we have some other constant to remap.  Start by checking to see
94   // if all operands have an identity remapping.
95   unsigned OpNo = 0, NumOperands = C->getNumOperands();
96   Value *Mapped = nullptr;
97   for (; OpNo != NumOperands; ++OpNo) {
98     Value *Op = C->getOperand(OpNo);
99     Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
100     if (Mapped != C) break;
101   }
102 
103   // See if the type mapper wants to remap the type as well.
104   Type *NewTy = C->getType();
105   if (TypeMapper)
106     NewTy = TypeMapper->remapType(NewTy);
107 
108   // If the result type and all operands match up, then just insert an identity
109   // mapping.
110   if (OpNo == NumOperands && NewTy == C->getType())
111     return VM[V] = C;
112 
113   // Okay, we need to create a new constant.  We've already processed some or
114   // all of the operands, set them all up now.
115   SmallVector<Constant*, 8> Ops;
116   Ops.reserve(NumOperands);
117   for (unsigned j = 0; j != OpNo; ++j)
118     Ops.push_back(cast<Constant>(C->getOperand(j)));
119 
120   // If one of the operands mismatch, push it and the other mapped operands.
121   if (OpNo != NumOperands) {
122     Ops.push_back(cast<Constant>(Mapped));
123 
124     // Map the rest of the operands that aren't processed yet.
125     for (++OpNo; OpNo != NumOperands; ++OpNo)
126       Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
127                              Flags, TypeMapper, Materializer));
128   }
129 
130   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
131     return VM[V] = CE->getWithOperands(Ops, NewTy);
132   if (isa<ConstantArray>(C))
133     return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
134   if (isa<ConstantStruct>(C))
135     return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
136   if (isa<ConstantVector>(C))
137     return VM[V] = ConstantVector::get(Ops);
138   // If this is a no-operand constant, it must be because the type was remapped.
139   if (isa<UndefValue>(C))
140     return VM[V] = UndefValue::get(NewTy);
141   if (isa<ConstantAggregateZero>(C))
142     return VM[V] = ConstantAggregateZero::get(NewTy);
143   assert(isa<ConstantPointerNull>(C));
144   return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
145 }
146 
mapToMetadata(ValueToValueMapTy & VM,const Metadata * Key,Metadata * Val)147 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
148                      Metadata *Val) {
149   VM.MD()[Key].reset(Val);
150   return Val;
151 }
152 
mapToSelf(ValueToValueMapTy & VM,const Metadata * MD)153 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
154   return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
155 }
156 
157 static Metadata *MapMetadataImpl(const Metadata *MD,
158                                  SmallVectorImpl<MDNode *> &Cycles,
159                                  ValueToValueMapTy &VM, RemapFlags Flags,
160                                  ValueMapTypeRemapper *TypeMapper,
161                                  ValueMaterializer *Materializer);
162 
mapMetadataOp(Metadata * Op,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)163 static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &Cycles,
164                                ValueToValueMapTy &VM, RemapFlags Flags,
165                                ValueMapTypeRemapper *TypeMapper,
166                                ValueMaterializer *Materializer) {
167   if (!Op)
168     return nullptr;
169   if (Metadata *MappedOp =
170           MapMetadataImpl(Op, Cycles, VM, Flags, TypeMapper, Materializer))
171     return MappedOp;
172   // Use identity map if MappedOp is null and we can ignore missing entries.
173   if (Flags & RF_IgnoreMissingEntries)
174     return Op;
175 
176   // FIXME: This assert crashes during bootstrap, but I think it should be
177   // correct.  For now, just match behaviour from before the metadata/value
178   // split.
179   //
180   //    llvm_unreachable("Referenced metadata not in value map!");
181   return nullptr;
182 }
183 
184 /// \brief Remap nodes.
185 ///
186 /// Insert \c NewNode in the value map, and then remap \c OldNode's operands.
187 /// Assumes that \c NewNode is already a clone of \c OldNode.
188 ///
189 /// \pre \c NewNode is a clone of \c OldNode.
remap(const MDNode * OldNode,MDNode * NewNode,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)190 static bool remap(const MDNode *OldNode, MDNode *NewNode,
191                   SmallVectorImpl<MDNode *> &Cycles, ValueToValueMapTy &VM,
192                   RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
193                   ValueMaterializer *Materializer) {
194   assert(OldNode->getNumOperands() == NewNode->getNumOperands() &&
195          "Expected nodes to match");
196   assert(OldNode->isResolved() && "Expected resolved node");
197   assert(!NewNode->isUniqued() && "Expected non-uniqued node");
198 
199   // Map the node upfront so it's available for cyclic references.
200   mapToMetadata(VM, OldNode, NewNode);
201   bool AnyChanged = false;
202   for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) {
203     Metadata *Old = OldNode->getOperand(I);
204     assert(NewNode->getOperand(I) == Old &&
205            "Expected old operands to already be in place");
206 
207     Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags,
208                                   TypeMapper, Materializer);
209     if (Old != New) {
210       AnyChanged = true;
211       NewNode->replaceOperandWith(I, New);
212     }
213   }
214 
215   return AnyChanged;
216 }
217 
218 /// \brief Map a distinct MDNode.
219 ///
220 /// Distinct nodes are not uniqued, so they must always recreated.
mapDistinctNode(const MDNode * Node,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)221 static Metadata *mapDistinctNode(const MDNode *Node,
222                                  SmallVectorImpl<MDNode *> &Cycles,
223                                  ValueToValueMapTy &VM, RemapFlags Flags,
224                                  ValueMapTypeRemapper *TypeMapper,
225                                  ValueMaterializer *Materializer) {
226   assert(Node->isDistinct() && "Expected distinct node");
227 
228   MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone());
229   remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer);
230 
231   // Track any cycles beneath this node.
232   for (Metadata *Op : NewMD->operands())
233     if (auto *Node = dyn_cast_or_null<MDNode>(Op))
234       if (!Node->isResolved())
235         Cycles.push_back(Node);
236 
237   return NewMD;
238 }
239 
240 /// \brief Map a uniqued MDNode.
241 ///
242 /// Uniqued nodes may not need to be recreated (they may map to themselves).
mapUniquedNode(const MDNode * Node,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)243 static Metadata *mapUniquedNode(const MDNode *Node,
244                                 SmallVectorImpl<MDNode *> &Cycles,
245                                 ValueToValueMapTy &VM, RemapFlags Flags,
246                                 ValueMapTypeRemapper *TypeMapper,
247                                 ValueMaterializer *Materializer) {
248   assert(Node->isUniqued() && "Expected uniqued node");
249 
250   // Create a temporary node upfront in case we have a metadata cycle.
251   auto ClonedMD = Node->clone();
252   if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer))
253     // No operands changed, so use the identity mapping.
254     return mapToSelf(VM, Node);
255 
256   // At least one operand has changed, so uniquify the cloned node.
257   return mapToMetadata(VM, Node,
258                        MDNode::replaceWithUniqued(std::move(ClonedMD)));
259 }
260 
MapMetadataImpl(const Metadata * MD,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)261 static Metadata *MapMetadataImpl(const Metadata *MD,
262                                  SmallVectorImpl<MDNode *> &Cycles,
263                                  ValueToValueMapTy &VM, RemapFlags Flags,
264                                  ValueMapTypeRemapper *TypeMapper,
265                                  ValueMaterializer *Materializer) {
266   // If the value already exists in the map, use it.
267   if (Metadata *NewMD = VM.MD().lookup(MD).get())
268     return NewMD;
269 
270   if (isa<MDString>(MD))
271     return mapToSelf(VM, MD);
272 
273   if (isa<ConstantAsMetadata>(MD))
274     if ((Flags & RF_NoModuleLevelChanges))
275       return mapToSelf(VM, MD);
276 
277   if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
278     Value *MappedV =
279         MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
280     if (VMD->getValue() == MappedV ||
281         (!MappedV && (Flags & RF_IgnoreMissingEntries)))
282       return mapToSelf(VM, MD);
283 
284     // FIXME: This assert crashes during bootstrap, but I think it should be
285     // correct.  For now, just match behaviour from before the metadata/value
286     // split.
287     //
288     //    assert(MappedV && "Referenced metadata not in value map!");
289     if (MappedV)
290       return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
291     return nullptr;
292   }
293 
294   // Note: this cast precedes the Flags check so we always get its associated
295   // assertion.
296   const MDNode *Node = cast<MDNode>(MD);
297 
298   // If this is a module-level metadata and we know that nothing at the
299   // module level is changing, then use an identity mapping.
300   if (Flags & RF_NoModuleLevelChanges)
301     return mapToSelf(VM, MD);
302 
303   // Require resolved nodes whenever metadata might be remapped.
304   assert(Node->isResolved() && "Unexpected unresolved node");
305 
306   if (Node->isDistinct())
307     return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
308 
309   return mapUniquedNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
310 }
311 
MapMetadata(const Metadata * MD,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)312 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
313                             RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
314                             ValueMaterializer *Materializer) {
315   SmallVector<MDNode *, 8> Cycles;
316   Metadata *NewMD =
317       MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer);
318 
319   // Resolve cycles underneath MD.
320   if (NewMD && NewMD != MD) {
321     if (auto *N = dyn_cast<MDNode>(NewMD))
322       if (!N->isResolved())
323         N->resolveCycles();
324 
325     for (MDNode *N : Cycles)
326       if (!N->isResolved())
327         N->resolveCycles();
328   } else {
329     // Shouldn't get unresolved cycles if nothing was remapped.
330     assert(Cycles.empty() && "Expected no unresolved cycles");
331   }
332 
333   return NewMD;
334 }
335 
MapMetadata(const MDNode * MD,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)336 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
337                           RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
338                           ValueMaterializer *Materializer) {
339   return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
340                                   TypeMapper, Materializer));
341 }
342 
343 /// RemapInstruction - Convert the instruction operands from referencing the
344 /// current values into those specified by VMap.
345 ///
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)346 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
347                             RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
348                             ValueMaterializer *Materializer){
349   // Remap operands.
350   for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
351     Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
352     // If we aren't ignoring missing entries, assert that something happened.
353     if (V)
354       *op = V;
355     else
356       assert((Flags & RF_IgnoreMissingEntries) &&
357              "Referenced value not in value map!");
358   }
359 
360   // Remap phi nodes' incoming blocks.
361   if (PHINode *PN = dyn_cast<PHINode>(I)) {
362     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
363       Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
364       // If we aren't ignoring missing entries, assert that something happened.
365       if (V)
366         PN->setIncomingBlock(i, cast<BasicBlock>(V));
367       else
368         assert((Flags & RF_IgnoreMissingEntries) &&
369                "Referenced block not in value map!");
370     }
371   }
372 
373   // Remap attached metadata.
374   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
375   I->getAllMetadata(MDs);
376   for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
377            MI = MDs.begin(),
378            ME = MDs.end();
379        MI != ME; ++MI) {
380     MDNode *Old = MI->second;
381     MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
382     if (New != Old)
383       I->setMetadata(MI->first, New);
384   }
385 
386   // If the instruction's type is being remapped, do so now.
387   if (TypeMapper)
388     I->mutateType(TypeMapper->remapType(I->getType()));
389 }
390