1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MapValue function, which is shared by various parts of
11 // the lib/Transforms/Utils library.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/ValueMapper.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Metadata.h"
21 using namespace llvm;
22
23 // Out of line method to get vtable etc for class.
anchor()24 void ValueMapTypeRemapper::anchor() {}
anchor()25 void ValueMaterializer::anchor() {}
26
MapValue(const Value * V,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)27 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
28 ValueMapTypeRemapper *TypeMapper,
29 ValueMaterializer *Materializer) {
30 ValueToValueMapTy::iterator I = VM.find(V);
31
32 // If the value already exists in the map, use it.
33 if (I != VM.end() && I->second) return I->second;
34
35 // If we have a materializer and it can materialize a value, use that.
36 if (Materializer) {
37 if (Value *NewV = Materializer->materializeValueFor(const_cast<Value*>(V)))
38 return VM[V] = NewV;
39 }
40
41 // Global values do not need to be seeded into the VM if they
42 // are using the identity mapping.
43 if (isa<GlobalValue>(V))
44 return VM[V] = const_cast<Value*>(V);
45
46 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
47 // Inline asm may need *type* remapping.
48 FunctionType *NewTy = IA->getFunctionType();
49 if (TypeMapper) {
50 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
51
52 if (NewTy != IA->getFunctionType())
53 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
54 IA->hasSideEffects(), IA->isAlignStack());
55 }
56
57 return VM[V] = const_cast<Value*>(V);
58 }
59
60 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
61 const Metadata *MD = MDV->getMetadata();
62 // If this is a module-level metadata and we know that nothing at the module
63 // level is changing, then use an identity mapping.
64 if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
65 return VM[V] = const_cast<Value *>(V);
66
67 auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
68 if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
69 return VM[V] = const_cast<Value *>(V);
70
71 // FIXME: This assert crashes during bootstrap, but I think it should be
72 // correct. For now, just match behaviour from before the metadata/value
73 // split.
74 //
75 // assert(MappedMD && "Referenced metadata value not in value map");
76 return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
77 }
78
79 // Okay, this either must be a constant (which may or may not be mappable) or
80 // is something that is not in the mapping table.
81 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
82 if (!C)
83 return nullptr;
84
85 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
86 Function *F =
87 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
88 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
89 Flags, TypeMapper, Materializer));
90 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
91 }
92
93 // Otherwise, we have some other constant to remap. Start by checking to see
94 // if all operands have an identity remapping.
95 unsigned OpNo = 0, NumOperands = C->getNumOperands();
96 Value *Mapped = nullptr;
97 for (; OpNo != NumOperands; ++OpNo) {
98 Value *Op = C->getOperand(OpNo);
99 Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
100 if (Mapped != C) break;
101 }
102
103 // See if the type mapper wants to remap the type as well.
104 Type *NewTy = C->getType();
105 if (TypeMapper)
106 NewTy = TypeMapper->remapType(NewTy);
107
108 // If the result type and all operands match up, then just insert an identity
109 // mapping.
110 if (OpNo == NumOperands && NewTy == C->getType())
111 return VM[V] = C;
112
113 // Okay, we need to create a new constant. We've already processed some or
114 // all of the operands, set them all up now.
115 SmallVector<Constant*, 8> Ops;
116 Ops.reserve(NumOperands);
117 for (unsigned j = 0; j != OpNo; ++j)
118 Ops.push_back(cast<Constant>(C->getOperand(j)));
119
120 // If one of the operands mismatch, push it and the other mapped operands.
121 if (OpNo != NumOperands) {
122 Ops.push_back(cast<Constant>(Mapped));
123
124 // Map the rest of the operands that aren't processed yet.
125 for (++OpNo; OpNo != NumOperands; ++OpNo)
126 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
127 Flags, TypeMapper, Materializer));
128 }
129
130 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
131 return VM[V] = CE->getWithOperands(Ops, NewTy);
132 if (isa<ConstantArray>(C))
133 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
134 if (isa<ConstantStruct>(C))
135 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
136 if (isa<ConstantVector>(C))
137 return VM[V] = ConstantVector::get(Ops);
138 // If this is a no-operand constant, it must be because the type was remapped.
139 if (isa<UndefValue>(C))
140 return VM[V] = UndefValue::get(NewTy);
141 if (isa<ConstantAggregateZero>(C))
142 return VM[V] = ConstantAggregateZero::get(NewTy);
143 assert(isa<ConstantPointerNull>(C));
144 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
145 }
146
mapToMetadata(ValueToValueMapTy & VM,const Metadata * Key,Metadata * Val)147 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
148 Metadata *Val) {
149 VM.MD()[Key].reset(Val);
150 return Val;
151 }
152
mapToSelf(ValueToValueMapTy & VM,const Metadata * MD)153 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
154 return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
155 }
156
157 static Metadata *MapMetadataImpl(const Metadata *MD,
158 SmallVectorImpl<MDNode *> &Cycles,
159 ValueToValueMapTy &VM, RemapFlags Flags,
160 ValueMapTypeRemapper *TypeMapper,
161 ValueMaterializer *Materializer);
162
mapMetadataOp(Metadata * Op,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)163 static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl<MDNode *> &Cycles,
164 ValueToValueMapTy &VM, RemapFlags Flags,
165 ValueMapTypeRemapper *TypeMapper,
166 ValueMaterializer *Materializer) {
167 if (!Op)
168 return nullptr;
169 if (Metadata *MappedOp =
170 MapMetadataImpl(Op, Cycles, VM, Flags, TypeMapper, Materializer))
171 return MappedOp;
172 // Use identity map if MappedOp is null and we can ignore missing entries.
173 if (Flags & RF_IgnoreMissingEntries)
174 return Op;
175
176 // FIXME: This assert crashes during bootstrap, but I think it should be
177 // correct. For now, just match behaviour from before the metadata/value
178 // split.
179 //
180 // llvm_unreachable("Referenced metadata not in value map!");
181 return nullptr;
182 }
183
184 /// \brief Remap nodes.
185 ///
186 /// Insert \c NewNode in the value map, and then remap \c OldNode's operands.
187 /// Assumes that \c NewNode is already a clone of \c OldNode.
188 ///
189 /// \pre \c NewNode is a clone of \c OldNode.
remap(const MDNode * OldNode,MDNode * NewNode,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)190 static bool remap(const MDNode *OldNode, MDNode *NewNode,
191 SmallVectorImpl<MDNode *> &Cycles, ValueToValueMapTy &VM,
192 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
193 ValueMaterializer *Materializer) {
194 assert(OldNode->getNumOperands() == NewNode->getNumOperands() &&
195 "Expected nodes to match");
196 assert(OldNode->isResolved() && "Expected resolved node");
197 assert(!NewNode->isUniqued() && "Expected non-uniqued node");
198
199 // Map the node upfront so it's available for cyclic references.
200 mapToMetadata(VM, OldNode, NewNode);
201 bool AnyChanged = false;
202 for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) {
203 Metadata *Old = OldNode->getOperand(I);
204 assert(NewNode->getOperand(I) == Old &&
205 "Expected old operands to already be in place");
206
207 Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags,
208 TypeMapper, Materializer);
209 if (Old != New) {
210 AnyChanged = true;
211 NewNode->replaceOperandWith(I, New);
212 }
213 }
214
215 return AnyChanged;
216 }
217
218 /// \brief Map a distinct MDNode.
219 ///
220 /// Distinct nodes are not uniqued, so they must always recreated.
mapDistinctNode(const MDNode * Node,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)221 static Metadata *mapDistinctNode(const MDNode *Node,
222 SmallVectorImpl<MDNode *> &Cycles,
223 ValueToValueMapTy &VM, RemapFlags Flags,
224 ValueMapTypeRemapper *TypeMapper,
225 ValueMaterializer *Materializer) {
226 assert(Node->isDistinct() && "Expected distinct node");
227
228 MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone());
229 remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer);
230
231 // Track any cycles beneath this node.
232 for (Metadata *Op : NewMD->operands())
233 if (auto *Node = dyn_cast_or_null<MDNode>(Op))
234 if (!Node->isResolved())
235 Cycles.push_back(Node);
236
237 return NewMD;
238 }
239
240 /// \brief Map a uniqued MDNode.
241 ///
242 /// Uniqued nodes may not need to be recreated (they may map to themselves).
mapUniquedNode(const MDNode * Node,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)243 static Metadata *mapUniquedNode(const MDNode *Node,
244 SmallVectorImpl<MDNode *> &Cycles,
245 ValueToValueMapTy &VM, RemapFlags Flags,
246 ValueMapTypeRemapper *TypeMapper,
247 ValueMaterializer *Materializer) {
248 assert(Node->isUniqued() && "Expected uniqued node");
249
250 // Create a temporary node upfront in case we have a metadata cycle.
251 auto ClonedMD = Node->clone();
252 if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer))
253 // No operands changed, so use the identity mapping.
254 return mapToSelf(VM, Node);
255
256 // At least one operand has changed, so uniquify the cloned node.
257 return mapToMetadata(VM, Node,
258 MDNode::replaceWithUniqued(std::move(ClonedMD)));
259 }
260
MapMetadataImpl(const Metadata * MD,SmallVectorImpl<MDNode * > & Cycles,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)261 static Metadata *MapMetadataImpl(const Metadata *MD,
262 SmallVectorImpl<MDNode *> &Cycles,
263 ValueToValueMapTy &VM, RemapFlags Flags,
264 ValueMapTypeRemapper *TypeMapper,
265 ValueMaterializer *Materializer) {
266 // If the value already exists in the map, use it.
267 if (Metadata *NewMD = VM.MD().lookup(MD).get())
268 return NewMD;
269
270 if (isa<MDString>(MD))
271 return mapToSelf(VM, MD);
272
273 if (isa<ConstantAsMetadata>(MD))
274 if ((Flags & RF_NoModuleLevelChanges))
275 return mapToSelf(VM, MD);
276
277 if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
278 Value *MappedV =
279 MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
280 if (VMD->getValue() == MappedV ||
281 (!MappedV && (Flags & RF_IgnoreMissingEntries)))
282 return mapToSelf(VM, MD);
283
284 // FIXME: This assert crashes during bootstrap, but I think it should be
285 // correct. For now, just match behaviour from before the metadata/value
286 // split.
287 //
288 // assert(MappedV && "Referenced metadata not in value map!");
289 if (MappedV)
290 return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
291 return nullptr;
292 }
293
294 // Note: this cast precedes the Flags check so we always get its associated
295 // assertion.
296 const MDNode *Node = cast<MDNode>(MD);
297
298 // If this is a module-level metadata and we know that nothing at the
299 // module level is changing, then use an identity mapping.
300 if (Flags & RF_NoModuleLevelChanges)
301 return mapToSelf(VM, MD);
302
303 // Require resolved nodes whenever metadata might be remapped.
304 assert(Node->isResolved() && "Unexpected unresolved node");
305
306 if (Node->isDistinct())
307 return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
308
309 return mapUniquedNode(Node, Cycles, VM, Flags, TypeMapper, Materializer);
310 }
311
MapMetadata(const Metadata * MD,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)312 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
313 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
314 ValueMaterializer *Materializer) {
315 SmallVector<MDNode *, 8> Cycles;
316 Metadata *NewMD =
317 MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer);
318
319 // Resolve cycles underneath MD.
320 if (NewMD && NewMD != MD) {
321 if (auto *N = dyn_cast<MDNode>(NewMD))
322 if (!N->isResolved())
323 N->resolveCycles();
324
325 for (MDNode *N : Cycles)
326 if (!N->isResolved())
327 N->resolveCycles();
328 } else {
329 // Shouldn't get unresolved cycles if nothing was remapped.
330 assert(Cycles.empty() && "Expected no unresolved cycles");
331 }
332
333 return NewMD;
334 }
335
MapMetadata(const MDNode * MD,ValueToValueMapTy & VM,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)336 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
337 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
338 ValueMaterializer *Materializer) {
339 return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
340 TypeMapper, Materializer));
341 }
342
343 /// RemapInstruction - Convert the instruction operands from referencing the
344 /// current values into those specified by VMap.
345 ///
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap,RemapFlags Flags,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)346 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
347 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
348 ValueMaterializer *Materializer){
349 // Remap operands.
350 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
351 Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
352 // If we aren't ignoring missing entries, assert that something happened.
353 if (V)
354 *op = V;
355 else
356 assert((Flags & RF_IgnoreMissingEntries) &&
357 "Referenced value not in value map!");
358 }
359
360 // Remap phi nodes' incoming blocks.
361 if (PHINode *PN = dyn_cast<PHINode>(I)) {
362 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
363 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
364 // If we aren't ignoring missing entries, assert that something happened.
365 if (V)
366 PN->setIncomingBlock(i, cast<BasicBlock>(V));
367 else
368 assert((Flags & RF_IgnoreMissingEntries) &&
369 "Referenced block not in value map!");
370 }
371 }
372
373 // Remap attached metadata.
374 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
375 I->getAllMetadata(MDs);
376 for (SmallVectorImpl<std::pair<unsigned, MDNode *>>::iterator
377 MI = MDs.begin(),
378 ME = MDs.end();
379 MI != ME; ++MI) {
380 MDNode *Old = MI->second;
381 MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
382 if (New != Old)
383 I->setMetadata(MI->first, New);
384 }
385
386 // If the instruction's type is being remapped, do so now.
387 if (TypeMapper)
388 I->mutateType(TypeMapper->remapType(I->getType()));
389 }
390