1; RUN: llc -march=mips -relocation-model=static -soft-float < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32BE %s
2; RUN: llc -march=mipsel -relocation-model=static -soft-float < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32LE %s
3
4; RUN-TODO: llc -march=mips64 -relocation-model=static -soft-float -target-abi o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
5; RUN-TODO: llc -march=mips64el -relocation-model=static -soft-float -target-abi o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
6
7; RUN: llc -march=mips64 -relocation-model=static -soft-float -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
8; RUN: llc -march=mips64el -relocation-model=static -soft-float -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
9
10; RUN: llc -march=mips64 -relocation-model=static -soft-float -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
11; RUN: llc -march=mips64el -relocation-model=static -soft-float -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
12
13; Test the floating point arguments for all ABI's and byte orders as specified
14; by section 5 of MD00305 (MIPS ABIs Described).
15;
16; N32/N64 are identical in this area so their checks have been combined into
17; the 'NEW' prefix (the N stands for New).
18
19@bytes = global [11 x i8] zeroinitializer
20@dwords = global [11 x i64] zeroinitializer
21@floats = global [11 x float] zeroinitializer
22@doubles = global [11 x double] zeroinitializer
23
24define void @double_args(double %a, double %b, double %c, double %d, double %e,
25                         double %f, double %g, double %h, double %i) nounwind {
26entry:
27        %0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
28        store volatile double %a, double* %0
29        %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
30        store volatile double %b, double* %1
31        %2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3
32        store volatile double %c, double* %2
33        %3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4
34        store volatile double %d, double* %3
35        %4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5
36        store volatile double %e, double* %4
37        %5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6
38        store volatile double %f, double* %5
39        %6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7
40        store volatile double %g, double* %6
41        %7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8
42        store volatile double %h, double* %7
43        %8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9
44        store volatile double %i, double* %8
45        ret void
46}
47
48; ALL-LABEL: double_args:
49; We won't test the way the global address is calculated in this test. This is
50; just to get the register number for the other checks.
51; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
52; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(doubles)(
53
54; The first four arguments are the same in O32/N32/N64.
55; The first argument is floating point but soft-float is enabled so floating
56; point registers are not used.
57; O32-DAG:           sw $4, 8([[R2]])
58; O32-DAG:           sw $5, 12([[R2]])
59; NEW-DAG:           sd $4, 8([[R2]])
60
61; O32-DAG:           sw $6, 16([[R2]])
62; O32-DAG:           sw $7, 20([[R2]])
63; NEW-DAG:           sd $5, 16([[R2]])
64
65; O32 has run out of argument registers and starts using the stack
66; O32-DAG:           lw [[R3:\$([0-9]+|gp)]], 24($sp)
67; O32-DAG:           lw [[R4:\$([0-9]+|gp)]], 28($sp)
68; O32-DAG:           sw [[R3]], 24([[R2]])
69; O32-DAG:           sw [[R4]], 28([[R2]])
70; NEW-DAG:           sd $6, 24([[R2]])
71
72; O32-DAG:           lw [[R3:\$([0-9]+|gp)]], 32($sp)
73; O32-DAG:           lw [[R4:\$([0-9]+|gp)]], 36($sp)
74; O32-DAG:           sw [[R3]], 32([[R2]])
75; O32-DAG:           sw [[R4]], 36([[R2]])
76; NEW-DAG:           sd $7, 32([[R2]])
77
78; O32-DAG:           lw [[R3:\$([0-9]+|gp)]], 40($sp)
79; O32-DAG:           lw [[R4:\$([0-9]+|gp)]], 44($sp)
80; O32-DAG:           sw [[R3]], 40([[R2]])
81; O32-DAG:           sw [[R4]], 44([[R2]])
82; NEW-DAG:           sd $8, 40([[R2]])
83
84; O32-DAG:           lw [[R3:\$([0-9]+|gp)]], 48($sp)
85; O32-DAG:           lw [[R4:\$([0-9]+|gp)]], 52($sp)
86; O32-DAG:           sw [[R3]], 48([[R2]])
87; O32-DAG:           sw [[R4]], 52([[R2]])
88; NEW-DAG:           sd $9, 48([[R2]])
89
90; O32-DAG:           lw [[R3:\$([0-9]+|gp)]], 56($sp)
91; O32-DAG:           lw [[R4:\$([0-9]+|gp)]], 60($sp)
92; O32-DAG:           sw [[R3]], 56([[R2]])
93; O32-DAG:           sw [[R4]], 60([[R2]])
94; NEW-DAG:           sd $10, 56([[R2]])
95
96; N32/N64 have run out of registers and starts using the stack too
97; O32-DAG:           lw [[R3:\$[0-9]+]], 64($sp)
98; O32-DAG:           lw [[R4:\$[0-9]+]], 68($sp)
99; O32-DAG:           sw [[R3]], 64([[R2]])
100; O32-DAG:           sw [[R4]], 68([[R2]])
101; NEW-DAG:           ld [[R3:\$[0-9]+]], 0($sp)
102; NEW-DAG:           sd $11, 64([[R2]])
103
104define void @float_args(float %a, float %b, float %c, float %d, float %e,
105                        float %f, float %g, float %h, float %i, float %j)
106                       nounwind {
107entry:
108        %0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
109        store volatile float %a, float* %0
110        %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
111        store volatile float %b, float* %1
112        %2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3
113        store volatile float %c, float* %2
114        %3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4
115        store volatile float %d, float* %3
116        %4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5
117        store volatile float %e, float* %4
118        %5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6
119        store volatile float %f, float* %5
120        %6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7
121        store volatile float %g, float* %6
122        %7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8
123        store volatile float %h, float* %7
124        %8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9
125        store volatile float %i, float* %8
126        %9 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 10
127        store volatile float %j, float* %9
128        ret void
129}
130
131; ALL-LABEL: float_args:
132; We won't test the way the global address is calculated in this test. This is
133; just to get the register number for the other checks.
134; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
135; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(floats)(
136
137; The first four arguments are the same in O32/N32/N64.
138; The first argument is floating point but soft-float is enabled so floating
139; point registers are not used.
140; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
141; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
142; aligned and occupying one slot. We'll use GCC's definition.
143; ALL-DAG:           sw $4, 4([[R2]])
144; ALL-DAG:           sw $5, 8([[R2]])
145; ALL-DAG:           sw $6, 12([[R2]])
146; ALL-DAG:           sw $7, 16([[R2]])
147
148; O32 has run out of argument registers and starts using the stack
149; O32-DAG:           lw [[R3:\$[0-9]+]], 16($sp)
150; O32-DAG:           sw [[R3]], 20([[R2]])
151; NEW-DAG:           sw $8, 20([[R2]])
152
153; O32-DAG:           lw [[R3:\$[0-9]+]], 20($sp)
154; O32-DAG:           sw [[R3]], 24([[R2]])
155; NEW-DAG:           sw $9, 24([[R2]])
156
157; O32-DAG:           lw [[R3:\$[0-9]+]], 24($sp)
158; O32-DAG:           sw [[R3]], 28([[R2]])
159; NEW-DAG:           sw $10, 28([[R2]])
160
161; O32-DAG:           lw [[R3:\$[0-9]+]], 28($sp)
162; O32-DAG:           sw [[R3]], 32([[R2]])
163; NEW-DAG:           sw $11, 32([[R2]])
164
165; N32/N64 have run out of registers and start using the stack too
166; O32-DAG:           lw [[R3:\$[0-9]+]], 32($sp)
167; O32-DAG:           sw [[R3]], 36([[R2]])
168; NEW-DAG:           lw [[R3:\$[0-9]+]], 0($sp)
169; NEW-DAG:           sw [[R3]], 36([[R2]])
170
171define void @double_arg2(i8 %a, double %b) nounwind {
172entry:
173        %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
174        store volatile i8 %a, i8* %0
175        %1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
176        store volatile double %b, double* %1
177        ret void
178}
179
180; ALL-LABEL: double_arg2:
181; We won't test the way the global address is calculated in this test. This is
182; just to get the register number for the other checks.
183; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
184; SYM64-DAG:           ld [[R1:\$[0-9]]], %got_disp(bytes)(
185; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
186; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(doubles)(
187
188; The first four arguments are the same in O32/N32/N64.
189; The first argument isn't floating point so floating point registers are not
190; used.
191; The second slot is insufficiently aligned for double on O32 so it is skipped.
192; Also, double occupies two slots on O32 and only one for N32/N64.
193; ALL-DAG:           sb $4, 1([[R1]])
194; O32-DAG:           sw $6, 8([[R2]])
195; O32-DAG:           sw $7, 12([[R2]])
196; NEW-DAG:           sd $5, 8([[R2]])
197
198define void @float_arg2(i8 signext %a, float %b) nounwind {
199entry:
200        %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
201        store volatile i8 %a, i8* %0
202        %1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
203        store volatile float %b, float* %1
204        ret void
205}
206
207; ALL-LABEL: float_arg2:
208; We won't test the way the global address is calculated in this test. This is
209; just to get the register number for the other checks.
210; SYM32-DAG:           addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
211; SYM64-DAG:           ld [[R1:\$[0-9]]], %got_disp(bytes)(
212; SYM32-DAG:           addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
213; SYM64-DAG:           ld [[R2:\$[0-9]]], %got_disp(floats)(
214
215; The first four arguments are the same in O32/N32/N64.
216; The first argument isn't floating point so floating point registers are not
217; used.
218; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
219; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
220; aligned and occupying one slot. We'll use GCC's definition.
221; ALL-DAG:           sb $4, 1([[R1]])
222; ALL-DAG:           sw $5, 4([[R2]])
223