1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits a target specifier matcher for converting parsed
11 // assembly operands in the MCInst structures. It also emits a matcher for
12 // custom operand parsing.
13 //
14 // Converting assembly operands into MCInst structures
15 // ---------------------------------------------------
16 //
17 // The input to the target specific matcher is a list of literal tokens and
18 // operands. The target specific parser should generally eliminate any syntax
19 // which is not relevant for matching; for example, comma tokens should have
20 // already been consumed and eliminated by the parser. Most instructions will
21 // end up with a single literal token (the instruction name) and some number of
22 // operands.
23 //
24 // Some example inputs, for X86:
25 // 'addl' (immediate ...) (register ...)
26 // 'add' (immediate ...) (memory ...)
27 // 'call' '*' %epc
28 //
29 // The assembly matcher is responsible for converting this input into a precise
30 // machine instruction (i.e., an instruction with a well defined encoding). This
31 // mapping has several properties which complicate matching:
32 //
33 // - It may be ambiguous; many architectures can legally encode particular
34 // variants of an instruction in different ways (for example, using a smaller
35 // encoding for small immediates). Such ambiguities should never be
36 // arbitrarily resolved by the assembler, the assembler is always responsible
37 // for choosing the "best" available instruction.
38 //
39 // - It may depend on the subtarget or the assembler context. Instructions
40 // which are invalid for the current mode, but otherwise unambiguous (e.g.,
41 // an SSE instruction in a file being assembled for i486) should be accepted
42 // and rejected by the assembler front end. However, if the proper encoding
43 // for an instruction is dependent on the assembler context then the matcher
44 // is responsible for selecting the correct machine instruction for the
45 // current mode.
46 //
47 // The core matching algorithm attempts to exploit the regularity in most
48 // instruction sets to quickly determine the set of possibly matching
49 // instructions, and the simplify the generated code. Additionally, this helps
50 // to ensure that the ambiguities are intentionally resolved by the user.
51 //
52 // The matching is divided into two distinct phases:
53 //
54 // 1. Classification: Each operand is mapped to the unique set which (a)
55 // contains it, and (b) is the largest such subset for which a single
56 // instruction could match all members.
57 //
58 // For register classes, we can generate these subgroups automatically. For
59 // arbitrary operands, we expect the user to define the classes and their
60 // relations to one another (for example, 8-bit signed immediates as a
61 // subset of 32-bit immediates).
62 //
63 // By partitioning the operands in this way, we guarantee that for any
64 // tuple of classes, any single instruction must match either all or none
65 // of the sets of operands which could classify to that tuple.
66 //
67 // In addition, the subset relation amongst classes induces a partial order
68 // on such tuples, which we use to resolve ambiguities.
69 //
70 // 2. The input can now be treated as a tuple of classes (static tokens are
71 // simple singleton sets). Each such tuple should generally map to a single
72 // instruction (we currently ignore cases where this isn't true, whee!!!),
73 // which we can emit a simple matcher for.
74 //
75 // Custom Operand Parsing
76 // ----------------------
77 //
78 // Some targets need a custom way to parse operands, some specific instructions
79 // can contain arguments that can represent processor flags and other kinds of
80 // identifiers that need to be mapped to specific values in the final encoded
81 // instructions. The target specific custom operand parsing works in the
82 // following way:
83 //
84 // 1. A operand match table is built, each entry contains a mnemonic, an
85 // operand class, a mask for all operand positions for that same
86 // class/mnemonic and target features to be checked while trying to match.
87 //
88 // 2. The operand matcher will try every possible entry with the same
89 // mnemonic and will check if the target feature for this mnemonic also
90 // matches. After that, if the operand to be matched has its index
91 // present in the mask, a successful match occurs. Otherwise, fallback
92 // to the regular operand parsing.
93 //
94 // 3. For a match success, each operand class that has a 'ParserMethod'
95 // becomes part of a switch from where the custom method is called.
96 //
97 //===----------------------------------------------------------------------===//
98
99 #include "CodeGenTarget.h"
100 #include "llvm/ADT/PointerUnion.h"
101 #include "llvm/ADT/STLExtras.h"
102 #include "llvm/ADT/SmallPtrSet.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/ADT/StringExtras.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/TableGen/Error.h"
109 #include "llvm/TableGen/Record.h"
110 #include "llvm/TableGen/StringMatcher.h"
111 #include "llvm/TableGen/StringToOffsetTable.h"
112 #include "llvm/TableGen/TableGenBackend.h"
113 #include <cassert>
114 #include <cctype>
115 #include <map>
116 #include <set>
117 #include <sstream>
118 #include <forward_list>
119 using namespace llvm;
120
121 #define DEBUG_TYPE "asm-matcher-emitter"
122
123 static cl::opt<std::string>
124 MatchPrefix("match-prefix", cl::init(""),
125 cl::desc("Only match instructions with the given prefix"));
126
127 namespace {
128 class AsmMatcherInfo;
129 struct SubtargetFeatureInfo;
130
131 // Register sets are used as keys in some second-order sets TableGen creates
132 // when generating its data structures. This means that the order of two
133 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
134 // can even affect compiler output (at least seen in diagnostics produced when
135 // all matches fail). So we use a type that sorts them consistently.
136 typedef std::set<Record*, LessRecordByID> RegisterSet;
137
138 class AsmMatcherEmitter {
139 RecordKeeper &Records;
140 public:
AsmMatcherEmitter(RecordKeeper & R)141 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
142
143 void run(raw_ostream &o);
144 };
145
146 /// ClassInfo - Helper class for storing the information about a particular
147 /// class of operands which can be matched.
148 struct ClassInfo {
149 enum ClassInfoKind {
150 /// Invalid kind, for use as a sentinel value.
151 Invalid = 0,
152
153 /// The class for a particular token.
154 Token,
155
156 /// The (first) register class, subsequent register classes are
157 /// RegisterClass0+1, and so on.
158 RegisterClass0,
159
160 /// The (first) user defined class, subsequent user defined classes are
161 /// UserClass0+1, and so on.
162 UserClass0 = 1<<16
163 };
164
165 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
166 /// N) for the Nth user defined class.
167 unsigned Kind;
168
169 /// SuperClasses - The super classes of this class. Note that for simplicities
170 /// sake user operands only record their immediate super class, while register
171 /// operands include all superclasses.
172 std::vector<ClassInfo*> SuperClasses;
173
174 /// Name - The full class name, suitable for use in an enum.
175 std::string Name;
176
177 /// ClassName - The unadorned generic name for this class (e.g., Token).
178 std::string ClassName;
179
180 /// ValueName - The name of the value this class represents; for a token this
181 /// is the literal token string, for an operand it is the TableGen class (or
182 /// empty if this is a derived class).
183 std::string ValueName;
184
185 /// PredicateMethod - The name of the operand method to test whether the
186 /// operand matches this class; this is not valid for Token or register kinds.
187 std::string PredicateMethod;
188
189 /// RenderMethod - The name of the operand method to add this operand to an
190 /// MCInst; this is not valid for Token or register kinds.
191 std::string RenderMethod;
192
193 /// ParserMethod - The name of the operand method to do a target specific
194 /// parsing on the operand.
195 std::string ParserMethod;
196
197 /// For register classes: the records for all the registers in this class.
198 RegisterSet Registers;
199
200 /// For custom match classes: the diagnostic kind for when the predicate fails.
201 std::string DiagnosticType;
202 public:
203 /// isRegisterClass() - Check if this is a register class.
isRegisterClass__anon51f7b9bc0111::ClassInfo204 bool isRegisterClass() const {
205 return Kind >= RegisterClass0 && Kind < UserClass0;
206 }
207
208 /// isUserClass() - Check if this is a user defined class.
isUserClass__anon51f7b9bc0111::ClassInfo209 bool isUserClass() const {
210 return Kind >= UserClass0;
211 }
212
213 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
214 /// are related if they are in the same class hierarchy.
isRelatedTo__anon51f7b9bc0111::ClassInfo215 bool isRelatedTo(const ClassInfo &RHS) const {
216 // Tokens are only related to tokens.
217 if (Kind == Token || RHS.Kind == Token)
218 return Kind == Token && RHS.Kind == Token;
219
220 // Registers classes are only related to registers classes, and only if
221 // their intersection is non-empty.
222 if (isRegisterClass() || RHS.isRegisterClass()) {
223 if (!isRegisterClass() || !RHS.isRegisterClass())
224 return false;
225
226 RegisterSet Tmp;
227 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
228 std::set_intersection(Registers.begin(), Registers.end(),
229 RHS.Registers.begin(), RHS.Registers.end(),
230 II, LessRecordByID());
231
232 return !Tmp.empty();
233 }
234
235 // Otherwise we have two users operands; they are related if they are in the
236 // same class hierarchy.
237 //
238 // FIXME: This is an oversimplification, they should only be related if they
239 // intersect, however we don't have that information.
240 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
241 const ClassInfo *Root = this;
242 while (!Root->SuperClasses.empty())
243 Root = Root->SuperClasses.front();
244
245 const ClassInfo *RHSRoot = &RHS;
246 while (!RHSRoot->SuperClasses.empty())
247 RHSRoot = RHSRoot->SuperClasses.front();
248
249 return Root == RHSRoot;
250 }
251
252 /// isSubsetOf - Test whether this class is a subset of \p RHS.
isSubsetOf__anon51f7b9bc0111::ClassInfo253 bool isSubsetOf(const ClassInfo &RHS) const {
254 // This is a subset of RHS if it is the same class...
255 if (this == &RHS)
256 return true;
257
258 // ... or if any of its super classes are a subset of RHS.
259 for (const ClassInfo *CI : SuperClasses)
260 if (CI->isSubsetOf(RHS))
261 return true;
262
263 return false;
264 }
265
266 /// operator< - Compare two classes.
267 // FIXME: This ordering seems to be broken. For example:
268 // u64 < i64, i64 < s8, s8 < u64, forming a cycle
269 // u64 is a subset of i64
270 // i64 and s8 are not subsets of each other, so are ordered by name
271 // s8 and u64 are not subsets of each other, so are ordered by name
operator <__anon51f7b9bc0111::ClassInfo272 bool operator<(const ClassInfo &RHS) const {
273 if (this == &RHS)
274 return false;
275
276 // Unrelated classes can be ordered by kind.
277 if (!isRelatedTo(RHS))
278 return Kind < RHS.Kind;
279
280 switch (Kind) {
281 case Invalid:
282 llvm_unreachable("Invalid kind!");
283
284 default:
285 // This class precedes the RHS if it is a proper subset of the RHS.
286 if (isSubsetOf(RHS))
287 return true;
288 if (RHS.isSubsetOf(*this))
289 return false;
290
291 // Otherwise, order by name to ensure we have a total ordering.
292 return ValueName < RHS.ValueName;
293 }
294 }
295 };
296
297 /// MatchableInfo - Helper class for storing the necessary information for an
298 /// instruction or alias which is capable of being matched.
299 struct MatchableInfo {
300 struct AsmOperand {
301 /// Token - This is the token that the operand came from.
302 StringRef Token;
303
304 /// The unique class instance this operand should match.
305 ClassInfo *Class;
306
307 /// The operand name this is, if anything.
308 StringRef SrcOpName;
309
310 /// The suboperand index within SrcOpName, or -1 for the entire operand.
311 int SubOpIdx;
312
313 /// Register record if this token is singleton register.
314 Record *SingletonReg;
315
AsmOperand__anon51f7b9bc0111::MatchableInfo::AsmOperand316 explicit AsmOperand(StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1),
317 SingletonReg(nullptr) {}
318 };
319
320 /// ResOperand - This represents a single operand in the result instruction
321 /// generated by the match. In cases (like addressing modes) where a single
322 /// assembler operand expands to multiple MCOperands, this represents the
323 /// single assembler operand, not the MCOperand.
324 struct ResOperand {
325 enum {
326 /// RenderAsmOperand - This represents an operand result that is
327 /// generated by calling the render method on the assembly operand. The
328 /// corresponding AsmOperand is specified by AsmOperandNum.
329 RenderAsmOperand,
330
331 /// TiedOperand - This represents a result operand that is a duplicate of
332 /// a previous result operand.
333 TiedOperand,
334
335 /// ImmOperand - This represents an immediate value that is dumped into
336 /// the operand.
337 ImmOperand,
338
339 /// RegOperand - This represents a fixed register that is dumped in.
340 RegOperand
341 } Kind;
342
343 union {
344 /// This is the operand # in the AsmOperands list that this should be
345 /// copied from.
346 unsigned AsmOperandNum;
347
348 /// TiedOperandNum - This is the (earlier) result operand that should be
349 /// copied from.
350 unsigned TiedOperandNum;
351
352 /// ImmVal - This is the immediate value added to the instruction.
353 int64_t ImmVal;
354
355 /// Register - This is the register record.
356 Record *Register;
357 };
358
359 /// MINumOperands - The number of MCInst operands populated by this
360 /// operand.
361 unsigned MINumOperands;
362
getRenderedOp__anon51f7b9bc0111::MatchableInfo::ResOperand363 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
364 ResOperand X;
365 X.Kind = RenderAsmOperand;
366 X.AsmOperandNum = AsmOpNum;
367 X.MINumOperands = NumOperands;
368 return X;
369 }
370
getTiedOp__anon51f7b9bc0111::MatchableInfo::ResOperand371 static ResOperand getTiedOp(unsigned TiedOperandNum) {
372 ResOperand X;
373 X.Kind = TiedOperand;
374 X.TiedOperandNum = TiedOperandNum;
375 X.MINumOperands = 1;
376 return X;
377 }
378
getImmOp__anon51f7b9bc0111::MatchableInfo::ResOperand379 static ResOperand getImmOp(int64_t Val) {
380 ResOperand X;
381 X.Kind = ImmOperand;
382 X.ImmVal = Val;
383 X.MINumOperands = 1;
384 return X;
385 }
386
getRegOp__anon51f7b9bc0111::MatchableInfo::ResOperand387 static ResOperand getRegOp(Record *Reg) {
388 ResOperand X;
389 X.Kind = RegOperand;
390 X.Register = Reg;
391 X.MINumOperands = 1;
392 return X;
393 }
394 };
395
396 /// AsmVariantID - Target's assembly syntax variant no.
397 int AsmVariantID;
398
399 /// AsmString - The assembly string for this instruction (with variants
400 /// removed), e.g. "movsx $src, $dst".
401 std::string AsmString;
402
403 /// TheDef - This is the definition of the instruction or InstAlias that this
404 /// matchable came from.
405 Record *const TheDef;
406
407 /// DefRec - This is the definition that it came from.
408 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
409
getResultInst__anon51f7b9bc0111::MatchableInfo410 const CodeGenInstruction *getResultInst() const {
411 if (DefRec.is<const CodeGenInstruction*>())
412 return DefRec.get<const CodeGenInstruction*>();
413 return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
414 }
415
416 /// ResOperands - This is the operand list that should be built for the result
417 /// MCInst.
418 SmallVector<ResOperand, 8> ResOperands;
419
420 /// Mnemonic - This is the first token of the matched instruction, its
421 /// mnemonic.
422 StringRef Mnemonic;
423
424 /// AsmOperands - The textual operands that this instruction matches,
425 /// annotated with a class and where in the OperandList they were defined.
426 /// This directly corresponds to the tokenized AsmString after the mnemonic is
427 /// removed.
428 SmallVector<AsmOperand, 8> AsmOperands;
429
430 /// Predicates - The required subtarget features to match this instruction.
431 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
432
433 /// ConversionFnKind - The enum value which is passed to the generated
434 /// convertToMCInst to convert parsed operands into an MCInst for this
435 /// function.
436 std::string ConversionFnKind;
437
438 /// If this instruction is deprecated in some form.
439 bool HasDeprecation;
440
MatchableInfo__anon51f7b9bc0111::MatchableInfo441 MatchableInfo(const CodeGenInstruction &CGI)
442 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI) {
443 }
444
MatchableInfo__anon51f7b9bc0111::MatchableInfo445 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
446 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), DefRec(Alias.release()) {
447 }
448
~MatchableInfo__anon51f7b9bc0111::MatchableInfo449 ~MatchableInfo() {
450 delete DefRec.dyn_cast<const CodeGenInstAlias*>();
451 }
452
453 // Two-operand aliases clone from the main matchable, but mark the second
454 // operand as a tied operand of the first for purposes of the assembler.
455 void formTwoOperandAlias(StringRef Constraint);
456
457 void initialize(const AsmMatcherInfo &Info,
458 SmallPtrSetImpl<Record*> &SingletonRegisters,
459 int AsmVariantNo, std::string &RegisterPrefix);
460
461 /// validate - Return true if this matchable is a valid thing to match against
462 /// and perform a bunch of validity checking.
463 bool validate(StringRef CommentDelimiter, bool Hack) const;
464
465 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
466 /// if present, from specified token.
467 void
468 extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
469 std::string &RegisterPrefix);
470
471 /// findAsmOperand - Find the AsmOperand with the specified name and
472 /// suboperand index.
findAsmOperand__anon51f7b9bc0111::MatchableInfo473 int findAsmOperand(StringRef N, int SubOpIdx) const {
474 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
475 if (N == AsmOperands[i].SrcOpName &&
476 SubOpIdx == AsmOperands[i].SubOpIdx)
477 return i;
478 return -1;
479 }
480
481 /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
482 /// This does not check the suboperand index.
findAsmOperandNamed__anon51f7b9bc0111::MatchableInfo483 int findAsmOperandNamed(StringRef N) const {
484 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
485 if (N == AsmOperands[i].SrcOpName)
486 return i;
487 return -1;
488 }
489
490 void buildInstructionResultOperands();
491 void buildAliasResultOperands();
492
493 /// operator< - Compare two matchables.
operator <__anon51f7b9bc0111::MatchableInfo494 bool operator<(const MatchableInfo &RHS) const {
495 // The primary comparator is the instruction mnemonic.
496 if (Mnemonic != RHS.Mnemonic)
497 return Mnemonic < RHS.Mnemonic;
498
499 if (AsmOperands.size() != RHS.AsmOperands.size())
500 return AsmOperands.size() < RHS.AsmOperands.size();
501
502 // Compare lexicographically by operand. The matcher validates that other
503 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
504 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
505 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
506 return true;
507 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
508 return false;
509 }
510
511 // Give matches that require more features higher precedence. This is useful
512 // because we cannot define AssemblerPredicates with the negation of
513 // processor features. For example, ARM v6 "nop" may be either a HINT or
514 // MOV. With v6, we want to match HINT. The assembler has no way to
515 // predicate MOV under "NoV6", but HINT will always match first because it
516 // requires V6 while MOV does not.
517 if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
518 return RequiredFeatures.size() > RHS.RequiredFeatures.size();
519
520 return false;
521 }
522
523 /// couldMatchAmbiguouslyWith - Check whether this matchable could
524 /// ambiguously match the same set of operands as \p RHS (without being a
525 /// strictly superior match).
couldMatchAmbiguouslyWith__anon51f7b9bc0111::MatchableInfo526 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
527 // The primary comparator is the instruction mnemonic.
528 if (Mnemonic != RHS.Mnemonic)
529 return false;
530
531 // The number of operands is unambiguous.
532 if (AsmOperands.size() != RHS.AsmOperands.size())
533 return false;
534
535 // Otherwise, make sure the ordering of the two instructions is unambiguous
536 // by checking that either (a) a token or operand kind discriminates them,
537 // or (b) the ordering among equivalent kinds is consistent.
538
539 // Tokens and operand kinds are unambiguous (assuming a correct target
540 // specific parser).
541 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
542 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
543 AsmOperands[i].Class->Kind == ClassInfo::Token)
544 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
545 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
546 return false;
547
548 // Otherwise, this operand could commute if all operands are equivalent, or
549 // there is a pair of operands that compare less than and a pair that
550 // compare greater than.
551 bool HasLT = false, HasGT = false;
552 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
553 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
554 HasLT = true;
555 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
556 HasGT = true;
557 }
558
559 return !(HasLT ^ HasGT);
560 }
561
562 void dump() const;
563
564 private:
565 void tokenizeAsmString(const AsmMatcherInfo &Info);
566 };
567
568 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
569 /// feature which participates in instruction matching.
570 struct SubtargetFeatureInfo {
571 /// \brief The predicate record for this feature.
572 Record *TheDef;
573
574 /// \brief An unique index assigned to represent this feature.
575 uint64_t Index;
576
SubtargetFeatureInfo__anon51f7b9bc0111::SubtargetFeatureInfo577 SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {}
578
579 /// \brief The name of the enumerated constant identifying this feature.
getEnumName__anon51f7b9bc0111::SubtargetFeatureInfo580 std::string getEnumName() const {
581 return "Feature_" + TheDef->getName();
582 }
583
dump__anon51f7b9bc0111::SubtargetFeatureInfo584 void dump() const {
585 errs() << getEnumName() << " " << Index << "\n";
586 TheDef->dump();
587 }
588 };
589
590 struct OperandMatchEntry {
591 unsigned OperandMask;
592 const MatchableInfo* MI;
593 ClassInfo *CI;
594
create__anon51f7b9bc0111::OperandMatchEntry595 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
596 unsigned opMask) {
597 OperandMatchEntry X;
598 X.OperandMask = opMask;
599 X.CI = ci;
600 X.MI = mi;
601 return X;
602 }
603 };
604
605
606 class AsmMatcherInfo {
607 public:
608 /// Tracked Records
609 RecordKeeper &Records;
610
611 /// The tablegen AsmParser record.
612 Record *AsmParser;
613
614 /// Target - The target information.
615 CodeGenTarget &Target;
616
617 /// The classes which are needed for matching.
618 std::forward_list<ClassInfo> Classes;
619
620 /// The information on the matchables to match.
621 std::vector<std::unique_ptr<MatchableInfo>> Matchables;
622
623 /// Info for custom matching operands by user defined methods.
624 std::vector<OperandMatchEntry> OperandMatchInfo;
625
626 /// Map of Register records to their class information.
627 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
628 RegisterClassesTy RegisterClasses;
629
630 /// Map of Predicate records to their subtarget information.
631 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
632
633 /// Map of AsmOperandClass records to their class information.
634 std::map<Record*, ClassInfo*> AsmOperandClasses;
635
636 private:
637 /// Map of token to class information which has already been constructed.
638 std::map<std::string, ClassInfo*> TokenClasses;
639
640 /// Map of RegisterClass records to their class information.
641 std::map<Record*, ClassInfo*> RegisterClassClasses;
642
643 private:
644 /// getTokenClass - Lookup or create the class for the given token.
645 ClassInfo *getTokenClass(StringRef Token);
646
647 /// getOperandClass - Lookup or create the class for the given operand.
648 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
649 int SubOpIdx);
650 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
651
652 /// buildRegisterClasses - Build the ClassInfo* instances for register
653 /// classes.
654 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
655
656 /// buildOperandClasses - Build the ClassInfo* instances for user defined
657 /// operand classes.
658 void buildOperandClasses();
659
660 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
661 unsigned AsmOpIdx);
662 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
663 MatchableInfo::AsmOperand &Op);
664
665 public:
666 AsmMatcherInfo(Record *AsmParser,
667 CodeGenTarget &Target,
668 RecordKeeper &Records);
669
670 /// buildInfo - Construct the various tables used during matching.
671 void buildInfo();
672
673 /// buildOperandMatchInfo - Build the necessary information to handle user
674 /// defined operand parsing methods.
675 void buildOperandMatchInfo();
676
677 /// getSubtargetFeature - Lookup or create the subtarget feature info for the
678 /// given operand.
getSubtargetFeature(Record * Def) const679 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
680 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
681 const auto &I = SubtargetFeatures.find(Def);
682 return I == SubtargetFeatures.end() ? nullptr : &I->second;
683 }
684
getRecords() const685 RecordKeeper &getRecords() const {
686 return Records;
687 }
688 };
689
690 } // End anonymous namespace
691
dump() const692 void MatchableInfo::dump() const {
693 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
694
695 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
696 const AsmOperand &Op = AsmOperands[i];
697 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - ";
698 errs() << '\"' << Op.Token << "\"\n";
699 }
700 }
701
702 static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S,ArrayRef<SMLoc> Loc)703 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
704 // Split via the '='.
705 std::pair<StringRef, StringRef> Ops = S.split('=');
706 if (Ops.second == "")
707 PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
708 // Trim whitespace and the leading '$' on the operand names.
709 size_t start = Ops.first.find_first_of('$');
710 if (start == std::string::npos)
711 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
712 Ops.first = Ops.first.slice(start + 1, std::string::npos);
713 size_t end = Ops.first.find_last_of(" \t");
714 Ops.first = Ops.first.slice(0, end);
715 // Now the second operand.
716 start = Ops.second.find_first_of('$');
717 if (start == std::string::npos)
718 PrintFatalError(Loc, "expected '$' prefix on asm operand name");
719 Ops.second = Ops.second.slice(start + 1, std::string::npos);
720 end = Ops.second.find_last_of(" \t");
721 Ops.first = Ops.first.slice(0, end);
722 return Ops;
723 }
724
formTwoOperandAlias(StringRef Constraint)725 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
726 // Figure out which operands are aliased and mark them as tied.
727 std::pair<StringRef, StringRef> Ops =
728 parseTwoOperandConstraint(Constraint, TheDef->getLoc());
729
730 // Find the AsmOperands that refer to the operands we're aliasing.
731 int SrcAsmOperand = findAsmOperandNamed(Ops.first);
732 int DstAsmOperand = findAsmOperandNamed(Ops.second);
733 if (SrcAsmOperand == -1)
734 PrintFatalError(TheDef->getLoc(),
735 "unknown source two-operand alias operand '" + Ops.first +
736 "'.");
737 if (DstAsmOperand == -1)
738 PrintFatalError(TheDef->getLoc(),
739 "unknown destination two-operand alias operand '" +
740 Ops.second + "'.");
741
742 // Find the ResOperand that refers to the operand we're aliasing away
743 // and update it to refer to the combined operand instead.
744 for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
745 ResOperand &Op = ResOperands[i];
746 if (Op.Kind == ResOperand::RenderAsmOperand &&
747 Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
748 Op.AsmOperandNum = DstAsmOperand;
749 break;
750 }
751 }
752 // Remove the AsmOperand for the alias operand.
753 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
754 // Adjust the ResOperand references to any AsmOperands that followed
755 // the one we just deleted.
756 for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
757 ResOperand &Op = ResOperands[i];
758 switch(Op.Kind) {
759 default:
760 // Nothing to do for operands that don't reference AsmOperands.
761 break;
762 case ResOperand::RenderAsmOperand:
763 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
764 --Op.AsmOperandNum;
765 break;
766 case ResOperand::TiedOperand:
767 if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
768 --Op.TiedOperandNum;
769 break;
770 }
771 }
772 }
773
initialize(const AsmMatcherInfo & Info,SmallPtrSetImpl<Record * > & SingletonRegisters,int AsmVariantNo,std::string & RegisterPrefix)774 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
775 SmallPtrSetImpl<Record*> &SingletonRegisters,
776 int AsmVariantNo, std::string &RegisterPrefix) {
777 AsmVariantID = AsmVariantNo;
778 AsmString =
779 CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
780
781 tokenizeAsmString(Info);
782
783 // Compute the require features.
784 std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
785 for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
786 if (const SubtargetFeatureInfo *Feature =
787 Info.getSubtargetFeature(Predicates[i]))
788 RequiredFeatures.push_back(Feature);
789
790 // Collect singleton registers, if used.
791 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
792 extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
793 if (Record *Reg = AsmOperands[i].SingletonReg)
794 SingletonRegisters.insert(Reg);
795 }
796
797 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
798 if (!DepMask)
799 DepMask = TheDef->getValue("ComplexDeprecationPredicate");
800
801 HasDeprecation =
802 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
803 }
804
805 /// tokenizeAsmString - Tokenize a simplified assembly string.
tokenizeAsmString(const AsmMatcherInfo & Info)806 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
807 StringRef String = AsmString;
808 unsigned Prev = 0;
809 bool InTok = true;
810 for (unsigned i = 0, e = String.size(); i != e; ++i) {
811 switch (String[i]) {
812 case '[':
813 case ']':
814 case '*':
815 case '!':
816 case ' ':
817 case '\t':
818 case ',':
819 if (InTok) {
820 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
821 InTok = false;
822 }
823 if (!isspace(String[i]) && String[i] != ',')
824 AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
825 Prev = i + 1;
826 break;
827
828 case '\\':
829 if (InTok) {
830 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
831 InTok = false;
832 }
833 ++i;
834 assert(i != String.size() && "Invalid quoted character");
835 AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
836 Prev = i + 1;
837 break;
838
839 case '$': {
840 if (InTok) {
841 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
842 InTok = false;
843 }
844
845 // If this isn't "${", treat like a normal token.
846 if (i + 1 == String.size() || String[i + 1] != '{') {
847 Prev = i;
848 break;
849 }
850
851 StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
852 assert(End != String.end() && "Missing brace in operand reference!");
853 size_t EndPos = End - String.begin();
854 AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
855 Prev = EndPos + 1;
856 i = EndPos;
857 break;
858 }
859
860 case '.':
861 if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
862 if (InTok)
863 AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
864 Prev = i;
865 }
866 InTok = true;
867 break;
868
869 default:
870 InTok = true;
871 }
872 }
873 if (InTok && Prev != String.size())
874 AsmOperands.push_back(AsmOperand(String.substr(Prev)));
875
876 // The first token of the instruction is the mnemonic, which must be a
877 // simple string, not a $foo variable or a singleton register.
878 if (AsmOperands.empty())
879 PrintFatalError(TheDef->getLoc(),
880 "Instruction '" + TheDef->getName() + "' has no tokens");
881 Mnemonic = AsmOperands[0].Token;
882 if (Mnemonic.empty())
883 PrintFatalError(TheDef->getLoc(),
884 "Missing instruction mnemonic");
885 // FIXME : Check and raise an error if it is a register.
886 if (Mnemonic[0] == '$')
887 PrintFatalError(TheDef->getLoc(),
888 "Invalid instruction mnemonic '" + Mnemonic + "'!");
889
890 // Remove the first operand, it is tracked in the mnemonic field.
891 AsmOperands.erase(AsmOperands.begin());
892 }
893
validate(StringRef CommentDelimiter,bool Hack) const894 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
895 // Reject matchables with no .s string.
896 if (AsmString.empty())
897 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
898
899 // Reject any matchables with a newline in them, they should be marked
900 // isCodeGenOnly if they are pseudo instructions.
901 if (AsmString.find('\n') != std::string::npos)
902 PrintFatalError(TheDef->getLoc(),
903 "multiline instruction is not valid for the asmparser, "
904 "mark it isCodeGenOnly");
905
906 // Remove comments from the asm string. We know that the asmstring only
907 // has one line.
908 if (!CommentDelimiter.empty() &&
909 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
910 PrintFatalError(TheDef->getLoc(),
911 "asmstring for instruction has comment character in it, "
912 "mark it isCodeGenOnly");
913
914 // Reject matchables with operand modifiers, these aren't something we can
915 // handle, the target should be refactored to use operands instead of
916 // modifiers.
917 //
918 // Also, check for instructions which reference the operand multiple times;
919 // this implies a constraint we would not honor.
920 std::set<std::string> OperandNames;
921 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
922 StringRef Tok = AsmOperands[i].Token;
923 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
924 PrintFatalError(TheDef->getLoc(),
925 "matchable with operand modifier '" + Tok +
926 "' not supported by asm matcher. Mark isCodeGenOnly!");
927
928 // Verify that any operand is only mentioned once.
929 // We reject aliases and ignore instructions for now.
930 if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
931 if (!Hack)
932 PrintFatalError(TheDef->getLoc(),
933 "ERROR: matchable with tied operand '" + Tok +
934 "' can never be matched!");
935 // FIXME: Should reject these. The ARM backend hits this with $lane in a
936 // bunch of instructions. It is unclear what the right answer is.
937 DEBUG({
938 errs() << "warning: '" << TheDef->getName() << "': "
939 << "ignoring instruction with tied operand '"
940 << Tok << "'\n";
941 });
942 return false;
943 }
944 }
945
946 return true;
947 }
948
949 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
950 /// if present, from specified token.
951 void MatchableInfo::
extractSingletonRegisterForAsmOperand(unsigned OperandNo,const AsmMatcherInfo & Info,std::string & RegisterPrefix)952 extractSingletonRegisterForAsmOperand(unsigned OperandNo,
953 const AsmMatcherInfo &Info,
954 std::string &RegisterPrefix) {
955 StringRef Tok = AsmOperands[OperandNo].Token;
956 if (RegisterPrefix.empty()) {
957 std::string LoweredTok = Tok.lower();
958 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
959 AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
960 return;
961 }
962
963 if (!Tok.startswith(RegisterPrefix))
964 return;
965
966 StringRef RegName = Tok.substr(RegisterPrefix.size());
967 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
968 AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
969
970 // If there is no register prefix (i.e. "%" in "%eax"), then this may
971 // be some random non-register token, just ignore it.
972 return;
973 }
974
getEnumNameForToken(StringRef Str)975 static std::string getEnumNameForToken(StringRef Str) {
976 std::string Res;
977
978 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
979 switch (*it) {
980 case '*': Res += "_STAR_"; break;
981 case '%': Res += "_PCT_"; break;
982 case ':': Res += "_COLON_"; break;
983 case '!': Res += "_EXCLAIM_"; break;
984 case '.': Res += "_DOT_"; break;
985 case '<': Res += "_LT_"; break;
986 case '>': Res += "_GT_"; break;
987 case '-': Res += "_MINUS_"; break;
988 default:
989 if ((*it >= 'A' && *it <= 'Z') ||
990 (*it >= 'a' && *it <= 'z') ||
991 (*it >= '0' && *it <= '9'))
992 Res += *it;
993 else
994 Res += "_" + utostr((unsigned) *it) + "_";
995 }
996 }
997
998 return Res;
999 }
1000
getTokenClass(StringRef Token)1001 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1002 ClassInfo *&Entry = TokenClasses[Token];
1003
1004 if (!Entry) {
1005 Classes.emplace_front();
1006 Entry = &Classes.front();
1007 Entry->Kind = ClassInfo::Token;
1008 Entry->ClassName = "Token";
1009 Entry->Name = "MCK_" + getEnumNameForToken(Token);
1010 Entry->ValueName = Token;
1011 Entry->PredicateMethod = "<invalid>";
1012 Entry->RenderMethod = "<invalid>";
1013 Entry->ParserMethod = "";
1014 Entry->DiagnosticType = "";
1015 }
1016
1017 return Entry;
1018 }
1019
1020 ClassInfo *
getOperandClass(const CGIOperandList::OperandInfo & OI,int SubOpIdx)1021 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1022 int SubOpIdx) {
1023 Record *Rec = OI.Rec;
1024 if (SubOpIdx != -1)
1025 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1026 return getOperandClass(Rec, SubOpIdx);
1027 }
1028
1029 ClassInfo *
getOperandClass(Record * Rec,int SubOpIdx)1030 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1031 if (Rec->isSubClassOf("RegisterOperand")) {
1032 // RegisterOperand may have an associated ParserMatchClass. If it does,
1033 // use it, else just fall back to the underlying register class.
1034 const RecordVal *R = Rec->getValue("ParserMatchClass");
1035 if (!R || !R->getValue())
1036 PrintFatalError("Record `" + Rec->getName() +
1037 "' does not have a ParserMatchClass!\n");
1038
1039 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1040 Record *MatchClass = DI->getDef();
1041 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1042 return CI;
1043 }
1044
1045 // No custom match class. Just use the register class.
1046 Record *ClassRec = Rec->getValueAsDef("RegClass");
1047 if (!ClassRec)
1048 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1049 "' has no associated register class!\n");
1050 if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1051 return CI;
1052 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1053 }
1054
1055
1056 if (Rec->isSubClassOf("RegisterClass")) {
1057 if (ClassInfo *CI = RegisterClassClasses[Rec])
1058 return CI;
1059 PrintFatalError(Rec->getLoc(), "register class has no class info!");
1060 }
1061
1062 if (!Rec->isSubClassOf("Operand"))
1063 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1064 "' does not derive from class Operand!\n");
1065 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1066 if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1067 return CI;
1068
1069 PrintFatalError(Rec->getLoc(), "operand has no match class!");
1070 }
1071
1072 struct LessRegisterSet {
operator ()LessRegisterSet1073 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1074 // std::set<T> defines its own compariso "operator<", but it
1075 // performs a lexicographical comparison by T's innate comparison
1076 // for some reason. We don't want non-deterministic pointer
1077 // comparisons so use this instead.
1078 return std::lexicographical_compare(LHS.begin(), LHS.end(),
1079 RHS.begin(), RHS.end(),
1080 LessRecordByID());
1081 }
1082 };
1083
1084 void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record * > & SingletonRegisters)1085 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1086 const auto &Registers = Target.getRegBank().getRegisters();
1087 auto &RegClassList = Target.getRegBank().getRegClasses();
1088
1089 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1090
1091 // The register sets used for matching.
1092 RegisterSetSet RegisterSets;
1093
1094 // Gather the defined sets.
1095 for (const CodeGenRegisterClass &RC : RegClassList)
1096 RegisterSets.insert(
1097 RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1098
1099 // Add any required singleton sets.
1100 for (Record *Rec : SingletonRegisters) {
1101 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1102 }
1103
1104 // Introduce derived sets where necessary (when a register does not determine
1105 // a unique register set class), and build the mapping of registers to the set
1106 // they should classify to.
1107 std::map<Record*, RegisterSet> RegisterMap;
1108 for (const CodeGenRegister &CGR : Registers) {
1109 // Compute the intersection of all sets containing this register.
1110 RegisterSet ContainingSet;
1111
1112 for (const RegisterSet &RS : RegisterSets) {
1113 if (!RS.count(CGR.TheDef))
1114 continue;
1115
1116 if (ContainingSet.empty()) {
1117 ContainingSet = RS;
1118 continue;
1119 }
1120
1121 RegisterSet Tmp;
1122 std::swap(Tmp, ContainingSet);
1123 std::insert_iterator<RegisterSet> II(ContainingSet,
1124 ContainingSet.begin());
1125 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1126 LessRecordByID());
1127 }
1128
1129 if (!ContainingSet.empty()) {
1130 RegisterSets.insert(ContainingSet);
1131 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1132 }
1133 }
1134
1135 // Construct the register classes.
1136 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1137 unsigned Index = 0;
1138 for (const RegisterSet &RS : RegisterSets) {
1139 Classes.emplace_front();
1140 ClassInfo *CI = &Classes.front();
1141 CI->Kind = ClassInfo::RegisterClass0 + Index;
1142 CI->ClassName = "Reg" + utostr(Index);
1143 CI->Name = "MCK_Reg" + utostr(Index);
1144 CI->ValueName = "";
1145 CI->PredicateMethod = ""; // unused
1146 CI->RenderMethod = "addRegOperands";
1147 CI->Registers = RS;
1148 // FIXME: diagnostic type.
1149 CI->DiagnosticType = "";
1150 RegisterSetClasses.insert(std::make_pair(RS, CI));
1151 ++Index;
1152 }
1153
1154 // Find the superclasses; we could compute only the subgroup lattice edges,
1155 // but there isn't really a point.
1156 for (const RegisterSet &RS : RegisterSets) {
1157 ClassInfo *CI = RegisterSetClasses[RS];
1158 for (const RegisterSet &RS2 : RegisterSets)
1159 if (RS != RS2 &&
1160 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1161 LessRecordByID()))
1162 CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1163 }
1164
1165 // Name the register classes which correspond to a user defined RegisterClass.
1166 for (const CodeGenRegisterClass &RC : RegClassList) {
1167 // Def will be NULL for non-user defined register classes.
1168 Record *Def = RC.getDef();
1169 if (!Def)
1170 continue;
1171 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1172 RC.getOrder().end())];
1173 if (CI->ValueName.empty()) {
1174 CI->ClassName = RC.getName();
1175 CI->Name = "MCK_" + RC.getName();
1176 CI->ValueName = RC.getName();
1177 } else
1178 CI->ValueName = CI->ValueName + "," + RC.getName();
1179
1180 RegisterClassClasses.insert(std::make_pair(Def, CI));
1181 }
1182
1183 // Populate the map for individual registers.
1184 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
1185 ie = RegisterMap.end(); it != ie; ++it)
1186 RegisterClasses[it->first] = RegisterSetClasses[it->second];
1187
1188 // Name the register classes which correspond to singleton registers.
1189 for (Record *Rec : SingletonRegisters) {
1190 ClassInfo *CI = RegisterClasses[Rec];
1191 assert(CI && "Missing singleton register class info!");
1192
1193 if (CI->ValueName.empty()) {
1194 CI->ClassName = Rec->getName();
1195 CI->Name = "MCK_" + Rec->getName();
1196 CI->ValueName = Rec->getName();
1197 } else
1198 CI->ValueName = CI->ValueName + "," + Rec->getName();
1199 }
1200 }
1201
buildOperandClasses()1202 void AsmMatcherInfo::buildOperandClasses() {
1203 std::vector<Record*> AsmOperands =
1204 Records.getAllDerivedDefinitions("AsmOperandClass");
1205
1206 // Pre-populate AsmOperandClasses map.
1207 for (Record *Rec : AsmOperands) {
1208 Classes.emplace_front();
1209 AsmOperandClasses[Rec] = &Classes.front();
1210 }
1211
1212 unsigned Index = 0;
1213 for (Record *Rec : AsmOperands) {
1214 ClassInfo *CI = AsmOperandClasses[Rec];
1215 CI->Kind = ClassInfo::UserClass0 + Index;
1216
1217 ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1218 for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1219 DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
1220 if (!DI) {
1221 PrintError(Rec->getLoc(), "Invalid super class reference!");
1222 continue;
1223 }
1224
1225 ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1226 if (!SC)
1227 PrintError(Rec->getLoc(), "Invalid super class reference!");
1228 else
1229 CI->SuperClasses.push_back(SC);
1230 }
1231 CI->ClassName = Rec->getValueAsString("Name");
1232 CI->Name = "MCK_" + CI->ClassName;
1233 CI->ValueName = Rec->getName();
1234
1235 // Get or construct the predicate method name.
1236 Init *PMName = Rec->getValueInit("PredicateMethod");
1237 if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1238 CI->PredicateMethod = SI->getValue();
1239 } else {
1240 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1241 CI->PredicateMethod = "is" + CI->ClassName;
1242 }
1243
1244 // Get or construct the render method name.
1245 Init *RMName = Rec->getValueInit("RenderMethod");
1246 if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1247 CI->RenderMethod = SI->getValue();
1248 } else {
1249 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1250 CI->RenderMethod = "add" + CI->ClassName + "Operands";
1251 }
1252
1253 // Get the parse method name or leave it as empty.
1254 Init *PRMName = Rec->getValueInit("ParserMethod");
1255 if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1256 CI->ParserMethod = SI->getValue();
1257
1258 // Get the diagnostic type or leave it as empty.
1259 // Get the parse method name or leave it as empty.
1260 Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1261 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1262 CI->DiagnosticType = SI->getValue();
1263
1264 ++Index;
1265 }
1266 }
1267
AsmMatcherInfo(Record * asmParser,CodeGenTarget & target,RecordKeeper & records)1268 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1269 CodeGenTarget &target,
1270 RecordKeeper &records)
1271 : Records(records), AsmParser(asmParser), Target(target) {
1272 }
1273
1274 /// buildOperandMatchInfo - Build the necessary information to handle user
1275 /// defined operand parsing methods.
buildOperandMatchInfo()1276 void AsmMatcherInfo::buildOperandMatchInfo() {
1277
1278 /// Map containing a mask with all operands indices that can be found for
1279 /// that class inside a instruction.
1280 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
1281 OpClassMaskTy OpClassMask;
1282
1283 for (const auto &MI : Matchables) {
1284 OpClassMask.clear();
1285
1286 // Keep track of all operands of this instructions which belong to the
1287 // same class.
1288 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1289 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1290 if (Op.Class->ParserMethod.empty())
1291 continue;
1292 unsigned &OperandMask = OpClassMask[Op.Class];
1293 OperandMask |= (1 << i);
1294 }
1295
1296 // Generate operand match info for each mnemonic/operand class pair.
1297 for (const auto &OCM : OpClassMask) {
1298 unsigned OpMask = OCM.second;
1299 ClassInfo *CI = OCM.first;
1300 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1301 OpMask));
1302 }
1303 }
1304 }
1305
buildInfo()1306 void AsmMatcherInfo::buildInfo() {
1307 // Build information about all of the AssemblerPredicates.
1308 std::vector<Record*> AllPredicates =
1309 Records.getAllDerivedDefinitions("Predicate");
1310 for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1311 Record *Pred = AllPredicates[i];
1312 // Ignore predicates that are not intended for the assembler.
1313 if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1314 continue;
1315
1316 if (Pred->getName().empty())
1317 PrintFatalError(Pred->getLoc(), "Predicate has no name!");
1318
1319 SubtargetFeatures.insert(std::make_pair(
1320 Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size())));
1321 DEBUG(SubtargetFeatures.find(Pred)->second.dump());
1322 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");
1323 }
1324
1325 // Parse the instructions; we need to do this first so that we can gather the
1326 // singleton register classes.
1327 SmallPtrSet<Record*, 16> SingletonRegisters;
1328 unsigned VariantCount = Target.getAsmParserVariantCount();
1329 for (unsigned VC = 0; VC != VariantCount; ++VC) {
1330 Record *AsmVariant = Target.getAsmParserVariant(VC);
1331 std::string CommentDelimiter =
1332 AsmVariant->getValueAsString("CommentDelimiter");
1333 std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1334 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1335
1336 for (const CodeGenInstruction *CGI : Target.instructions()) {
1337
1338 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1339 // filter the set of instructions we consider.
1340 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1341 continue;
1342
1343 // Ignore "codegen only" instructions.
1344 if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1345 continue;
1346
1347 std::unique_ptr<MatchableInfo> II(new MatchableInfo(*CGI));
1348
1349 II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1350
1351 // Ignore instructions which shouldn't be matched and diagnose invalid
1352 // instruction definitions with an error.
1353 if (!II->validate(CommentDelimiter, true))
1354 continue;
1355
1356 Matchables.push_back(std::move(II));
1357 }
1358
1359 // Parse all of the InstAlias definitions and stick them in the list of
1360 // matchables.
1361 std::vector<Record*> AllInstAliases =
1362 Records.getAllDerivedDefinitions("InstAlias");
1363 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1364 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
1365 AsmVariantNo, Target);
1366
1367 // If the tblgen -match-prefix option is specified (for tblgen hackers),
1368 // filter the set of instruction aliases we consider, based on the target
1369 // instruction.
1370 if (!StringRef(Alias->ResultInst->TheDef->getName())
1371 .startswith( MatchPrefix))
1372 continue;
1373
1374 std::unique_ptr<MatchableInfo> II(new MatchableInfo(std::move(Alias)));
1375
1376 II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1377
1378 // Validate the alias definitions.
1379 II->validate(CommentDelimiter, false);
1380
1381 Matchables.push_back(std::move(II));
1382 }
1383 }
1384
1385 // Build info for the register classes.
1386 buildRegisterClasses(SingletonRegisters);
1387
1388 // Build info for the user defined assembly operand classes.
1389 buildOperandClasses();
1390
1391 // Build the information about matchables, now that we have fully formed
1392 // classes.
1393 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1394 for (auto &II : Matchables) {
1395 // Parse the tokens after the mnemonic.
1396 // Note: buildInstructionOperandReference may insert new AsmOperands, so
1397 // don't precompute the loop bound.
1398 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1399 MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1400 StringRef Token = Op.Token;
1401
1402 // Check for singleton registers.
1403 if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1404 Op.Class = RegisterClasses[RegRecord];
1405 assert(Op.Class && Op.Class->Registers.size() == 1 &&
1406 "Unexpected class for singleton register");
1407 continue;
1408 }
1409
1410 // Check for simple tokens.
1411 if (Token[0] != '$') {
1412 Op.Class = getTokenClass(Token);
1413 continue;
1414 }
1415
1416 if (Token.size() > 1 && isdigit(Token[1])) {
1417 Op.Class = getTokenClass(Token);
1418 continue;
1419 }
1420
1421 // Otherwise this is an operand reference.
1422 StringRef OperandName;
1423 if (Token[1] == '{')
1424 OperandName = Token.substr(2, Token.size() - 3);
1425 else
1426 OperandName = Token.substr(1);
1427
1428 if (II->DefRec.is<const CodeGenInstruction*>())
1429 buildInstructionOperandReference(II.get(), OperandName, i);
1430 else
1431 buildAliasOperandReference(II.get(), OperandName, Op);
1432 }
1433
1434 if (II->DefRec.is<const CodeGenInstruction*>()) {
1435 II->buildInstructionResultOperands();
1436 // If the instruction has a two-operand alias, build up the
1437 // matchable here. We'll add them in bulk at the end to avoid
1438 // confusing this loop.
1439 std::string Constraint =
1440 II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1441 if (Constraint != "") {
1442 // Start by making a copy of the original matchable.
1443 std::unique_ptr<MatchableInfo> AliasII(new MatchableInfo(*II));
1444
1445 // Adjust it to be a two-operand alias.
1446 AliasII->formTwoOperandAlias(Constraint);
1447
1448 // Add the alias to the matchables list.
1449 NewMatchables.push_back(std::move(AliasII));
1450 }
1451 } else
1452 II->buildAliasResultOperands();
1453 }
1454 if (!NewMatchables.empty())
1455 Matchables.insert(Matchables.end(),
1456 std::make_move_iterator(NewMatchables.begin()),
1457 std::make_move_iterator(NewMatchables.end()));
1458
1459 // Process token alias definitions and set up the associated superclass
1460 // information.
1461 std::vector<Record*> AllTokenAliases =
1462 Records.getAllDerivedDefinitions("TokenAlias");
1463 for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1464 Record *Rec = AllTokenAliases[i];
1465 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1466 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1467 if (FromClass == ToClass)
1468 PrintFatalError(Rec->getLoc(),
1469 "error: Destination value identical to source value.");
1470 FromClass->SuperClasses.push_back(ToClass);
1471 }
1472
1473 // Reorder classes so that classes precede super classes.
1474 Classes.sort();
1475 }
1476
1477 /// buildInstructionOperandReference - The specified operand is a reference to a
1478 /// named operand such as $src. Resolve the Class and OperandInfo pointers.
1479 void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo * II,StringRef OperandName,unsigned AsmOpIdx)1480 buildInstructionOperandReference(MatchableInfo *II,
1481 StringRef OperandName,
1482 unsigned AsmOpIdx) {
1483 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1484 const CGIOperandList &Operands = CGI.Operands;
1485 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1486
1487 // Map this token to an operand.
1488 unsigned Idx;
1489 if (!Operands.hasOperandNamed(OperandName, Idx))
1490 PrintFatalError(II->TheDef->getLoc(),
1491 "error: unable to find operand: '" + OperandName + "'");
1492
1493 // If the instruction operand has multiple suboperands, but the parser
1494 // match class for the asm operand is still the default "ImmAsmOperand",
1495 // then handle each suboperand separately.
1496 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1497 Record *Rec = Operands[Idx].Rec;
1498 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1499 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1500 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1501 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1502 StringRef Token = Op->Token; // save this in case Op gets moved
1503 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1504 MatchableInfo::AsmOperand NewAsmOp(Token);
1505 NewAsmOp.SubOpIdx = SI;
1506 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1507 }
1508 // Replace Op with first suboperand.
1509 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1510 Op->SubOpIdx = 0;
1511 }
1512 }
1513
1514 // Set up the operand class.
1515 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1516
1517 // If the named operand is tied, canonicalize it to the untied operand.
1518 // For example, something like:
1519 // (outs GPR:$dst), (ins GPR:$src)
1520 // with an asmstring of
1521 // "inc $src"
1522 // we want to canonicalize to:
1523 // "inc $dst"
1524 // so that we know how to provide the $dst operand when filling in the result.
1525 int OITied = -1;
1526 if (Operands[Idx].MINumOperands == 1)
1527 OITied = Operands[Idx].getTiedRegister();
1528 if (OITied != -1) {
1529 // The tied operand index is an MIOperand index, find the operand that
1530 // contains it.
1531 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1532 OperandName = Operands[Idx.first].Name;
1533 Op->SubOpIdx = Idx.second;
1534 }
1535
1536 Op->SrcOpName = OperandName;
1537 }
1538
1539 /// buildAliasOperandReference - When parsing an operand reference out of the
1540 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1541 /// operand reference is by looking it up in the result pattern definition.
buildAliasOperandReference(MatchableInfo * II,StringRef OperandName,MatchableInfo::AsmOperand & Op)1542 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1543 StringRef OperandName,
1544 MatchableInfo::AsmOperand &Op) {
1545 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1546
1547 // Set up the operand class.
1548 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1549 if (CGA.ResultOperands[i].isRecord() &&
1550 CGA.ResultOperands[i].getName() == OperandName) {
1551 // It's safe to go with the first one we find, because CodeGenInstAlias
1552 // validates that all operands with the same name have the same record.
1553 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1554 // Use the match class from the Alias definition, not the
1555 // destination instruction, as we may have an immediate that's
1556 // being munged by the match class.
1557 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1558 Op.SubOpIdx);
1559 Op.SrcOpName = OperandName;
1560 return;
1561 }
1562
1563 PrintFatalError(II->TheDef->getLoc(),
1564 "error: unable to find operand: '" + OperandName + "'");
1565 }
1566
buildInstructionResultOperands()1567 void MatchableInfo::buildInstructionResultOperands() {
1568 const CodeGenInstruction *ResultInst = getResultInst();
1569
1570 // Loop over all operands of the result instruction, determining how to
1571 // populate them.
1572 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1573 const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1574
1575 // If this is a tied operand, just copy from the previously handled operand.
1576 int TiedOp = -1;
1577 if (OpInfo.MINumOperands == 1)
1578 TiedOp = OpInfo.getTiedRegister();
1579 if (TiedOp != -1) {
1580 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1581 continue;
1582 }
1583
1584 // Find out what operand from the asmparser this MCInst operand comes from.
1585 int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1586 if (OpInfo.Name.empty() || SrcOperand == -1) {
1587 // This may happen for operands that are tied to a suboperand of a
1588 // complex operand. Simply use a dummy value here; nobody should
1589 // use this operand slot.
1590 // FIXME: The long term goal is for the MCOperand list to not contain
1591 // tied operands at all.
1592 ResOperands.push_back(ResOperand::getImmOp(0));
1593 continue;
1594 }
1595
1596 // Check if the one AsmOperand populates the entire operand.
1597 unsigned NumOperands = OpInfo.MINumOperands;
1598 if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1599 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1600 continue;
1601 }
1602
1603 // Add a separate ResOperand for each suboperand.
1604 for (unsigned AI = 0; AI < NumOperands; ++AI) {
1605 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1606 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1607 "unexpected AsmOperands for suboperands");
1608 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1609 }
1610 }
1611 }
1612
buildAliasResultOperands()1613 void MatchableInfo::buildAliasResultOperands() {
1614 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1615 const CodeGenInstruction *ResultInst = getResultInst();
1616
1617 // Loop over all operands of the result instruction, determining how to
1618 // populate them.
1619 unsigned AliasOpNo = 0;
1620 unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1621 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1622 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1623
1624 // If this is a tied operand, just copy from the previously handled operand.
1625 int TiedOp = -1;
1626 if (OpInfo->MINumOperands == 1)
1627 TiedOp = OpInfo->getTiedRegister();
1628 if (TiedOp != -1) {
1629 ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1630 continue;
1631 }
1632
1633 // Handle all the suboperands for this operand.
1634 const std::string &OpName = OpInfo->Name;
1635 for ( ; AliasOpNo < LastOpNo &&
1636 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1637 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1638
1639 // Find out what operand from the asmparser that this MCInst operand
1640 // comes from.
1641 switch (CGA.ResultOperands[AliasOpNo].Kind) {
1642 case CodeGenInstAlias::ResultOperand::K_Record: {
1643 StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1644 int SrcOperand = findAsmOperand(Name, SubIdx);
1645 if (SrcOperand == -1)
1646 PrintFatalError(TheDef->getLoc(), "Instruction '" +
1647 TheDef->getName() + "' has operand '" + OpName +
1648 "' that doesn't appear in asm string!");
1649 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1650 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1651 NumOperands));
1652 break;
1653 }
1654 case CodeGenInstAlias::ResultOperand::K_Imm: {
1655 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1656 ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1657 break;
1658 }
1659 case CodeGenInstAlias::ResultOperand::K_Reg: {
1660 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1661 ResOperands.push_back(ResOperand::getRegOp(Reg));
1662 break;
1663 }
1664 }
1665 }
1666 }
1667 }
1668
getConverterOperandID(const std::string & Name,SetVector<std::string> & Table,bool & IsNew)1669 static unsigned getConverterOperandID(const std::string &Name,
1670 SetVector<std::string> &Table,
1671 bool &IsNew) {
1672 IsNew = Table.insert(Name);
1673
1674 unsigned ID = IsNew ? Table.size() - 1 :
1675 std::find(Table.begin(), Table.end(), Name) - Table.begin();
1676
1677 assert(ID < Table.size());
1678
1679 return ID;
1680 }
1681
1682
emitConvertFuncs(CodeGenTarget & Target,StringRef ClassName,std::vector<std::unique_ptr<MatchableInfo>> & Infos,raw_ostream & OS)1683 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1684 std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1685 raw_ostream &OS) {
1686 SetVector<std::string> OperandConversionKinds;
1687 SetVector<std::string> InstructionConversionKinds;
1688 std::vector<std::vector<uint8_t> > ConversionTable;
1689 size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1690
1691 // TargetOperandClass - This is the target's operand class, like X86Operand.
1692 std::string TargetOperandClass = Target.getName() + "Operand";
1693
1694 // Write the convert function to a separate stream, so we can drop it after
1695 // the enum. We'll build up the conversion handlers for the individual
1696 // operand types opportunistically as we encounter them.
1697 std::string ConvertFnBody;
1698 raw_string_ostream CvtOS(ConvertFnBody);
1699 // Start the unified conversion function.
1700 CvtOS << "void " << Target.getName() << ClassName << "::\n"
1701 << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1702 << "unsigned Opcode,\n"
1703 << " const OperandVector"
1704 << " &Operands) {\n"
1705 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1706 << " const uint8_t *Converter = ConversionTable[Kind];\n"
1707 << " Inst.setOpcode(Opcode);\n"
1708 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1709 << " switch (*p) {\n"
1710 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
1711 << " case CVT_Reg:\n"
1712 << " static_cast<" << TargetOperandClass
1713 << "&>(*Operands[*(p + 1)]).addRegOperands(Inst, 1);\n"
1714 << " break;\n"
1715 << " case CVT_Tied:\n"
1716 << " Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1717 << " break;\n";
1718
1719 std::string OperandFnBody;
1720 raw_string_ostream OpOS(OperandFnBody);
1721 // Start the operand number lookup function.
1722 OpOS << "void " << Target.getName() << ClassName << "::\n"
1723 << "convertToMapAndConstraints(unsigned Kind,\n";
1724 OpOS.indent(27);
1725 OpOS << "const OperandVector &Operands) {\n"
1726 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1727 << " unsigned NumMCOperands = 0;\n"
1728 << " const uint8_t *Converter = ConversionTable[Kind];\n"
1729 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1730 << " switch (*p) {\n"
1731 << " default: llvm_unreachable(\"invalid conversion entry!\");\n"
1732 << " case CVT_Reg:\n"
1733 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1734 << " Operands[*(p + 1)]->setConstraint(\"r\");\n"
1735 << " ++NumMCOperands;\n"
1736 << " break;\n"
1737 << " case CVT_Tied:\n"
1738 << " ++NumMCOperands;\n"
1739 << " break;\n";
1740
1741 // Pre-populate the operand conversion kinds with the standard always
1742 // available entries.
1743 OperandConversionKinds.insert("CVT_Done");
1744 OperandConversionKinds.insert("CVT_Reg");
1745 OperandConversionKinds.insert("CVT_Tied");
1746 enum { CVT_Done, CVT_Reg, CVT_Tied };
1747
1748 for (auto &II : Infos) {
1749 // Check if we have a custom match function.
1750 std::string AsmMatchConverter =
1751 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1752 if (!AsmMatchConverter.empty()) {
1753 std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1754 II->ConversionFnKind = Signature;
1755
1756 // Check if we have already generated this signature.
1757 if (!InstructionConversionKinds.insert(Signature))
1758 continue;
1759
1760 // Remember this converter for the kind enum.
1761 unsigned KindID = OperandConversionKinds.size();
1762 OperandConversionKinds.insert("CVT_" +
1763 getEnumNameForToken(AsmMatchConverter));
1764
1765 // Add the converter row for this instruction.
1766 ConversionTable.push_back(std::vector<uint8_t>());
1767 ConversionTable.back().push_back(KindID);
1768 ConversionTable.back().push_back(CVT_Done);
1769
1770 // Add the handler to the conversion driver function.
1771 CvtOS << " case CVT_"
1772 << getEnumNameForToken(AsmMatchConverter) << ":\n"
1773 << " " << AsmMatchConverter << "(Inst, Operands);\n"
1774 << " break;\n";
1775
1776 // FIXME: Handle the operand number lookup for custom match functions.
1777 continue;
1778 }
1779
1780 // Build the conversion function signature.
1781 std::string Signature = "Convert";
1782
1783 std::vector<uint8_t> ConversionRow;
1784
1785 // Compute the convert enum and the case body.
1786 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
1787
1788 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
1789 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
1790
1791 // Generate code to populate each result operand.
1792 switch (OpInfo.Kind) {
1793 case MatchableInfo::ResOperand::RenderAsmOperand: {
1794 // This comes from something we parsed.
1795 const MatchableInfo::AsmOperand &Op =
1796 II->AsmOperands[OpInfo.AsmOperandNum];
1797
1798 // Registers are always converted the same, don't duplicate the
1799 // conversion function based on them.
1800 Signature += "__";
1801 std::string Class;
1802 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1803 Signature += Class;
1804 Signature += utostr(OpInfo.MINumOperands);
1805 Signature += "_" + itostr(OpInfo.AsmOperandNum);
1806
1807 // Add the conversion kind, if necessary, and get the associated ID
1808 // the index of its entry in the vector).
1809 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1810 Op.Class->RenderMethod);
1811 Name = getEnumNameForToken(Name);
1812
1813 bool IsNewConverter = false;
1814 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1815 IsNewConverter);
1816
1817 // Add the operand entry to the instruction kind conversion row.
1818 ConversionRow.push_back(ID);
1819 ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1820
1821 if (!IsNewConverter)
1822 break;
1823
1824 // This is a new operand kind. Add a handler for it to the
1825 // converter driver.
1826 CvtOS << " case " << Name << ":\n"
1827 << " static_cast<" << TargetOperandClass
1828 << "&>(*Operands[*(p + 1)])." << Op.Class->RenderMethod
1829 << "(Inst, " << OpInfo.MINumOperands << ");\n"
1830 << " break;\n";
1831
1832 // Add a handler for the operand number lookup.
1833 OpOS << " case " << Name << ":\n"
1834 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
1835
1836 if (Op.Class->isRegisterClass())
1837 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n";
1838 else
1839 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n";
1840 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n"
1841 << " break;\n";
1842 break;
1843 }
1844 case MatchableInfo::ResOperand::TiedOperand: {
1845 // If this operand is tied to a previous one, just copy the MCInst
1846 // operand from the earlier one.We can only tie single MCOperand values.
1847 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1848 unsigned TiedOp = OpInfo.TiedOperandNum;
1849 assert(i > TiedOp && "Tied operand precedes its target!");
1850 Signature += "__Tie" + utostr(TiedOp);
1851 ConversionRow.push_back(CVT_Tied);
1852 ConversionRow.push_back(TiedOp);
1853 break;
1854 }
1855 case MatchableInfo::ResOperand::ImmOperand: {
1856 int64_t Val = OpInfo.ImmVal;
1857 std::string Ty = "imm_" + itostr(Val);
1858 Ty = getEnumNameForToken(Ty);
1859 Signature += "__" + Ty;
1860
1861 std::string Name = "CVT_" + Ty;
1862 bool IsNewConverter = false;
1863 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1864 IsNewConverter);
1865 // Add the operand entry to the instruction kind conversion row.
1866 ConversionRow.push_back(ID);
1867 ConversionRow.push_back(0);
1868
1869 if (!IsNewConverter)
1870 break;
1871
1872 CvtOS << " case " << Name << ":\n"
1873 << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1874 << " break;\n";
1875
1876 OpOS << " case " << Name << ":\n"
1877 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1878 << " Operands[*(p + 1)]->setConstraint(\"\");\n"
1879 << " ++NumMCOperands;\n"
1880 << " break;\n";
1881 break;
1882 }
1883 case MatchableInfo::ResOperand::RegOperand: {
1884 std::string Reg, Name;
1885 if (!OpInfo.Register) {
1886 Name = "reg0";
1887 Reg = "0";
1888 } else {
1889 Reg = getQualifiedName(OpInfo.Register);
1890 Name = "reg" + OpInfo.Register->getName();
1891 }
1892 Signature += "__" + Name;
1893 Name = "CVT_" + Name;
1894 bool IsNewConverter = false;
1895 unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1896 IsNewConverter);
1897 // Add the operand entry to the instruction kind conversion row.
1898 ConversionRow.push_back(ID);
1899 ConversionRow.push_back(0);
1900
1901 if (!IsNewConverter)
1902 break;
1903 CvtOS << " case " << Name << ":\n"
1904 << " Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1905 << " break;\n";
1906
1907 OpOS << " case " << Name << ":\n"
1908 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1909 << " Operands[*(p + 1)]->setConstraint(\"m\");\n"
1910 << " ++NumMCOperands;\n"
1911 << " break;\n";
1912 }
1913 }
1914 }
1915
1916 // If there were no operands, add to the signature to that effect
1917 if (Signature == "Convert")
1918 Signature += "_NoOperands";
1919
1920 II->ConversionFnKind = Signature;
1921
1922 // Save the signature. If we already have it, don't add a new row
1923 // to the table.
1924 if (!InstructionConversionKinds.insert(Signature))
1925 continue;
1926
1927 // Add the row to the table.
1928 ConversionTable.push_back(ConversionRow);
1929 }
1930
1931 // Finish up the converter driver function.
1932 CvtOS << " }\n }\n}\n\n";
1933
1934 // Finish up the operand number lookup function.
1935 OpOS << " }\n }\n}\n\n";
1936
1937 OS << "namespace {\n";
1938
1939 // Output the operand conversion kind enum.
1940 OS << "enum OperatorConversionKind {\n";
1941 for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1942 OS << " " << OperandConversionKinds[i] << ",\n";
1943 OS << " CVT_NUM_CONVERTERS\n";
1944 OS << "};\n\n";
1945
1946 // Output the instruction conversion kind enum.
1947 OS << "enum InstructionConversionKind {\n";
1948 for (SetVector<std::string>::const_iterator
1949 i = InstructionConversionKinds.begin(),
1950 e = InstructionConversionKinds.end(); i != e; ++i)
1951 OS << " " << *i << ",\n";
1952 OS << " CVT_NUM_SIGNATURES\n";
1953 OS << "};\n\n";
1954
1955
1956 OS << "} // end anonymous namespace\n\n";
1957
1958 // Output the conversion table.
1959 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1960 << MaxRowLength << "] = {\n";
1961
1962 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1963 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1964 OS << " // " << InstructionConversionKinds[Row] << "\n";
1965 OS << " { ";
1966 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1967 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1968 << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1969 OS << "CVT_Done },\n";
1970 }
1971
1972 OS << "};\n\n";
1973
1974 // Spit out the conversion driver function.
1975 OS << CvtOS.str();
1976
1977 // Spit out the operand number lookup function.
1978 OS << OpOS.str();
1979 }
1980
1981 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
emitMatchClassEnumeration(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)1982 static void emitMatchClassEnumeration(CodeGenTarget &Target,
1983 std::forward_list<ClassInfo> &Infos,
1984 raw_ostream &OS) {
1985 OS << "namespace {\n\n";
1986
1987 OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1988 << "/// instruction matching.\n";
1989 OS << "enum MatchClassKind {\n";
1990 OS << " InvalidMatchClass = 0,\n";
1991 for (const auto &CI : Infos) {
1992 OS << " " << CI.Name << ", // ";
1993 if (CI.Kind == ClassInfo::Token) {
1994 OS << "'" << CI.ValueName << "'\n";
1995 } else if (CI.isRegisterClass()) {
1996 if (!CI.ValueName.empty())
1997 OS << "register class '" << CI.ValueName << "'\n";
1998 else
1999 OS << "derived register class\n";
2000 } else {
2001 OS << "user defined class '" << CI.ValueName << "'\n";
2002 }
2003 }
2004 OS << " NumMatchClassKinds\n";
2005 OS << "};\n\n";
2006
2007 OS << "}\n\n";
2008 }
2009
2010 /// emitValidateOperandClass - Emit the function to validate an operand class.
emitValidateOperandClass(AsmMatcherInfo & Info,raw_ostream & OS)2011 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2012 raw_ostream &OS) {
2013 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2014 << "MatchClassKind Kind) {\n";
2015 OS << " " << Info.Target.getName() << "Operand &Operand = ("
2016 << Info.Target.getName() << "Operand&)GOp;\n";
2017
2018 // The InvalidMatchClass is not to match any operand.
2019 OS << " if (Kind == InvalidMatchClass)\n";
2020 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2021
2022 // Check for Token operands first.
2023 // FIXME: Use a more specific diagnostic type.
2024 OS << " if (Operand.isToken())\n";
2025 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2026 << " MCTargetAsmParser::Match_Success :\n"
2027 << " MCTargetAsmParser::Match_InvalidOperand;\n\n";
2028
2029 // Check the user classes. We don't care what order since we're only
2030 // actually matching against one of them.
2031 for (const auto &CI : Info.Classes) {
2032 if (!CI.isUserClass())
2033 continue;
2034
2035 OS << " // '" << CI.ClassName << "' class\n";
2036 OS << " if (Kind == " << CI.Name << ") {\n";
2037 OS << " if (Operand." << CI.PredicateMethod << "())\n";
2038 OS << " return MCTargetAsmParser::Match_Success;\n";
2039 if (!CI.DiagnosticType.empty())
2040 OS << " return " << Info.Target.getName() << "AsmParser::Match_"
2041 << CI.DiagnosticType << ";\n";
2042 OS << " }\n\n";
2043 }
2044
2045 // Check for register operands, including sub-classes.
2046 OS << " if (Operand.isReg()) {\n";
2047 OS << " MatchClassKind OpKind;\n";
2048 OS << " switch (Operand.getReg()) {\n";
2049 OS << " default: OpKind = InvalidMatchClass; break;\n";
2050 for (const auto &RC : Info.RegisterClasses)
2051 OS << " case " << Info.Target.getName() << "::"
2052 << RC.first->getName() << ": OpKind = " << RC.second->Name
2053 << "; break;\n";
2054 OS << " }\n";
2055 OS << " return isSubclass(OpKind, Kind) ? "
2056 << "MCTargetAsmParser::Match_Success :\n "
2057 << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n";
2058
2059 // Generic fallthrough match failure case for operands that don't have
2060 // specialized diagnostic types.
2061 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n";
2062 OS << "}\n\n";
2063 }
2064
2065 /// emitIsSubclass - Emit the subclass predicate function.
emitIsSubclass(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2066 static void emitIsSubclass(CodeGenTarget &Target,
2067 std::forward_list<ClassInfo> &Infos,
2068 raw_ostream &OS) {
2069 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2070 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2071 OS << " if (A == B)\n";
2072 OS << " return true;\n\n";
2073
2074 std::string OStr;
2075 raw_string_ostream SS(OStr);
2076 unsigned Count = 0;
2077 SS << " switch (A) {\n";
2078 SS << " default:\n";
2079 SS << " return false;\n";
2080 for (const auto &A : Infos) {
2081 std::vector<StringRef> SuperClasses;
2082 for (const auto &B : Infos) {
2083 if (&A != &B && A.isSubsetOf(B))
2084 SuperClasses.push_back(B.Name);
2085 }
2086
2087 if (SuperClasses.empty())
2088 continue;
2089 ++Count;
2090
2091 SS << "\n case " << A.Name << ":\n";
2092
2093 if (SuperClasses.size() == 1) {
2094 SS << " return B == " << SuperClasses.back().str() << ";\n";
2095 continue;
2096 }
2097
2098 if (!SuperClasses.empty()) {
2099 SS << " switch (B) {\n";
2100 SS << " default: return false;\n";
2101 for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2102 SS << " case " << SuperClasses[i].str() << ": return true;\n";
2103 SS << " }\n";
2104 } else {
2105 // No case statement to emit
2106 SS << " return false;\n";
2107 }
2108 }
2109 SS << " }\n";
2110
2111 // If there were case statements emitted into the string stream, write them
2112 // to the output stream, otherwise write the default.
2113 if (Count)
2114 OS << SS.str();
2115 else
2116 OS << " return false;\n";
2117
2118 OS << "}\n\n";
2119 }
2120
2121 /// emitMatchTokenString - Emit the function to match a token string to the
2122 /// appropriate match class value.
emitMatchTokenString(CodeGenTarget & Target,std::forward_list<ClassInfo> & Infos,raw_ostream & OS)2123 static void emitMatchTokenString(CodeGenTarget &Target,
2124 std::forward_list<ClassInfo> &Infos,
2125 raw_ostream &OS) {
2126 // Construct the match list.
2127 std::vector<StringMatcher::StringPair> Matches;
2128 for (const auto &CI : Infos) {
2129 if (CI.Kind == ClassInfo::Token)
2130 Matches.push_back(
2131 StringMatcher::StringPair(CI.ValueName, "return " + CI.Name + ";"));
2132 }
2133
2134 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2135
2136 StringMatcher("Name", Matches, OS).Emit();
2137
2138 OS << " return InvalidMatchClass;\n";
2139 OS << "}\n\n";
2140 }
2141
2142 /// emitMatchRegisterName - Emit the function to match a string to the target
2143 /// specific register enum.
emitMatchRegisterName(CodeGenTarget & Target,Record * AsmParser,raw_ostream & OS)2144 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2145 raw_ostream &OS) {
2146 // Construct the match list.
2147 std::vector<StringMatcher::StringPair> Matches;
2148 const auto &Regs = Target.getRegBank().getRegisters();
2149 for (const CodeGenRegister &Reg : Regs) {
2150 if (Reg.TheDef->getValueAsString("AsmName").empty())
2151 continue;
2152
2153 Matches.push_back(
2154 StringMatcher::StringPair(Reg.TheDef->getValueAsString("AsmName"),
2155 "return " + utostr(Reg.EnumValue) + ";"));
2156 }
2157
2158 OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2159
2160 StringMatcher("Name", Matches, OS).Emit();
2161
2162 OS << " return 0;\n";
2163 OS << "}\n\n";
2164 }
2165
getMinimalTypeForRange(uint64_t Range)2166 static const char *getMinimalTypeForRange(uint64_t Range) {
2167 assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large");
2168 if (Range > 0xFFFFFFFFULL)
2169 return "uint64_t";
2170 if (Range > 0xFFFF)
2171 return "uint32_t";
2172 if (Range > 0xFF)
2173 return "uint16_t";
2174 return "uint8_t";
2175 }
2176
getMinimalRequiredFeaturesType(const AsmMatcherInfo & Info)2177 static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) {
2178 uint64_t MaxIndex = Info.SubtargetFeatures.size();
2179 if (MaxIndex > 0)
2180 MaxIndex--;
2181 return getMinimalTypeForRange(1ULL << MaxIndex);
2182 }
2183
2184 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2185 /// definitions.
emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo & Info,raw_ostream & OS)2186 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2187 raw_ostream &OS) {
2188 OS << "// Flags for subtarget features that participate in "
2189 << "instruction matching.\n";
2190 OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info)
2191 << " {\n";
2192 for (const auto &SF : Info.SubtargetFeatures) {
2193 const SubtargetFeatureInfo &SFI = SF.second;
2194 OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n";
2195 }
2196 OS << " Feature_None = 0\n";
2197 OS << "};\n\n";
2198 }
2199
2200 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
emitOperandDiagnosticTypes(AsmMatcherInfo & Info,raw_ostream & OS)2201 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2202 // Get the set of diagnostic types from all of the operand classes.
2203 std::set<StringRef> Types;
2204 for (std::map<Record*, ClassInfo*>::const_iterator
2205 I = Info.AsmOperandClasses.begin(),
2206 E = Info.AsmOperandClasses.end(); I != E; ++I) {
2207 if (!I->second->DiagnosticType.empty())
2208 Types.insert(I->second->DiagnosticType);
2209 }
2210
2211 if (Types.empty()) return;
2212
2213 // Now emit the enum entries.
2214 for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2215 I != E; ++I)
2216 OS << " Match_" << *I << ",\n";
2217 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n";
2218 }
2219
2220 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2221 /// user-level name for a subtarget feature.
emitGetSubtargetFeatureName(AsmMatcherInfo & Info,raw_ostream & OS)2222 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2223 OS << "// User-level names for subtarget features that participate in\n"
2224 << "// instruction matching.\n"
2225 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2226 if (!Info.SubtargetFeatures.empty()) {
2227 OS << " switch(Val) {\n";
2228 for (const auto &SF : Info.SubtargetFeatures) {
2229 const SubtargetFeatureInfo &SFI = SF.second;
2230 // FIXME: Totally just a placeholder name to get the algorithm working.
2231 OS << " case " << SFI.getEnumName() << ": return \""
2232 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2233 }
2234 OS << " default: return \"(unknown)\";\n";
2235 OS << " }\n";
2236 } else {
2237 // Nothing to emit, so skip the switch
2238 OS << " return \"(unknown)\";\n";
2239 }
2240 OS << "}\n\n";
2241 }
2242
2243 /// emitComputeAvailableFeatures - Emit the function to compute the list of
2244 /// available features given a subtarget.
emitComputeAvailableFeatures(AsmMatcherInfo & Info,raw_ostream & OS)2245 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2246 raw_ostream &OS) {
2247 std::string ClassName =
2248 Info.AsmParser->getValueAsString("AsmParserClassName");
2249
2250 OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n"
2251 << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2252 OS << " uint64_t Features = 0;\n";
2253 for (const auto &SF : Info.SubtargetFeatures) {
2254 const SubtargetFeatureInfo &SFI = SF.second;
2255
2256 OS << " if (";
2257 std::string CondStorage =
2258 SFI.TheDef->getValueAsString("AssemblerCondString");
2259 StringRef Conds = CondStorage;
2260 std::pair<StringRef,StringRef> Comma = Conds.split(',');
2261 bool First = true;
2262 do {
2263 if (!First)
2264 OS << " && ";
2265
2266 bool Neg = false;
2267 StringRef Cond = Comma.first;
2268 if (Cond[0] == '!') {
2269 Neg = true;
2270 Cond = Cond.substr(1);
2271 }
2272
2273 OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2274 if (Neg)
2275 OS << " == 0";
2276 else
2277 OS << " != 0";
2278 OS << ")";
2279
2280 if (Comma.second.empty())
2281 break;
2282
2283 First = false;
2284 Comma = Comma.second.split(',');
2285 } while (true);
2286
2287 OS << ")\n";
2288 OS << " Features |= " << SFI.getEnumName() << ";\n";
2289 }
2290 OS << " return Features;\n";
2291 OS << "}\n\n";
2292 }
2293
GetAliasRequiredFeatures(Record * R,const AsmMatcherInfo & Info)2294 static std::string GetAliasRequiredFeatures(Record *R,
2295 const AsmMatcherInfo &Info) {
2296 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2297 std::string Result;
2298 unsigned NumFeatures = 0;
2299 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2300 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2301
2302 if (!F)
2303 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2304 "' is not marked as an AssemblerPredicate!");
2305
2306 if (NumFeatures)
2307 Result += '|';
2308
2309 Result += F->getEnumName();
2310 ++NumFeatures;
2311 }
2312
2313 if (NumFeatures > 1)
2314 Result = '(' + Result + ')';
2315 return Result;
2316 }
2317
emitMnemonicAliasVariant(raw_ostream & OS,const AsmMatcherInfo & Info,std::vector<Record * > & Aliases,unsigned Indent=0,StringRef AsmParserVariantName=StringRef ())2318 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2319 std::vector<Record*> &Aliases,
2320 unsigned Indent = 0,
2321 StringRef AsmParserVariantName = StringRef()){
2322 // Keep track of all the aliases from a mnemonic. Use an std::map so that the
2323 // iteration order of the map is stable.
2324 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2325
2326 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2327 Record *R = Aliases[i];
2328 // FIXME: Allow AssemblerVariantName to be a comma separated list.
2329 std::string AsmVariantName = R->getValueAsString("AsmVariantName");
2330 if (AsmVariantName != AsmParserVariantName)
2331 continue;
2332 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2333 }
2334 if (AliasesFromMnemonic.empty())
2335 return;
2336
2337 // Process each alias a "from" mnemonic at a time, building the code executed
2338 // by the string remapper.
2339 std::vector<StringMatcher::StringPair> Cases;
2340 for (std::map<std::string, std::vector<Record*> >::iterator
2341 I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2342 I != E; ++I) {
2343 const std::vector<Record*> &ToVec = I->second;
2344
2345 // Loop through each alias and emit code that handles each case. If there
2346 // are two instructions without predicates, emit an error. If there is one,
2347 // emit it last.
2348 std::string MatchCode;
2349 int AliasWithNoPredicate = -1;
2350
2351 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2352 Record *R = ToVec[i];
2353 std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2354
2355 // If this unconditionally matches, remember it for later and diagnose
2356 // duplicates.
2357 if (FeatureMask.empty()) {
2358 if (AliasWithNoPredicate != -1) {
2359 // We can't have two aliases from the same mnemonic with no predicate.
2360 PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2361 "two MnemonicAliases with the same 'from' mnemonic!");
2362 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2363 }
2364
2365 AliasWithNoPredicate = i;
2366 continue;
2367 }
2368 if (R->getValueAsString("ToMnemonic") == I->first)
2369 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2370
2371 if (!MatchCode.empty())
2372 MatchCode += "else ";
2373 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2374 MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2375 }
2376
2377 if (AliasWithNoPredicate != -1) {
2378 Record *R = ToVec[AliasWithNoPredicate];
2379 if (!MatchCode.empty())
2380 MatchCode += "else\n ";
2381 MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2382 }
2383
2384 MatchCode += "return;";
2385
2386 Cases.push_back(std::make_pair(I->first, MatchCode));
2387 }
2388 StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2389 }
2390
2391 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2392 /// emit a function for them and return true, otherwise return false.
emitMnemonicAliases(raw_ostream & OS,const AsmMatcherInfo & Info,CodeGenTarget & Target)2393 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2394 CodeGenTarget &Target) {
2395 // Ignore aliases when match-prefix is set.
2396 if (!MatchPrefix.empty())
2397 return false;
2398
2399 std::vector<Record*> Aliases =
2400 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2401 if (Aliases.empty()) return false;
2402
2403 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2404 "uint64_t Features, unsigned VariantID) {\n";
2405 OS << " switch (VariantID) {\n";
2406 unsigned VariantCount = Target.getAsmParserVariantCount();
2407 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2408 Record *AsmVariant = Target.getAsmParserVariant(VC);
2409 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2410 std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
2411 OS << " case " << AsmParserVariantNo << ":\n";
2412 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2413 AsmParserVariantName);
2414 OS << " break;\n";
2415 }
2416 OS << " }\n";
2417
2418 // Emit aliases that apply to all variants.
2419 emitMnemonicAliasVariant(OS, Info, Aliases);
2420
2421 OS << "}\n\n";
2422
2423 return true;
2424 }
2425
emitCustomOperandParsing(raw_ostream & OS,CodeGenTarget & Target,const AsmMatcherInfo & Info,StringRef ClassName,StringToOffsetTable & StringTable,unsigned MaxMnemonicIndex)2426 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2427 const AsmMatcherInfo &Info, StringRef ClassName,
2428 StringToOffsetTable &StringTable,
2429 unsigned MaxMnemonicIndex) {
2430 unsigned MaxMask = 0;
2431 for (std::vector<OperandMatchEntry>::const_iterator it =
2432 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2433 it != ie; ++it) {
2434 MaxMask |= it->OperandMask;
2435 }
2436
2437 // Emit the static custom operand parsing table;
2438 OS << "namespace {\n";
2439 OS << " struct OperandMatchEntry {\n";
2440 OS << " " << getMinimalRequiredFeaturesType(Info)
2441 << " RequiredFeatures;\n";
2442 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2443 << " Mnemonic;\n";
2444 OS << " " << getMinimalTypeForRange(std::distance(
2445 Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2446 OS << " " << getMinimalTypeForRange(MaxMask)
2447 << " OperandMask;\n\n";
2448 OS << " StringRef getMnemonic() const {\n";
2449 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2450 OS << " MnemonicTable[Mnemonic]);\n";
2451 OS << " }\n";
2452 OS << " };\n\n";
2453
2454 OS << " // Predicate for searching for an opcode.\n";
2455 OS << " struct LessOpcodeOperand {\n";
2456 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2457 OS << " return LHS.getMnemonic() < RHS;\n";
2458 OS << " }\n";
2459 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2460 OS << " return LHS < RHS.getMnemonic();\n";
2461 OS << " }\n";
2462 OS << " bool operator()(const OperandMatchEntry &LHS,";
2463 OS << " const OperandMatchEntry &RHS) {\n";
2464 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2465 OS << " }\n";
2466 OS << " };\n";
2467
2468 OS << "} // end anonymous namespace.\n\n";
2469
2470 OS << "static const OperandMatchEntry OperandMatchTable["
2471 << Info.OperandMatchInfo.size() << "] = {\n";
2472
2473 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2474 for (std::vector<OperandMatchEntry>::const_iterator it =
2475 Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2476 it != ie; ++it) {
2477 const OperandMatchEntry &OMI = *it;
2478 const MatchableInfo &II = *OMI.MI;
2479
2480 OS << " { ";
2481
2482 // Write the required features mask.
2483 if (!II.RequiredFeatures.empty()) {
2484 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2485 if (i) OS << "|";
2486 OS << II.RequiredFeatures[i]->getEnumName();
2487 }
2488 } else
2489 OS << "0";
2490
2491 // Store a pascal-style length byte in the mnemonic.
2492 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2493 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2494 << " /* " << II.Mnemonic << " */, ";
2495
2496 OS << OMI.CI->Name;
2497
2498 OS << ", " << OMI.OperandMask;
2499 OS << " /* ";
2500 bool printComma = false;
2501 for (int i = 0, e = 31; i !=e; ++i)
2502 if (OMI.OperandMask & (1 << i)) {
2503 if (printComma)
2504 OS << ", ";
2505 OS << i;
2506 printComma = true;
2507 }
2508 OS << " */";
2509
2510 OS << " },\n";
2511 }
2512 OS << "};\n\n";
2513
2514 // Emit the operand class switch to call the correct custom parser for
2515 // the found operand class.
2516 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2517 << Target.getName() << ClassName << "::\n"
2518 << "tryCustomParseOperand(OperandVector"
2519 << " &Operands,\n unsigned MCK) {\n\n"
2520 << " switch(MCK) {\n";
2521
2522 for (const auto &CI : Info.Classes) {
2523 if (CI.ParserMethod.empty())
2524 continue;
2525 OS << " case " << CI.Name << ":\n"
2526 << " return " << CI.ParserMethod << "(Operands);\n";
2527 }
2528
2529 OS << " default:\n";
2530 OS << " return MatchOperand_NoMatch;\n";
2531 OS << " }\n";
2532 OS << " return MatchOperand_NoMatch;\n";
2533 OS << "}\n\n";
2534
2535 // Emit the static custom operand parser. This code is very similar with
2536 // the other matcher. Also use MatchResultTy here just in case we go for
2537 // a better error handling.
2538 OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2539 << Target.getName() << ClassName << "::\n"
2540 << "MatchOperandParserImpl(OperandVector"
2541 << " &Operands,\n StringRef Mnemonic) {\n";
2542
2543 // Emit code to get the available features.
2544 OS << " // Get the current feature set.\n";
2545 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2546
2547 OS << " // Get the next operand index.\n";
2548 OS << " unsigned NextOpNum = Operands.size()-1;\n";
2549
2550 // Emit code to search the table.
2551 OS << " // Search the table.\n";
2552 OS << " std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2553 OS << " MnemonicRange =\n";
2554 OS << " std::equal_range(OperandMatchTable, OperandMatchTable+"
2555 << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2556 << " LessOpcodeOperand());\n\n";
2557
2558 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2559 OS << " return MatchOperand_NoMatch;\n\n";
2560
2561 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2562 << " *ie = MnemonicRange.second; it != ie; ++it) {\n";
2563
2564 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2565 OS << " assert(Mnemonic == it->getMnemonic());\n\n";
2566
2567 // Emit check that the required features are available.
2568 OS << " // check if the available features match\n";
2569 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2570 << "!= it->RequiredFeatures) {\n";
2571 OS << " continue;\n";
2572 OS << " }\n\n";
2573
2574 // Emit check to ensure the operand number matches.
2575 OS << " // check if the operand in question has a custom parser.\n";
2576 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n";
2577 OS << " continue;\n\n";
2578
2579 // Emit call to the custom parser method
2580 OS << " // call custom parse method to handle the operand\n";
2581 OS << " OperandMatchResultTy Result = ";
2582 OS << "tryCustomParseOperand(Operands, it->Class);\n";
2583 OS << " if (Result != MatchOperand_NoMatch)\n";
2584 OS << " return Result;\n";
2585 OS << " }\n\n";
2586
2587 OS << " // Okay, we had no match.\n";
2588 OS << " return MatchOperand_NoMatch;\n";
2589 OS << "}\n\n";
2590 }
2591
run(raw_ostream & OS)2592 void AsmMatcherEmitter::run(raw_ostream &OS) {
2593 CodeGenTarget Target(Records);
2594 Record *AsmParser = Target.getAsmParser();
2595 std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2596
2597 // Compute the information on the instructions to match.
2598 AsmMatcherInfo Info(AsmParser, Target, Records);
2599 Info.buildInfo();
2600
2601 // Sort the instruction table using the partial order on classes. We use
2602 // stable_sort to ensure that ambiguous instructions are still
2603 // deterministically ordered.
2604 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2605 [](const std::unique_ptr<MatchableInfo> &a,
2606 const std::unique_ptr<MatchableInfo> &b){
2607 return *a < *b;});
2608
2609 DEBUG_WITH_TYPE("instruction_info", {
2610 for (const auto &MI : Info.Matchables)
2611 MI->dump();
2612 });
2613
2614 // Check for ambiguous matchables.
2615 DEBUG_WITH_TYPE("ambiguous_instrs", {
2616 unsigned NumAmbiguous = 0;
2617 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
2618 ++I) {
2619 for (auto J = std::next(I); J != E; ++J) {
2620 const MatchableInfo &A = **I;
2621 const MatchableInfo &B = **J;
2622
2623 if (A.couldMatchAmbiguouslyWith(B)) {
2624 errs() << "warning: ambiguous matchables:\n";
2625 A.dump();
2626 errs() << "\nis incomparable with:\n";
2627 B.dump();
2628 errs() << "\n\n";
2629 ++NumAmbiguous;
2630 }
2631 }
2632 }
2633 if (NumAmbiguous)
2634 errs() << "warning: " << NumAmbiguous
2635 << " ambiguous matchables!\n";
2636 });
2637
2638 // Compute the information on the custom operand parsing.
2639 Info.buildOperandMatchInfo();
2640
2641 // Write the output.
2642
2643 // Information for the class declaration.
2644 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2645 OS << "#undef GET_ASSEMBLER_HEADER\n";
2646 OS << " // This should be included into the middle of the declaration of\n";
2647 OS << " // your subclasses implementation of MCTargetAsmParser.\n";
2648 OS << " uint64_t ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2649 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, "
2650 << "unsigned Opcode,\n"
2651 << " const OperandVector "
2652 << "&Operands);\n";
2653 OS << " void convertToMapAndConstraints(unsigned Kind,\n ";
2654 OS << " const OperandVector &Operands) override;\n";
2655 OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) override;\n";
2656 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
2657 << " MCInst &Inst,\n"
2658 << " uint64_t &ErrorInfo,"
2659 << " bool matchingInlineAsm,\n"
2660 << " unsigned VariantID = 0);\n";
2661
2662 if (!Info.OperandMatchInfo.empty()) {
2663 OS << "\n enum OperandMatchResultTy {\n";
2664 OS << " MatchOperand_Success, // operand matched successfully\n";
2665 OS << " MatchOperand_NoMatch, // operand did not match\n";
2666 OS << " MatchOperand_ParseFail // operand matched but had errors\n";
2667 OS << " };\n";
2668 OS << " OperandMatchResultTy MatchOperandParserImpl(\n";
2669 OS << " OperandVector &Operands,\n";
2670 OS << " StringRef Mnemonic);\n";
2671
2672 OS << " OperandMatchResultTy tryCustomParseOperand(\n";
2673 OS << " OperandVector &Operands,\n";
2674 OS << " unsigned MCK);\n\n";
2675 }
2676
2677 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2678
2679 // Emit the operand match diagnostic enum names.
2680 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2681 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2682 emitOperandDiagnosticTypes(Info, OS);
2683 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2684
2685
2686 OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2687 OS << "#undef GET_REGISTER_MATCHER\n\n";
2688
2689 // Emit the subtarget feature enumeration.
2690 emitSubtargetFeatureFlagEnumeration(Info, OS);
2691
2692 // Emit the function to match a register name to number.
2693 // This should be omitted for Mips target
2694 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2695 emitMatchRegisterName(Target, AsmParser, OS);
2696
2697 OS << "#endif // GET_REGISTER_MATCHER\n\n";
2698
2699 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2700 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2701
2702 // Generate the helper function to get the names for subtarget features.
2703 emitGetSubtargetFeatureName(Info, OS);
2704
2705 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2706
2707 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2708 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2709
2710 // Generate the function that remaps for mnemonic aliases.
2711 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
2712
2713 // Generate the convertToMCInst function to convert operands into an MCInst.
2714 // Also, generate the convertToMapAndConstraints function for MS-style inline
2715 // assembly. The latter doesn't actually generate a MCInst.
2716 emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
2717
2718 // Emit the enumeration for classes which participate in matching.
2719 emitMatchClassEnumeration(Target, Info.Classes, OS);
2720
2721 // Emit the routine to match token strings to their match class.
2722 emitMatchTokenString(Target, Info.Classes, OS);
2723
2724 // Emit the subclass predicate routine.
2725 emitIsSubclass(Target, Info.Classes, OS);
2726
2727 // Emit the routine to validate an operand against a match class.
2728 emitValidateOperandClass(Info, OS);
2729
2730 // Emit the available features compute function.
2731 emitComputeAvailableFeatures(Info, OS);
2732
2733
2734 StringToOffsetTable StringTable;
2735
2736 size_t MaxNumOperands = 0;
2737 unsigned MaxMnemonicIndex = 0;
2738 bool HasDeprecation = false;
2739 for (const auto &MI : Info.Matchables) {
2740 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
2741 HasDeprecation |= MI->HasDeprecation;
2742
2743 // Store a pascal-style length byte in the mnemonic.
2744 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2745 MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2746 StringTable.GetOrAddStringOffset(LenMnemonic, false));
2747 }
2748
2749 OS << "static const char *const MnemonicTable =\n";
2750 StringTable.EmitString(OS);
2751 OS << ";\n\n";
2752
2753 // Emit the static match table; unused classes get initalized to 0 which is
2754 // guaranteed to be InvalidMatchClass.
2755 //
2756 // FIXME: We can reduce the size of this table very easily. First, we change
2757 // it so that store the kinds in separate bit-fields for each index, which
2758 // only needs to be the max width used for classes at that index (we also need
2759 // to reject based on this during classification). If we then make sure to
2760 // order the match kinds appropriately (putting mnemonics last), then we
2761 // should only end up using a few bits for each class, especially the ones
2762 // following the mnemonic.
2763 OS << "namespace {\n";
2764 OS << " struct MatchEntry {\n";
2765 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex)
2766 << " Mnemonic;\n";
2767 OS << " uint16_t Opcode;\n";
2768 OS << " " << getMinimalTypeForRange(Info.Matchables.size())
2769 << " ConvertFn;\n";
2770 OS << " " << getMinimalRequiredFeaturesType(Info)
2771 << " RequiredFeatures;\n";
2772 OS << " " << getMinimalTypeForRange(
2773 std::distance(Info.Classes.begin(), Info.Classes.end()))
2774 << " Classes[" << MaxNumOperands << "];\n";
2775 OS << " StringRef getMnemonic() const {\n";
2776 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n";
2777 OS << " MnemonicTable[Mnemonic]);\n";
2778 OS << " }\n";
2779 OS << " };\n\n";
2780
2781 OS << " // Predicate for searching for an opcode.\n";
2782 OS << " struct LessOpcode {\n";
2783 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2784 OS << " return LHS.getMnemonic() < RHS;\n";
2785 OS << " }\n";
2786 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2787 OS << " return LHS < RHS.getMnemonic();\n";
2788 OS << " }\n";
2789 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2790 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n";
2791 OS << " }\n";
2792 OS << " };\n";
2793
2794 OS << "} // end anonymous namespace.\n\n";
2795
2796 unsigned VariantCount = Target.getAsmParserVariantCount();
2797 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2798 Record *AsmVariant = Target.getAsmParserVariant(VC);
2799 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2800
2801 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
2802
2803 for (const auto &MI : Info.Matchables) {
2804 if (MI->AsmVariantID != AsmVariantNo)
2805 continue;
2806
2807 // Store a pascal-style length byte in the mnemonic.
2808 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
2809 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2810 << " /* " << MI->Mnemonic << " */, "
2811 << Target.getName() << "::"
2812 << MI->getResultInst()->TheDef->getName() << ", "
2813 << MI->ConversionFnKind << ", ";
2814
2815 // Write the required features mask.
2816 if (!MI->RequiredFeatures.empty()) {
2817 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
2818 if (i) OS << "|";
2819 OS << MI->RequiredFeatures[i]->getEnumName();
2820 }
2821 } else
2822 OS << "0";
2823
2824 OS << ", { ";
2825 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
2826 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
2827
2828 if (i) OS << ", ";
2829 OS << Op.Class->Name;
2830 }
2831 OS << " }, },\n";
2832 }
2833
2834 OS << "};\n\n";
2835 }
2836
2837 // A method to determine if a mnemonic is in the list.
2838 OS << "bool " << Target.getName() << ClassName << "::\n"
2839 << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
2840 OS << " // Find the appropriate table for this asm variant.\n";
2841 OS << " const MatchEntry *Start, *End;\n";
2842 OS << " switch (VariantID) {\n";
2843 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
2844 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2845 Record *AsmVariant = Target.getAsmParserVariant(VC);
2846 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2847 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2848 << "); End = std::end(MatchTable" << VC << "); break;\n";
2849 }
2850 OS << " }\n";
2851 OS << " // Search the table.\n";
2852 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2853 OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
2854 OS << " return MnemonicRange.first != MnemonicRange.second;\n";
2855 OS << "}\n\n";
2856
2857 // Finally, build the match function.
2858 OS << "unsigned " << Target.getName() << ClassName << "::\n"
2859 << "MatchInstructionImpl(const OperandVector &Operands,\n";
2860 OS << " MCInst &Inst, uint64_t &ErrorInfo,\n"
2861 << " bool matchingInlineAsm, unsigned VariantID) {\n";
2862
2863 OS << " // Eliminate obvious mismatches.\n";
2864 OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2865 OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2866 OS << " return Match_InvalidOperand;\n";
2867 OS << " }\n\n";
2868
2869 // Emit code to get the available features.
2870 OS << " // Get the current feature set.\n";
2871 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n";
2872
2873 OS << " // Get the instruction mnemonic, which is the first token.\n";
2874 OS << " StringRef Mnemonic = ((" << Target.getName()
2875 << "Operand&)*Operands[0]).getToken();\n\n";
2876
2877 if (HasMnemonicAliases) {
2878 OS << " // Process all MnemonicAliases to remap the mnemonic.\n";
2879 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
2880 }
2881
2882 // Emit code to compute the class list for this operand vector.
2883 OS << " // Some state to try to produce better error messages.\n";
2884 OS << " bool HadMatchOtherThanFeatures = false;\n";
2885 OS << " bool HadMatchOtherThanPredicate = false;\n";
2886 OS << " unsigned RetCode = Match_InvalidOperand;\n";
2887 OS << " uint64_t MissingFeatures = ~0ULL;\n";
2888 OS << " // Set ErrorInfo to the operand that mismatches if it is\n";
2889 OS << " // wrong for all instances of the instruction.\n";
2890 OS << " ErrorInfo = ~0ULL;\n";
2891
2892 // Emit code to search the table.
2893 OS << " // Find the appropriate table for this asm variant.\n";
2894 OS << " const MatchEntry *Start, *End;\n";
2895 OS << " switch (VariantID) {\n";
2896 OS << " default: llvm_unreachable(\"invalid variant!\");\n";
2897 for (unsigned VC = 0; VC != VariantCount; ++VC) {
2898 Record *AsmVariant = Target.getAsmParserVariant(VC);
2899 int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
2900 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
2901 << "); End = std::end(MatchTable" << VC << "); break;\n";
2902 }
2903 OS << " }\n";
2904 OS << " // Search the table.\n";
2905 OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2906 OS << " std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
2907
2908 OS << " // Return a more specific error code if no mnemonics match.\n";
2909 OS << " if (MnemonicRange.first == MnemonicRange.second)\n";
2910 OS << " return Match_MnemonicFail;\n\n";
2911
2912 OS << " for (const MatchEntry *it = MnemonicRange.first, "
2913 << "*ie = MnemonicRange.second;\n";
2914 OS << " it != ie; ++it) {\n";
2915
2916 OS << " // equal_range guarantees that instruction mnemonic matches.\n";
2917 OS << " assert(Mnemonic == it->getMnemonic());\n";
2918
2919 // Emit check that the subclasses match.
2920 OS << " bool OperandsValid = true;\n";
2921 OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2922 OS << " if (i + 1 >= Operands.size()) {\n";
2923 OS << " OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2924 OS << " if (!OperandsValid) ErrorInfo = i + 1;\n";
2925 OS << " break;\n";
2926 OS << " }\n";
2927 OS << " unsigned Diag = validateOperandClass(*Operands[i+1],\n";
2928 OS.indent(43);
2929 OS << "(MatchClassKind)it->Classes[i]);\n";
2930 OS << " if (Diag == Match_Success)\n";
2931 OS << " continue;\n";
2932 OS << " // If the generic handler indicates an invalid operand\n";
2933 OS << " // failure, check for a special case.\n";
2934 OS << " if (Diag == Match_InvalidOperand) {\n";
2935 OS << " Diag = validateTargetOperandClass(*Operands[i+1],\n";
2936 OS.indent(43);
2937 OS << "(MatchClassKind)it->Classes[i]);\n";
2938 OS << " if (Diag == Match_Success)\n";
2939 OS << " continue;\n";
2940 OS << " }\n";
2941 OS << " // If this operand is broken for all of the instances of this\n";
2942 OS << " // mnemonic, keep track of it so we can report loc info.\n";
2943 OS << " // If we already had a match that only failed due to a\n";
2944 OS << " // target predicate, that diagnostic is preferred.\n";
2945 OS << " if (!HadMatchOtherThanPredicate &&\n";
2946 OS << " (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2947 OS << " ErrorInfo = i+1;\n";
2948 OS << " // InvalidOperand is the default. Prefer specificity.\n";
2949 OS << " if (Diag != Match_InvalidOperand)\n";
2950 OS << " RetCode = Diag;\n";
2951 OS << " }\n";
2952 OS << " // Otherwise, just reject this instance of the mnemonic.\n";
2953 OS << " OperandsValid = false;\n";
2954 OS << " break;\n";
2955 OS << " }\n\n";
2956
2957 OS << " if (!OperandsValid) continue;\n";
2958
2959 // Emit check that the required features are available.
2960 OS << " if ((AvailableFeatures & it->RequiredFeatures) "
2961 << "!= it->RequiredFeatures) {\n";
2962 OS << " HadMatchOtherThanFeatures = true;\n";
2963 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & "
2964 "~AvailableFeatures;\n";
2965 OS << " if (countPopulation(NewMissingFeatures) <=\n"
2966 " countPopulation(MissingFeatures))\n";
2967 OS << " MissingFeatures = NewMissingFeatures;\n";
2968 OS << " continue;\n";
2969 OS << " }\n";
2970 OS << "\n";
2971 OS << " Inst.clear();\n\n";
2972 OS << " if (matchingInlineAsm) {\n";
2973 OS << " Inst.setOpcode(it->Opcode);\n";
2974 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n";
2975 OS << " return Match_Success;\n";
2976 OS << " }\n\n";
2977 OS << " // We have selected a definite instruction, convert the parsed\n"
2978 << " // operands into the appropriate MCInst.\n";
2979 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2980 OS << "\n";
2981
2982 // Verify the instruction with the target-specific match predicate function.
2983 OS << " // We have a potential match. Check the target predicate to\n"
2984 << " // handle any context sensitive constraints.\n"
2985 << " unsigned MatchResult;\n"
2986 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2987 << " Match_Success) {\n"
2988 << " Inst.clear();\n"
2989 << " RetCode = MatchResult;\n"
2990 << " HadMatchOtherThanPredicate = true;\n"
2991 << " continue;\n"
2992 << " }\n\n";
2993
2994 // Call the post-processing function, if used.
2995 std::string InsnCleanupFn =
2996 AsmParser->getValueAsString("AsmParserInstCleanup");
2997 if (!InsnCleanupFn.empty())
2998 OS << " " << InsnCleanupFn << "(Inst);\n";
2999
3000 if (HasDeprecation) {
3001 OS << " std::string Info;\n";
3002 OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, STI, Info)) {\n";
3003 OS << " SMLoc Loc = ((" << Target.getName()
3004 << "Operand&)*Operands[0]).getStartLoc();\n";
3005 OS << " getParser().Warning(Loc, Info, None);\n";
3006 OS << " }\n";
3007 }
3008
3009 OS << " return Match_Success;\n";
3010 OS << " }\n\n";
3011
3012 OS << " // Okay, we had no match. Try to return a useful error code.\n";
3013 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3014 OS << " return RetCode;\n\n";
3015 OS << " // Missing feature matches return which features were missing\n";
3016 OS << " ErrorInfo = MissingFeatures;\n";
3017 OS << " return Match_MissingFeature;\n";
3018 OS << "}\n\n";
3019
3020 if (!Info.OperandMatchInfo.empty())
3021 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3022 MaxMnemonicIndex);
3023
3024 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3025 }
3026
3027 namespace llvm {
3028
EmitAsmMatcher(RecordKeeper & RK,raw_ostream & OS)3029 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3030 emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3031 AsmMatcherEmitter(RK).run(OS);
3032 }
3033
3034 } // End llvm namespace
3035