1 //===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting a description of the target
11 // instruction set for the code generator.
12 //
13 //===----------------------------------------------------------------------===//
14
15
16 #include "CodeGenDAGPatterns.h"
17 #include "CodeGenSchedule.h"
18 #include "CodeGenTarget.h"
19 #include "SequenceToOffsetTable.h"
20 #include "TableGenBackends.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include "llvm/TableGen/TableGenBackend.h"
25 #include <algorithm>
26 #include <cstdio>
27 #include <map>
28 #include <vector>
29 using namespace llvm;
30
31 namespace {
32 class InstrInfoEmitter {
33 RecordKeeper &Records;
34 CodeGenDAGPatterns CDP;
35 const CodeGenSchedModels &SchedModels;
36
37 public:
InstrInfoEmitter(RecordKeeper & R)38 InstrInfoEmitter(RecordKeeper &R):
39 Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
40
41 // run - Output the instruction set description.
42 void run(raw_ostream &OS);
43
44 private:
45 void emitEnums(raw_ostream &OS);
46
47 typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
48
49 /// The keys of this map are maps which have OpName enum values as their keys
50 /// and instruction operand indices as their values. The values of this map
51 /// are lists of instruction names.
52 typedef std::map<std::map<unsigned, unsigned>,
53 std::vector<std::string> > OpNameMapTy;
54 typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
55 void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
56 Record *InstrInfo,
57 std::map<std::vector<Record*>, unsigned> &EL,
58 const OperandInfoMapTy &OpInfo,
59 raw_ostream &OS);
60 void emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target);
61 void initOperandMapData(
62 const std::vector<const CodeGenInstruction *> &NumberedInstructions,
63 const std::string &Namespace,
64 std::map<std::string, unsigned> &Operands,
65 OpNameMapTy &OperandMap);
66 void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
67 const std::vector<const CodeGenInstruction*> &NumberedInstructions);
68
69 // Operand information.
70 void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
71 std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
72 };
73 } // End anonymous namespace
74
PrintDefList(const std::vector<Record * > & Uses,unsigned Num,raw_ostream & OS)75 static void PrintDefList(const std::vector<Record*> &Uses,
76 unsigned Num, raw_ostream &OS) {
77 OS << "static const uint16_t ImplicitList" << Num << "[] = { ";
78 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
79 OS << getQualifiedName(Uses[i]) << ", ";
80 OS << "0 };\n";
81 }
82
83 //===----------------------------------------------------------------------===//
84 // Operand Info Emission.
85 //===----------------------------------------------------------------------===//
86
87 std::vector<std::string>
GetOperandInfo(const CodeGenInstruction & Inst)88 InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
89 std::vector<std::string> Result;
90
91 for (auto &Op : Inst.Operands) {
92 // Handle aggregate operands and normal operands the same way by expanding
93 // either case into a list of operands for this op.
94 std::vector<CGIOperandList::OperandInfo> OperandList;
95
96 // This might be a multiple operand thing. Targets like X86 have
97 // registers in their multi-operand operands. It may also be an anonymous
98 // operand, which has a single operand, but no declared class for the
99 // operand.
100 DagInit *MIOI = Op.MIOperandInfo;
101
102 if (!MIOI || MIOI->getNumArgs() == 0) {
103 // Single, anonymous, operand.
104 OperandList.push_back(Op);
105 } else {
106 for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
107 OperandList.push_back(Op);
108
109 Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
110 OperandList.back().Rec = OpR;
111 }
112 }
113
114 for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
115 Record *OpR = OperandList[j].Rec;
116 std::string Res;
117
118 if (OpR->isSubClassOf("RegisterOperand"))
119 OpR = OpR->getValueAsDef("RegClass");
120 if (OpR->isSubClassOf("RegisterClass"))
121 Res += getQualifiedName(OpR) + "RegClassID, ";
122 else if (OpR->isSubClassOf("PointerLikeRegClass"))
123 Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
124 else
125 // -1 means the operand does not have a fixed register class.
126 Res += "-1, ";
127
128 // Fill in applicable flags.
129 Res += "0";
130
131 // Ptr value whose register class is resolved via callback.
132 if (OpR->isSubClassOf("PointerLikeRegClass"))
133 Res += "|(1<<MCOI::LookupPtrRegClass)";
134
135 // Predicate operands. Check to see if the original unexpanded operand
136 // was of type PredicateOp.
137 if (Op.Rec->isSubClassOf("PredicateOp"))
138 Res += "|(1<<MCOI::Predicate)";
139
140 // Optional def operands. Check to see if the original unexpanded operand
141 // was of type OptionalDefOperand.
142 if (Op.Rec->isSubClassOf("OptionalDefOperand"))
143 Res += "|(1<<MCOI::OptionalDef)";
144
145 // Fill in operand type.
146 Res += ", ";
147 assert(!Op.OperandType.empty() && "Invalid operand type.");
148 Res += Op.OperandType;
149
150 // Fill in constraint info.
151 Res += ", ";
152
153 const CGIOperandList::ConstraintInfo &Constraint =
154 Op.Constraints[j];
155 if (Constraint.isNone())
156 Res += "0";
157 else if (Constraint.isEarlyClobber())
158 Res += "(1 << MCOI::EARLY_CLOBBER)";
159 else {
160 assert(Constraint.isTied());
161 Res += "((" + utostr(Constraint.getTiedOperand()) +
162 " << 16) | (1 << MCOI::TIED_TO))";
163 }
164
165 Result.push_back(Res);
166 }
167 }
168
169 return Result;
170 }
171
EmitOperandInfo(raw_ostream & OS,OperandInfoMapTy & OperandInfoIDs)172 void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
173 OperandInfoMapTy &OperandInfoIDs) {
174 // ID #0 is for no operand info.
175 unsigned OperandListNum = 0;
176 OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
177
178 OS << "\n";
179 const CodeGenTarget &Target = CDP.getTargetInfo();
180 for (const CodeGenInstruction *Inst : Target.instructions()) {
181 std::vector<std::string> OperandInfo = GetOperandInfo(*Inst);
182 unsigned &N = OperandInfoIDs[OperandInfo];
183 if (N != 0) continue;
184
185 N = ++OperandListNum;
186 OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
187 for (const std::string &Info : OperandInfo)
188 OS << "{ " << Info << " }, ";
189 OS << "};\n";
190 }
191 }
192
193
194 /// Initialize data structures for generating operand name mappings.
195 ///
196 /// \param Operands [out] A map used to generate the OpName enum with operand
197 /// names as its keys and operand enum values as its values.
198 /// \param OperandMap [out] A map for representing the operand name mappings for
199 /// each instructions. This is used to generate the OperandMap table as
200 /// well as the getNamedOperandIdx() function.
initOperandMapData(const std::vector<const CodeGenInstruction * > & NumberedInstructions,const std::string & Namespace,std::map<std::string,unsigned> & Operands,OpNameMapTy & OperandMap)201 void InstrInfoEmitter::initOperandMapData(
202 const std::vector<const CodeGenInstruction *> &NumberedInstructions,
203 const std::string &Namespace,
204 std::map<std::string, unsigned> &Operands,
205 OpNameMapTy &OperandMap) {
206
207 unsigned NumOperands = 0;
208 for (const CodeGenInstruction *Inst : NumberedInstructions) {
209 if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
210 continue;
211 std::map<unsigned, unsigned> OpList;
212 for (const auto &Info : Inst->Operands) {
213 StrUintMapIter I = Operands.find(Info.Name);
214
215 if (I == Operands.end()) {
216 I = Operands.insert(Operands.begin(),
217 std::pair<std::string, unsigned>(Info.Name, NumOperands++));
218 }
219 OpList[I->second] = Info.MIOperandNo;
220 }
221 OperandMap[OpList].push_back(Namespace + "::" + Inst->TheDef->getName());
222 }
223 }
224
225 /// Generate a table and function for looking up the indices of operands by
226 /// name.
227 ///
228 /// This code generates:
229 /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
230 /// for each operand name.
231 /// - A 2-dimensional table called OperandMap for mapping OpName enum values to
232 /// operand indices.
233 /// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
234 /// for looking up the operand index for an instruction, given a value from
235 /// OpName enum
emitOperandNameMappings(raw_ostream & OS,const CodeGenTarget & Target,const std::vector<const CodeGenInstruction * > & NumberedInstructions)236 void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
237 const CodeGenTarget &Target,
238 const std::vector<const CodeGenInstruction*> &NumberedInstructions) {
239
240 const std::string &Namespace = Target.getInstNamespace();
241 std::string OpNameNS = "OpName";
242 // Map of operand names to their enumeration value. This will be used to
243 // generate the OpName enum.
244 std::map<std::string, unsigned> Operands;
245 OpNameMapTy OperandMap;
246
247 initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
248
249 OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
250 OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
251 OS << "namespace llvm {\n";
252 OS << "namespace " << Namespace << " {\n";
253 OS << "namespace " << OpNameNS << " { \n";
254 OS << "enum {\n";
255 for (const auto &Op : Operands)
256 OS << " " << Op.first << " = " << Op.second << ",\n";
257
258 OS << "OPERAND_LAST";
259 OS << "\n};\n";
260 OS << "} // End namespace OpName\n";
261 OS << "} // End namespace " << Namespace << "\n";
262 OS << "} // End namespace llvm\n";
263 OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n";
264
265 OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
266 OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
267 OS << "namespace llvm {\n";
268 OS << "namespace " << Namespace << " {\n";
269 OS << "LLVM_READONLY\n";
270 OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
271 if (!Operands.empty()) {
272 OS << " static const int16_t OperandMap [][" << Operands.size()
273 << "] = {\n";
274 for (const auto &Entry : OperandMap) {
275 const std::map<unsigned, unsigned> &OpList = Entry.first;
276 OS << "{";
277
278 // Emit a row of the OperandMap table
279 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
280 OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
281
282 OS << "},\n";
283 }
284 OS << "};\n";
285
286 OS << " switch(Opcode) {\n";
287 unsigned TableIndex = 0;
288 for (const auto &Entry : OperandMap) {
289 for (const std::string &Name : Entry.second)
290 OS << " case " << Name << ":\n";
291
292 OS << " return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
293 }
294 OS << " default: return -1;\n";
295 OS << " }\n";
296 } else {
297 // There are no operands, so no need to emit anything
298 OS << " return -1;\n";
299 }
300 OS << "}\n";
301 OS << "} // End namespace " << Namespace << "\n";
302 OS << "} // End namespace llvm\n";
303 OS << "#endif //GET_INSTRINFO_NAMED_OPS\n";
304
305 }
306
307 /// Generate an enum for all the operand types for this target, under the
308 /// llvm::TargetNamespace::OpTypes namespace.
309 /// Operand types are all definitions derived of the Operand Target.td class.
emitOperandTypesEnum(raw_ostream & OS,const CodeGenTarget & Target)310 void InstrInfoEmitter::emitOperandTypesEnum(raw_ostream &OS,
311 const CodeGenTarget &Target) {
312
313 const std::string &Namespace = Target.getInstNamespace();
314 std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
315
316 OS << "\n#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
317 OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
318 OS << "namespace llvm {\n";
319 OS << "namespace " << Namespace << " {\n";
320 OS << "namespace OpTypes { \n";
321 OS << "enum OperandType {\n";
322
323 unsigned EnumVal = 0;
324 for (const Record *Op : Operands) {
325 if (!Op->isAnonymous())
326 OS << " " << Op->getName() << " = " << EnumVal << ",\n";
327 ++EnumVal;
328 }
329
330 OS << " OPERAND_TYPE_LIST_END" << "\n};\n";
331 OS << "} // End namespace OpTypes\n";
332 OS << "} // End namespace " << Namespace << "\n";
333 OS << "} // End namespace llvm\n";
334 OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
335 }
336
337 //===----------------------------------------------------------------------===//
338 // Main Output.
339 //===----------------------------------------------------------------------===//
340
341 // run - Emit the main instruction description records for the target...
run(raw_ostream & OS)342 void InstrInfoEmitter::run(raw_ostream &OS) {
343 emitSourceFileHeader("Target Instruction Enum Values", OS);
344 emitEnums(OS);
345
346 emitSourceFileHeader("Target Instruction Descriptors", OS);
347
348 OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n";
349 OS << "#undef GET_INSTRINFO_MC_DESC\n";
350
351 OS << "namespace llvm {\n\n";
352
353 CodeGenTarget &Target = CDP.getTargetInfo();
354 const std::string &TargetName = Target.getName();
355 Record *InstrInfo = Target.getInstructionSet();
356
357 // Keep track of all of the def lists we have emitted already.
358 std::map<std::vector<Record*>, unsigned> EmittedLists;
359 unsigned ListNumber = 0;
360
361 // Emit all of the instruction's implicit uses and defs.
362 for (const CodeGenInstruction *II : Target.instructions()) {
363 Record *Inst = II->TheDef;
364 std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
365 if (!Uses.empty()) {
366 unsigned &IL = EmittedLists[Uses];
367 if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
368 }
369 std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
370 if (!Defs.empty()) {
371 unsigned &IL = EmittedLists[Defs];
372 if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
373 }
374 }
375
376 OperandInfoMapTy OperandInfoIDs;
377
378 // Emit all of the operand info records.
379 EmitOperandInfo(OS, OperandInfoIDs);
380
381 // Emit all of the MCInstrDesc records in their ENUM ordering.
382 //
383 OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
384 const std::vector<const CodeGenInstruction*> &NumberedInstructions =
385 Target.getInstructionsByEnumValue();
386
387 SequenceToOffsetTable<std::string> InstrNames;
388 unsigned Num = 0;
389 for (const CodeGenInstruction *Inst : NumberedInstructions) {
390 // Keep a list of the instruction names.
391 InstrNames.add(Inst->TheDef->getName());
392 // Emit the record into the table.
393 emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS);
394 }
395 OS << "};\n\n";
396
397 // Emit the array of instruction names.
398 InstrNames.layout();
399 OS << "extern const char " << TargetName << "InstrNameData[] = {\n";
400 InstrNames.emit(OS, printChar);
401 OS << "};\n\n";
402
403 OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
404 Num = 0;
405 for (const CodeGenInstruction *Inst : NumberedInstructions) {
406 // Newline every eight entries.
407 if (Num % 8 == 0)
408 OS << "\n ";
409 OS << InstrNames.get(Inst->TheDef->getName()) << "U, ";
410 ++Num;
411 }
412
413 OS << "\n};\n\n";
414
415 // MCInstrInfo initialization routine.
416 OS << "static inline void Init" << TargetName
417 << "MCInstrInfo(MCInstrInfo *II) {\n";
418 OS << " II->InitMCInstrInfo(" << TargetName << "Insts, "
419 << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "
420 << NumberedInstructions.size() << ");\n}\n\n";
421
422 OS << "} // End llvm namespace \n";
423
424 OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
425
426 // Create a TargetInstrInfo subclass to hide the MC layer initialization.
427 OS << "\n#ifdef GET_INSTRINFO_HEADER\n";
428 OS << "#undef GET_INSTRINFO_HEADER\n";
429
430 std::string ClassName = TargetName + "GenInstrInfo";
431 OS << "namespace llvm {\n";
432 OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
433 << " explicit " << ClassName
434 << "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1);\n"
435 << " virtual ~" << ClassName << "();\n"
436 << "};\n";
437 OS << "} // End llvm namespace \n";
438
439 OS << "#endif // GET_INSTRINFO_HEADER\n\n";
440
441 OS << "\n#ifdef GET_INSTRINFO_CTOR_DTOR\n";
442 OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
443
444 OS << "namespace llvm {\n";
445 OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
446 OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
447 OS << "extern const char " << TargetName << "InstrNameData[];\n";
448 OS << ClassName << "::" << ClassName
449 << "(int CFSetupOpcode, int CFDestroyOpcode)\n"
450 << " : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode) {\n"
451 << " InitMCInstrInfo(" << TargetName << "Insts, " << TargetName
452 << "InstrNameIndices, " << TargetName << "InstrNameData, "
453 << NumberedInstructions.size() << ");\n}\n"
454 << ClassName << "::~" << ClassName << "() {}\n";
455 OS << "} // End llvm namespace \n";
456
457 OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
458
459 emitOperandNameMappings(OS, Target, NumberedInstructions);
460
461 emitOperandTypesEnum(OS, Target);
462 }
463
emitRecord(const CodeGenInstruction & Inst,unsigned Num,Record * InstrInfo,std::map<std::vector<Record * >,unsigned> & EmittedLists,const OperandInfoMapTy & OpInfo,raw_ostream & OS)464 void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
465 Record *InstrInfo,
466 std::map<std::vector<Record*>, unsigned> &EmittedLists,
467 const OperandInfoMapTy &OpInfo,
468 raw_ostream &OS) {
469 int MinOperands = 0;
470 if (!Inst.Operands.empty())
471 // Each logical operand can be multiple MI operands.
472 MinOperands = Inst.Operands.back().MIOperandNo +
473 Inst.Operands.back().MINumOperands;
474
475 OS << " { ";
476 OS << Num << ",\t" << MinOperands << ",\t"
477 << Inst.Operands.NumDefs << ",\t"
478 << SchedModels.getSchedClassIdx(Inst) << ",\t"
479 << Inst.TheDef->getValueAsInt("Size") << ",\t0";
480
481 // Emit all of the target independent flags...
482 if (Inst.isPseudo) OS << "|(1<<MCID::Pseudo)";
483 if (Inst.isReturn) OS << "|(1<<MCID::Return)";
484 if (Inst.isBranch) OS << "|(1<<MCID::Branch)";
485 if (Inst.isIndirectBranch) OS << "|(1<<MCID::IndirectBranch)";
486 if (Inst.isCompare) OS << "|(1<<MCID::Compare)";
487 if (Inst.isMoveImm) OS << "|(1<<MCID::MoveImm)";
488 if (Inst.isBitcast) OS << "|(1<<MCID::Bitcast)";
489 if (Inst.isSelect) OS << "|(1<<MCID::Select)";
490 if (Inst.isBarrier) OS << "|(1<<MCID::Barrier)";
491 if (Inst.hasDelaySlot) OS << "|(1<<MCID::DelaySlot)";
492 if (Inst.isCall) OS << "|(1<<MCID::Call)";
493 if (Inst.canFoldAsLoad) OS << "|(1<<MCID::FoldableAsLoad)";
494 if (Inst.mayLoad) OS << "|(1<<MCID::MayLoad)";
495 if (Inst.mayStore) OS << "|(1<<MCID::MayStore)";
496 if (Inst.isPredicable) OS << "|(1<<MCID::Predicable)";
497 if (Inst.isConvertibleToThreeAddress) OS << "|(1<<MCID::ConvertibleTo3Addr)";
498 if (Inst.isCommutable) OS << "|(1<<MCID::Commutable)";
499 if (Inst.isTerminator) OS << "|(1<<MCID::Terminator)";
500 if (Inst.isReMaterializable) OS << "|(1<<MCID::Rematerializable)";
501 if (Inst.isNotDuplicable) OS << "|(1<<MCID::NotDuplicable)";
502 if (Inst.Operands.hasOptionalDef) OS << "|(1<<MCID::HasOptionalDef)";
503 if (Inst.usesCustomInserter) OS << "|(1<<MCID::UsesCustomInserter)";
504 if (Inst.hasPostISelHook) OS << "|(1<<MCID::HasPostISelHook)";
505 if (Inst.Operands.isVariadic)OS << "|(1<<MCID::Variadic)";
506 if (Inst.hasSideEffects) OS << "|(1<<MCID::UnmodeledSideEffects)";
507 if (Inst.isAsCheapAsAMove) OS << "|(1<<MCID::CheapAsAMove)";
508 if (Inst.hasExtraSrcRegAllocReq) OS << "|(1<<MCID::ExtraSrcRegAllocReq)";
509 if (Inst.hasExtraDefRegAllocReq) OS << "|(1<<MCID::ExtraDefRegAllocReq)";
510 if (Inst.isRegSequence) OS << "|(1<<MCID::RegSequence)";
511 if (Inst.isExtractSubreg) OS << "|(1<<MCID::ExtractSubreg)";
512 if (Inst.isInsertSubreg) OS << "|(1<<MCID::InsertSubreg)";
513
514 // Emit all of the target-specific flags...
515 BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
516 if (!TSF)
517 PrintFatalError("no TSFlags?");
518 uint64_t Value = 0;
519 for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
520 if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
521 Value |= uint64_t(Bit->getValue()) << i;
522 else
523 PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName());
524 }
525 OS << ", 0x";
526 OS.write_hex(Value);
527 OS << "ULL, ";
528
529 // Emit the implicit uses and defs lists...
530 std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
531 if (UseList.empty())
532 OS << "nullptr, ";
533 else
534 OS << "ImplicitList" << EmittedLists[UseList] << ", ";
535
536 std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
537 if (DefList.empty())
538 OS << "nullptr, ";
539 else
540 OS << "ImplicitList" << EmittedLists[DefList] << ", ";
541
542 // Emit the operand info.
543 std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
544 if (OperandInfo.empty())
545 OS << "nullptr";
546 else
547 OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
548
549 CodeGenTarget &Target = CDP.getTargetInfo();
550 if (Inst.HasComplexDeprecationPredicate)
551 // Emit a function pointer to the complex predicate method.
552 OS << ",0"
553 << ",&get" << Inst.DeprecatedReason << "DeprecationInfo";
554 else if (!Inst.DeprecatedReason.empty())
555 // Emit the Subtarget feature.
556 OS << "," << Target.getInstNamespace() << "::" << Inst.DeprecatedReason
557 << ",nullptr";
558 else
559 // Instruction isn't deprecated.
560 OS << ",0,nullptr";
561
562 OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
563 }
564
565 // emitEnums - Print out enum values for all of the instructions.
emitEnums(raw_ostream & OS)566 void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
567
568 OS << "\n#ifdef GET_INSTRINFO_ENUM\n";
569 OS << "#undef GET_INSTRINFO_ENUM\n";
570
571 OS << "namespace llvm {\n\n";
572
573 CodeGenTarget Target(Records);
574
575 // We must emit the PHI opcode first...
576 std::string Namespace = Target.getInstNamespace();
577
578 if (Namespace.empty()) {
579 fprintf(stderr, "No instructions defined!\n");
580 exit(1);
581 }
582
583 const std::vector<const CodeGenInstruction*> &NumberedInstructions =
584 Target.getInstructionsByEnumValue();
585
586 OS << "namespace " << Namespace << " {\n";
587 OS << " enum {\n";
588 unsigned Num = 0;
589 for (const CodeGenInstruction *Inst : NumberedInstructions)
590 OS << " " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
591 OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n";
592 OS << " };\n\n";
593 OS << "namespace Sched {\n";
594 OS << " enum {\n";
595 Num = 0;
596 for (const auto &Class : SchedModels.explicit_classes())
597 OS << " " << Class.Name << "\t= " << Num++ << ",\n";
598 OS << " SCHED_LIST_END = " << SchedModels.numInstrSchedClasses() << "\n";
599 OS << " };\n";
600 OS << "} // End Sched namespace\n";
601 OS << "} // End " << Namespace << " namespace\n";
602 OS << "} // End llvm namespace \n";
603
604 OS << "#endif // GET_INSTRINFO_ENUM\n\n";
605 }
606
607 namespace llvm {
608
EmitInstrInfo(RecordKeeper & RK,raw_ostream & OS)609 void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
610 InstrInfoEmitter(RK).run(OS);
611 EmitMapTable(RK, OS);
612 }
613
614 } // End llvm namespace
615