1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits information about intrinsic functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenIntrinsics.h"
15 #include "CodeGenTarget.h"
16 #include "SequenceToOffsetTable.h"
17 #include "TableGenBackends.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/TableGen/Error.h"
20 #include "llvm/TableGen/Record.h"
21 #include "llvm/TableGen/StringMatcher.h"
22 #include "llvm/TableGen/TableGenBackend.h"
23 #include <algorithm>
24 using namespace llvm;
25
26 namespace {
27 class IntrinsicEmitter {
28 RecordKeeper &Records;
29 bool TargetOnly;
30 std::string TargetPrefix;
31
32 public:
IntrinsicEmitter(RecordKeeper & R,bool T)33 IntrinsicEmitter(RecordKeeper &R, bool T)
34 : Records(R), TargetOnly(T) {}
35
36 void run(raw_ostream &OS);
37
38 void EmitPrefix(raw_ostream &OS);
39
40 void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
41 raw_ostream &OS);
42
43 void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
44 raw_ostream &OS);
45 void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
46 raw_ostream &OS);
47 void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
48 raw_ostream &OS);
49 void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
50 raw_ostream &OS);
51 void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints,
52 raw_ostream &OS);
53 void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints,
54 raw_ostream &OS);
55 void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
56 raw_ostream &OS);
57 void EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
58 raw_ostream &OS);
59 void EmitSuffix(raw_ostream &OS);
60 };
61 } // End anonymous namespace
62
63 //===----------------------------------------------------------------------===//
64 // IntrinsicEmitter Implementation
65 //===----------------------------------------------------------------------===//
66
run(raw_ostream & OS)67 void IntrinsicEmitter::run(raw_ostream &OS) {
68 emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
69
70 std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly);
71
72 if (TargetOnly && !Ints.empty())
73 TargetPrefix = Ints[0].TargetPrefix;
74
75 EmitPrefix(OS);
76
77 // Emit the enum information.
78 EmitEnumInfo(Ints, OS);
79
80 // Emit the intrinsic ID -> name table.
81 EmitIntrinsicToNameTable(Ints, OS);
82
83 // Emit the intrinsic ID -> overload table.
84 EmitIntrinsicToOverloadTable(Ints, OS);
85
86 // Emit the function name recognizer.
87 EmitFnNameRecognizer(Ints, OS);
88
89 // Emit the intrinsic declaration generator.
90 EmitGenerator(Ints, OS);
91
92 // Emit the intrinsic parameter attributes.
93 EmitAttributes(Ints, OS);
94
95 // Emit intrinsic alias analysis mod/ref behavior.
96 EmitModRefBehavior(Ints, OS);
97
98 // Emit code to translate GCC builtins into LLVM intrinsics.
99 EmitIntrinsicToGCCBuiltinMap(Ints, OS);
100
101 // Emit code to translate MS builtins into LLVM intrinsics.
102 EmitIntrinsicToMSBuiltinMap(Ints, OS);
103
104 EmitSuffix(OS);
105 }
106
EmitPrefix(raw_ostream & OS)107 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
108 OS << "// VisualStudio defines setjmp as _setjmp\n"
109 "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
110 " !defined(setjmp_undefined_for_msvc)\n"
111 "# pragma push_macro(\"setjmp\")\n"
112 "# undef setjmp\n"
113 "# define setjmp_undefined_for_msvc\n"
114 "#endif\n\n";
115 }
116
EmitSuffix(raw_ostream & OS)117 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
118 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
119 "// let's return it to _setjmp state\n"
120 "# pragma pop_macro(\"setjmp\")\n"
121 "# undef setjmp_undefined_for_msvc\n"
122 "#endif\n\n";
123 }
124
EmitEnumInfo(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)125 void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
126 raw_ostream &OS) {
127 OS << "// Enum values for Intrinsics.h\n";
128 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
129 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
130 OS << " " << Ints[i].EnumName;
131 OS << ((i != e-1) ? ", " : " ");
132 if (Ints[i].EnumName.size() < 40)
133 OS << std::string(40-Ints[i].EnumName.size(), ' ');
134 OS << " // " << Ints[i].Name << "\n";
135 }
136 OS << "#endif\n\n";
137 }
138
139 void IntrinsicEmitter::
EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)140 EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
141 raw_ostream &OS) {
142 // Build a 'first character of function name' -> intrinsic # mapping.
143 std::map<char, std::vector<unsigned> > IntMapping;
144 for (unsigned i = 0, e = Ints.size(); i != e; ++i)
145 IntMapping[Ints[i].Name[5]].push_back(i);
146
147 OS << "// Function name -> enum value recognizer code.\n";
148 OS << "#ifdef GET_FUNCTION_RECOGNIZER\n";
149 OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n";
150 OS << " switch (Name[5]) { // Dispatch on first letter.\n";
151 OS << " default: break;\n";
152 // Emit the intrinsic matching stuff by first letter.
153 for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(),
154 E = IntMapping.end(); I != E; ++I) {
155 OS << " case '" << I->first << "':\n";
156 std::vector<unsigned> &IntList = I->second;
157
158 // Sort in reverse order of intrinsic name so "abc.def" appears after
159 // "abd.def.ghi" in the overridden name matcher
160 std::sort(IntList.begin(), IntList.end(), [&](unsigned i, unsigned j) {
161 return Ints[i].Name > Ints[j].Name;
162 });
163
164 // Emit all the overloaded intrinsics first, build a table of the
165 // non-overloaded ones.
166 std::vector<StringMatcher::StringPair> MatchTable;
167
168 for (unsigned i = 0, e = IntList.size(); i != e; ++i) {
169 unsigned IntNo = IntList[i];
170 std::string Result = "return " + TargetPrefix + "Intrinsic::" +
171 Ints[IntNo].EnumName + ";";
172
173 if (!Ints[IntNo].isOverloaded) {
174 MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result));
175 continue;
176 }
177
178 // For overloaded intrinsics, only the prefix needs to match
179 std::string TheStr = Ints[IntNo].Name.substr(6);
180 TheStr += '.'; // Require "bswap." instead of bswap.
181 OS << " if (NameR.startswith(\"" << TheStr << "\")) "
182 << Result << '\n';
183 }
184
185 // Emit the matcher logic for the fixed length strings.
186 StringMatcher("NameR", MatchTable, OS).Emit(1);
187 OS << " break; // end of '" << I->first << "' case.\n";
188 }
189
190 OS << " }\n";
191 OS << "#endif\n\n";
192 }
193
194 void IntrinsicEmitter::
EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)195 EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
196 raw_ostream &OS) {
197 OS << "// Intrinsic ID to name table\n";
198 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
199 OS << " // Note that entry #0 is the invalid intrinsic!\n";
200 for (unsigned i = 0, e = Ints.size(); i != e; ++i)
201 OS << " \"" << Ints[i].Name << "\",\n";
202 OS << "#endif\n\n";
203 }
204
205 void IntrinsicEmitter::
EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)206 EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
207 raw_ostream &OS) {
208 OS << "// Intrinsic ID to overload bitset\n";
209 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
210 OS << "static const uint8_t OTable[] = {\n";
211 OS << " 0";
212 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
213 // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
214 if ((i+1)%8 == 0)
215 OS << ",\n 0";
216 if (Ints[i].isOverloaded)
217 OS << " | (1<<" << (i+1)%8 << ')';
218 }
219 OS << "\n};\n\n";
220 // OTable contains a true bit at the position if the intrinsic is overloaded.
221 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
222 OS << "#endif\n\n";
223 }
224
225
226 // NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp!
227 enum IIT_Info {
228 // Common values should be encoded with 0-15.
229 IIT_Done = 0,
230 IIT_I1 = 1,
231 IIT_I8 = 2,
232 IIT_I16 = 3,
233 IIT_I32 = 4,
234 IIT_I64 = 5,
235 IIT_F16 = 6,
236 IIT_F32 = 7,
237 IIT_F64 = 8,
238 IIT_V2 = 9,
239 IIT_V4 = 10,
240 IIT_V8 = 11,
241 IIT_V16 = 12,
242 IIT_V32 = 13,
243 IIT_PTR = 14,
244 IIT_ARG = 15,
245
246 // Values from 16+ are only encodable with the inefficient encoding.
247 IIT_V64 = 16,
248 IIT_MMX = 17,
249 IIT_METADATA = 18,
250 IIT_EMPTYSTRUCT = 19,
251 IIT_STRUCT2 = 20,
252 IIT_STRUCT3 = 21,
253 IIT_STRUCT4 = 22,
254 IIT_STRUCT5 = 23,
255 IIT_EXTEND_ARG = 24,
256 IIT_TRUNC_ARG = 25,
257 IIT_ANYPTR = 26,
258 IIT_V1 = 27,
259 IIT_VARARG = 28,
260 IIT_HALF_VEC_ARG = 29,
261 IIT_SAME_VEC_WIDTH_ARG = 30,
262 IIT_PTR_TO_ARG = 31,
263 IIT_VEC_OF_PTRS_TO_ELT = 32
264 };
265
266
EncodeFixedValueType(MVT::SimpleValueType VT,std::vector<unsigned char> & Sig)267 static void EncodeFixedValueType(MVT::SimpleValueType VT,
268 std::vector<unsigned char> &Sig) {
269 if (MVT(VT).isInteger()) {
270 unsigned BitWidth = MVT(VT).getSizeInBits();
271 switch (BitWidth) {
272 default: PrintFatalError("unhandled integer type width in intrinsic!");
273 case 1: return Sig.push_back(IIT_I1);
274 case 8: return Sig.push_back(IIT_I8);
275 case 16: return Sig.push_back(IIT_I16);
276 case 32: return Sig.push_back(IIT_I32);
277 case 64: return Sig.push_back(IIT_I64);
278 }
279 }
280
281 switch (VT) {
282 default: PrintFatalError("unhandled MVT in intrinsic!");
283 case MVT::f16: return Sig.push_back(IIT_F16);
284 case MVT::f32: return Sig.push_back(IIT_F32);
285 case MVT::f64: return Sig.push_back(IIT_F64);
286 case MVT::Metadata: return Sig.push_back(IIT_METADATA);
287 case MVT::x86mmx: return Sig.push_back(IIT_MMX);
288 // MVT::OtherVT is used to mean the empty struct type here.
289 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
290 // MVT::isVoid is used to represent varargs here.
291 case MVT::isVoid: return Sig.push_back(IIT_VARARG);
292 }
293 }
294
295 #if defined(_MSC_VER) && !defined(__clang__)
296 #pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function.
297 #endif
298
EncodeFixedType(Record * R,std::vector<unsigned char> & ArgCodes,std::vector<unsigned char> & Sig)299 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
300 std::vector<unsigned char> &Sig) {
301
302 if (R->isSubClassOf("LLVMMatchType")) {
303 unsigned Number = R->getValueAsInt("Number");
304 assert(Number < ArgCodes.size() && "Invalid matching number!");
305 if (R->isSubClassOf("LLVMExtendedType"))
306 Sig.push_back(IIT_EXTEND_ARG);
307 else if (R->isSubClassOf("LLVMTruncatedType"))
308 Sig.push_back(IIT_TRUNC_ARG);
309 else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
310 Sig.push_back(IIT_HALF_VEC_ARG);
311 else if (R->isSubClassOf("LLVMVectorSameWidth")) {
312 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
313 Sig.push_back((Number << 3) | ArgCodes[Number]);
314 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
315 EncodeFixedValueType(VT, Sig);
316 return;
317 }
318 else if (R->isSubClassOf("LLVMPointerTo"))
319 Sig.push_back(IIT_PTR_TO_ARG);
320 else if (R->isSubClassOf("LLVMVectorOfPointersToElt"))
321 Sig.push_back(IIT_VEC_OF_PTRS_TO_ELT);
322 else
323 Sig.push_back(IIT_ARG);
324 return Sig.push_back((Number << 3) | ArgCodes[Number]);
325 }
326
327 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
328
329 unsigned Tmp = 0;
330 switch (VT) {
331 default: break;
332 case MVT::iPTRAny: ++Tmp; // FALL THROUGH.
333 case MVT::vAny: ++Tmp; // FALL THROUGH.
334 case MVT::fAny: ++Tmp; // FALL THROUGH.
335 case MVT::iAny: ++Tmp; // FALL THROUGH.
336 case MVT::Any: {
337 // If this is an "any" valuetype, then the type is the type of the next
338 // type in the list specified to getIntrinsic().
339 Sig.push_back(IIT_ARG);
340
341 // Figure out what arg # this is consuming, and remember what kind it was.
342 unsigned ArgNo = ArgCodes.size();
343 ArgCodes.push_back(Tmp);
344
345 // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
346 return Sig.push_back((ArgNo << 3) | Tmp);
347 }
348
349 case MVT::iPTR: {
350 unsigned AddrSpace = 0;
351 if (R->isSubClassOf("LLVMQualPointerType")) {
352 AddrSpace = R->getValueAsInt("AddrSpace");
353 assert(AddrSpace < 256 && "Address space exceeds 255");
354 }
355 if (AddrSpace) {
356 Sig.push_back(IIT_ANYPTR);
357 Sig.push_back(AddrSpace);
358 } else {
359 Sig.push_back(IIT_PTR);
360 }
361 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
362 }
363 }
364
365 if (MVT(VT).isVector()) {
366 MVT VVT = VT;
367 switch (VVT.getVectorNumElements()) {
368 default: PrintFatalError("unhandled vector type width in intrinsic!");
369 case 1: Sig.push_back(IIT_V1); break;
370 case 2: Sig.push_back(IIT_V2); break;
371 case 4: Sig.push_back(IIT_V4); break;
372 case 8: Sig.push_back(IIT_V8); break;
373 case 16: Sig.push_back(IIT_V16); break;
374 case 32: Sig.push_back(IIT_V32); break;
375 case 64: Sig.push_back(IIT_V64); break;
376 }
377
378 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
379 }
380
381 EncodeFixedValueType(VT, Sig);
382 }
383
384 #if defined(_MSC_VER) && !defined(__clang__)
385 #pragma optimize("",on)
386 #endif
387
388 /// ComputeFixedEncoding - If we can encode the type signature for this
389 /// intrinsic into 32 bits, return it. If not, return ~0U.
ComputeFixedEncoding(const CodeGenIntrinsic & Int,std::vector<unsigned char> & TypeSig)390 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
391 std::vector<unsigned char> &TypeSig) {
392 std::vector<unsigned char> ArgCodes;
393
394 if (Int.IS.RetVTs.empty())
395 TypeSig.push_back(IIT_Done);
396 else if (Int.IS.RetVTs.size() == 1 &&
397 Int.IS.RetVTs[0] == MVT::isVoid)
398 TypeSig.push_back(IIT_Done);
399 else {
400 switch (Int.IS.RetVTs.size()) {
401 case 1: break;
402 case 2: TypeSig.push_back(IIT_STRUCT2); break;
403 case 3: TypeSig.push_back(IIT_STRUCT3); break;
404 case 4: TypeSig.push_back(IIT_STRUCT4); break;
405 case 5: TypeSig.push_back(IIT_STRUCT5); break;
406 default: llvm_unreachable("Unhandled case in struct");
407 }
408
409 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
410 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
411 }
412
413 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
414 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
415 }
416
printIITEntry(raw_ostream & OS,unsigned char X)417 static void printIITEntry(raw_ostream &OS, unsigned char X) {
418 OS << (unsigned)X;
419 }
420
EmitGenerator(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)421 void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
422 raw_ostream &OS) {
423 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
424 // capture it in this vector, otherwise store a ~0U.
425 std::vector<unsigned> FixedEncodings;
426
427 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
428
429 std::vector<unsigned char> TypeSig;
430
431 // Compute the unique argument type info.
432 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
433 // Get the signature for the intrinsic.
434 TypeSig.clear();
435 ComputeFixedEncoding(Ints[i], TypeSig);
436
437 // Check to see if we can encode it into a 32-bit word. We can only encode
438 // 8 nibbles into a 32-bit word.
439 if (TypeSig.size() <= 8) {
440 bool Failed = false;
441 unsigned Result = 0;
442 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
443 // If we had an unencodable argument, bail out.
444 if (TypeSig[i] > 15) {
445 Failed = true;
446 break;
447 }
448 Result = (Result << 4) | TypeSig[e-i-1];
449 }
450
451 // If this could be encoded into a 31-bit word, return it.
452 if (!Failed && (Result >> 31) == 0) {
453 FixedEncodings.push_back(Result);
454 continue;
455 }
456 }
457
458 // Otherwise, we're going to unique the sequence into the
459 // LongEncodingTable, and use its offset in the 32-bit table instead.
460 LongEncodingTable.add(TypeSig);
461
462 // This is a placehold that we'll replace after the table is laid out.
463 FixedEncodings.push_back(~0U);
464 }
465
466 LongEncodingTable.layout();
467
468 OS << "// Global intrinsic function declaration type table.\n";
469 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
470
471 OS << "static const unsigned IIT_Table[] = {\n ";
472
473 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
474 if ((i & 7) == 7)
475 OS << "\n ";
476
477 // If the entry fit in the table, just emit it.
478 if (FixedEncodings[i] != ~0U) {
479 OS << "0x" << utohexstr(FixedEncodings[i]) << ", ";
480 continue;
481 }
482
483 TypeSig.clear();
484 ComputeFixedEncoding(Ints[i], TypeSig);
485
486
487 // Otherwise, emit the offset into the long encoding table. We emit it this
488 // way so that it is easier to read the offset in the .def file.
489 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
490 }
491
492 OS << "0\n};\n\n";
493
494 // Emit the shared table of register lists.
495 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
496 if (!LongEncodingTable.empty())
497 LongEncodingTable.emit(OS, printIITEntry);
498 OS << " 255\n};\n\n";
499
500 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
501 }
502
503 namespace {
504 enum ModRefKind {
505 MRK_none,
506 MRK_readonly,
507 MRK_readnone
508 };
509 }
510
getModRefKind(const CodeGenIntrinsic & intrinsic)511 static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) {
512 switch (intrinsic.ModRef) {
513 case CodeGenIntrinsic::NoMem:
514 return MRK_readnone;
515 case CodeGenIntrinsic::ReadArgMem:
516 case CodeGenIntrinsic::ReadMem:
517 return MRK_readonly;
518 case CodeGenIntrinsic::ReadWriteArgMem:
519 case CodeGenIntrinsic::ReadWriteMem:
520 return MRK_none;
521 }
522 llvm_unreachable("bad mod-ref kind");
523 }
524
525 namespace {
526 struct AttributeComparator {
operator ()__anon4d8cfaca0411::AttributeComparator527 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
528 // Sort throwing intrinsics after non-throwing intrinsics.
529 if (L->canThrow != R->canThrow)
530 return R->canThrow;
531
532 if (L->isNoDuplicate != R->isNoDuplicate)
533 return R->isNoDuplicate;
534
535 if (L->isNoReturn != R->isNoReturn)
536 return R->isNoReturn;
537
538 // Try to order by readonly/readnone attribute.
539 ModRefKind LK = getModRefKind(*L);
540 ModRefKind RK = getModRefKind(*R);
541 if (LK != RK) return (LK > RK);
542
543 // Order by argument attributes.
544 // This is reliable because each side is already sorted internally.
545 return (L->ArgumentAttributes < R->ArgumentAttributes);
546 }
547 };
548 } // End anonymous namespace
549
550 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
551 void IntrinsicEmitter::
EmitAttributes(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)552 EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) {
553 OS << "// Add parameter attributes that are not common to all intrinsics.\n";
554 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
555 if (TargetOnly)
556 OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix
557 << "Intrinsic::ID id) {\n";
558 else
559 OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
560
561 // Compute the maximum number of attribute arguments and the map
562 typedef std::map<const CodeGenIntrinsic*, unsigned,
563 AttributeComparator> UniqAttrMapTy;
564 UniqAttrMapTy UniqAttributes;
565 unsigned maxArgAttrs = 0;
566 unsigned AttrNum = 0;
567 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
568 const CodeGenIntrinsic &intrinsic = Ints[i];
569 maxArgAttrs =
570 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
571 unsigned &N = UniqAttributes[&intrinsic];
572 if (N) continue;
573 assert(AttrNum < 256 && "Too many unique attributes for table!");
574 N = ++AttrNum;
575 }
576
577 // Emit an array of AttributeSet. Most intrinsics will have at least one
578 // entry, for the function itself (index ~1), which is usually nounwind.
579 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
580
581 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
582 const CodeGenIntrinsic &intrinsic = Ints[i];
583
584 OS << " " << UniqAttributes[&intrinsic] << ", // "
585 << intrinsic.Name << "\n";
586 }
587 OS << " };\n\n";
588
589 OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n";
590 OS << " unsigned NumAttrs = 0;\n";
591 OS << " if (id != 0) {\n";
592 OS << " switch(IntrinsicsToAttributesMap[id - ";
593 if (TargetOnly)
594 OS << "Intrinsic::num_intrinsics";
595 else
596 OS << "1";
597 OS << "]) {\n";
598 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
599 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
600 E = UniqAttributes.end(); I != E; ++I) {
601 OS << " case " << I->second << ": {\n";
602
603 const CodeGenIntrinsic &intrinsic = *(I->first);
604
605 // Keep track of the number of attributes we're writing out.
606 unsigned numAttrs = 0;
607
608 // The argument attributes are alreadys sorted by argument index.
609 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
610 if (ae) {
611 while (ai != ae) {
612 unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
613
614 OS << " const Attribute::AttrKind AttrParam" << argNo + 1 <<"[]= {";
615 bool addComma = false;
616
617 do {
618 switch (intrinsic.ArgumentAttributes[ai].second) {
619 case CodeGenIntrinsic::NoCapture:
620 if (addComma)
621 OS << ",";
622 OS << "Attribute::NoCapture";
623 addComma = true;
624 break;
625 case CodeGenIntrinsic::ReadOnly:
626 if (addComma)
627 OS << ",";
628 OS << "Attribute::ReadOnly";
629 addComma = true;
630 break;
631 case CodeGenIntrinsic::ReadNone:
632 if (addComma)
633 OS << ",";
634 OS << "Attributes::ReadNone";
635 addComma = true;
636 break;
637 }
638
639 ++ai;
640 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
641 OS << "};\n";
642 OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, "
643 << argNo+1 << ", AttrParam" << argNo +1 << ");\n";
644 }
645 }
646
647 ModRefKind modRef = getModRefKind(intrinsic);
648
649 if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn ||
650 intrinsic.isNoDuplicate) {
651 OS << " const Attribute::AttrKind Atts[] = {";
652 bool addComma = false;
653 if (!intrinsic.canThrow) {
654 OS << "Attribute::NoUnwind";
655 addComma = true;
656 }
657 if (intrinsic.isNoReturn) {
658 if (addComma)
659 OS << ",";
660 OS << "Attribute::NoReturn";
661 addComma = true;
662 }
663 if (intrinsic.isNoDuplicate) {
664 if (addComma)
665 OS << ",";
666 OS << "Attribute::NoDuplicate";
667 addComma = true;
668 }
669
670 switch (modRef) {
671 case MRK_none: break;
672 case MRK_readonly:
673 if (addComma)
674 OS << ",";
675 OS << "Attribute::ReadOnly";
676 break;
677 case MRK_readnone:
678 if (addComma)
679 OS << ",";
680 OS << "Attribute::ReadNone";
681 break;
682 }
683 OS << "};\n";
684 OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, "
685 << "AttributeSet::FunctionIndex, Atts);\n";
686 }
687
688 if (numAttrs) {
689 OS << " NumAttrs = " << numAttrs << ";\n";
690 OS << " break;\n";
691 OS << " }\n";
692 } else {
693 OS << " return AttributeSet();\n";
694 OS << " }\n";
695 }
696 }
697
698 OS << " }\n";
699 OS << " }\n";
700 OS << " return AttributeSet::get(C, makeArrayRef(AS, NumAttrs));\n";
701 OS << "}\n";
702 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
703 }
704
705 /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior.
706 void IntrinsicEmitter::
EmitModRefBehavior(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)707 EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){
708 OS << "// Determine intrinsic alias analysis mod/ref behavior.\n"
709 << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n"
710 << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && "
711 << "\"Unknown intrinsic.\");\n\n";
712
713 OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n"
714 << " /* invalid */ UnknownModRefBehavior,\n";
715 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
716 OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ ";
717 switch (Ints[i].ModRef) {
718 case CodeGenIntrinsic::NoMem:
719 OS << "DoesNotAccessMemory,\n";
720 break;
721 case CodeGenIntrinsic::ReadArgMem:
722 OS << "OnlyReadsArgumentPointees,\n";
723 break;
724 case CodeGenIntrinsic::ReadMem:
725 OS << "OnlyReadsMemory,\n";
726 break;
727 case CodeGenIntrinsic::ReadWriteArgMem:
728 OS << "OnlyAccessesArgumentPointees,\n";
729 break;
730 case CodeGenIntrinsic::ReadWriteMem:
731 OS << "UnknownModRefBehavior,\n";
732 break;
733 }
734 }
735 OS << "};\n\n"
736 << "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n"
737 << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n";
738 }
739
740 /// EmitTargetBuiltins - All of the builtins in the specified map are for the
741 /// same target, and we already checked it.
EmitTargetBuiltins(const std::map<std::string,std::string> & BIM,const std::string & TargetPrefix,raw_ostream & OS)742 static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM,
743 const std::string &TargetPrefix,
744 raw_ostream &OS) {
745
746 std::vector<StringMatcher::StringPair> Results;
747
748 for (std::map<std::string, std::string>::const_iterator I = BIM.begin(),
749 E = BIM.end(); I != E; ++I) {
750 std::string ResultCode =
751 "return " + TargetPrefix + "Intrinsic::" + I->second + ";";
752 Results.push_back(StringMatcher::StringPair(I->first, ResultCode));
753 }
754
755 StringMatcher("BuiltinName", Results, OS).Emit();
756 }
757
758
759 void IntrinsicEmitter::
EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)760 EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
761 raw_ostream &OS) {
762 typedef std::map<std::string, std::map<std::string, std::string> > BIMTy;
763 BIMTy BuiltinMap;
764 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
765 if (!Ints[i].GCCBuiltinName.empty()) {
766 // Get the map for this target prefix.
767 std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix];
768
769 if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName,
770 Ints[i].EnumName)).second)
771 PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() +
772 "': duplicate GCC builtin name!");
773 }
774 }
775
776 OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n";
777 OS << "// This is used by the C front-end. The GCC builtin name is passed\n";
778 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
779 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
780 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n";
781
782 if (TargetOnly) {
783 OS << "static " << TargetPrefix << "Intrinsic::ID "
784 << "getIntrinsicForGCCBuiltin(const char "
785 << "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
786 } else {
787 OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char "
788 << "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
789 }
790
791 OS << " StringRef BuiltinName(BuiltinNameStr);\n";
792 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
793
794 // Note: this could emit significantly better code if we cared.
795 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
796 OS << " ";
797 if (!I->first.empty())
798 OS << "if (TargetPrefix == \"" << I->first << "\") ";
799 else
800 OS << "/* Target Independent Builtins */ ";
801 OS << "{\n";
802
803 // Emit the comparisons for this target prefix.
804 EmitTargetBuiltins(I->second, TargetPrefix, OS);
805 OS << " }\n";
806 }
807 OS << " return ";
808 if (!TargetPrefix.empty())
809 OS << "(" << TargetPrefix << "Intrinsic::ID)";
810 OS << "Intrinsic::not_intrinsic;\n";
811 OS << "}\n";
812 OS << "#endif\n\n";
813 }
814
815 void IntrinsicEmitter::
EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> & Ints,raw_ostream & OS)816 EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
817 raw_ostream &OS) {
818 std::map<std::string, std::map<std::string, std::string>> TargetBuiltins;
819
820 for (const auto &Intrinsic : Ints) {
821 if (Intrinsic.MSBuiltinName.empty())
822 continue;
823
824 auto &Builtins = TargetBuiltins[Intrinsic.TargetPrefix];
825 if (!Builtins.insert(std::make_pair(Intrinsic.MSBuiltinName,
826 Intrinsic.EnumName)).second)
827 PrintFatalError("Intrinsic '" + Intrinsic.TheDef->getName() + "': "
828 "duplicate MS builtin name!");
829 }
830
831 OS << "// Get the LLVM intrinsic that corresponds to a MS builtin.\n"
832 "// This is used by the C front-end. The MS builtin name is passed\n"
833 "// in as a BuiltinName, and a target prefix (e.g. 'arm') is passed\n"
834 "// in as a TargetPrefix. The result is assigned to 'IntrinsicID'.\n"
835 "#ifdef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN\n";
836
837 OS << (TargetOnly ? "static " + TargetPrefix : "") << "Intrinsic::ID "
838 << (TargetOnly ? "" : "Intrinsic::")
839 << "getIntrinsicForMSBuiltin(const char *TP, const char *BN) {\n";
840 OS << " StringRef BuiltinName(BN);\n"
841 " StringRef TargetPrefix(TP);\n"
842 "\n";
843
844 for (const auto &Builtins : TargetBuiltins) {
845 OS << " ";
846 if (Builtins.first.empty())
847 OS << "/* Target Independent Builtins */ ";
848 else
849 OS << "if (TargetPrefix == \"" << Builtins.first << "\") ";
850 OS << "{\n";
851 EmitTargetBuiltins(Builtins.second, TargetPrefix, OS);
852 OS << "}";
853 }
854
855 OS << " return ";
856 if (!TargetPrefix.empty())
857 OS << "(" << TargetPrefix << "Intrinsic::ID)";
858 OS << "Intrinsic::not_intrinsic;\n";
859 OS << "}\n";
860
861 OS << "#endif\n\n";
862 }
863
EmitIntrinsics(RecordKeeper & RK,raw_ostream & OS,bool TargetOnly)864 void llvm::EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly) {
865 IntrinsicEmitter(RK, TargetOnly).run(OS);
866 }
867