1 /*
2  * Copyright © 2010 Luca Barbieri
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_variable_index_to_cond_assign.cpp
26  *
27  * Turns non-constant indexing into array types to a series of
28  * conditional moves of each element into a temporary.
29  *
30  * Pre-DX10 GPUs often don't have a native way to do this operation,
31  * and this works around that.
32  *
33  * The lowering process proceeds as follows.  Each non-constant index
34  * found in an r-value is converted to a canonical form \c array[i].  Each
35  * element of the array is conditionally assigned to a temporary by comparing
36  * \c i to a constant index.  This is done by cloning the canonical form and
37  * replacing all occurances of \c i with a constant.  Each remaining occurance
38  * of the canonical form in the IR is replaced with a dereference of the
39  * temporary variable.
40  *
41  * L-values with non-constant indices are handled similarly.  In this case,
42  * the RHS of the assignment is assigned to a temporary.  The non-constant
43  * index is replace with the canonical form (just like for r-values).  The
44  * temporary is conditionally assigned to each element of the canonical form
45  * by comparing \c i with each index.  The same clone-and-replace scheme is
46  * used.
47  */
48 
49 #include "ir.h"
50 #include "ir_rvalue_visitor.h"
51 #include "ir_optimization.h"
52 #include "glsl_types.h"
53 #include "main/macros.h"
54 
55 /**
56  * Generate a comparison value for a block of indices
57  *
58  * Lowering passes for non-constant indexing of arrays, matrices, or vectors
59  * can use this to generate blocks of index comparison values.
60  *
61  * \param instructions  List where new instructions will be appended
62  * \param index         \c ir_variable containing the desired index
63  * \param base          Base value for this block of comparisons
64  * \param components    Number of unique index values to compare.  This must
65  *                      be on the range [1, 4].
66  * \param mem_ctx       ralloc memory context to be used for all allocations.
67  *
68  * \returns
69  * An \c ir_rvalue that \b must be cloned for each use in conditional
70  * assignments, etc.
71  */
72 ir_rvalue *
compare_index_block(exec_list * instructions,ir_variable * index,unsigned base,unsigned components,void * mem_ctx)73 compare_index_block(exec_list *instructions, ir_variable *index,
74 		    unsigned base, unsigned components, void *mem_ctx)
75 {
76    ir_rvalue *broadcast_index = new(mem_ctx) ir_dereference_variable(index);
77 
78    assert(index->type->is_scalar());
79    assert(index->type->base_type == GLSL_TYPE_INT);
80    assert(components >= 1 && components <= 4);
81 
82    if (components > 1) {
83       const ir_swizzle_mask m = { 0, 0, 0, 0, components, false };
84       broadcast_index = new(mem_ctx) ir_swizzle(broadcast_index, m);
85    }
86 
87    /* Compare the desired index value with the next block of four indices.
88     */
89    ir_constant_data test_indices_data;
90    memset(&test_indices_data, 0, sizeof(test_indices_data));
91    test_indices_data.i[0] = base;
92    test_indices_data.i[1] = base + 1;
93    test_indices_data.i[2] = base + 2;
94    test_indices_data.i[3] = base + 3;
95 
96    ir_constant *const test_indices =
97       new(mem_ctx) ir_constant(broadcast_index->type,
98 			       &test_indices_data);
99 
100    ir_rvalue *const condition_val =
101       new(mem_ctx) ir_expression(ir_binop_equal,
102 				 &glsl_type::bool_type[components - 1],
103 				 broadcast_index,
104 				 test_indices);
105 
106    ir_variable *const condition =
107       new(mem_ctx) ir_variable(condition_val->type,
108 			       "dereference_condition",
109 			       ir_var_temporary);
110    instructions->push_tail(condition);
111 
112    ir_rvalue *const cond_deref =
113       new(mem_ctx) ir_dereference_variable(condition);
114    instructions->push_tail(new(mem_ctx) ir_assignment(cond_deref, condition_val, 0));
115 
116    return cond_deref;
117 }
118 
119 static inline bool
is_array_or_matrix(const ir_rvalue * ir)120 is_array_or_matrix(const ir_rvalue *ir)
121 {
122    return (ir->type->is_array() || ir->type->is_matrix());
123 }
124 
125 /**
126  * Replace a dereference of a variable with a specified r-value
127  *
128  * Each time a dereference of the specified value is replaced, the r-value
129  * tree is cloned.
130  */
131 class deref_replacer : public ir_rvalue_visitor {
132 public:
deref_replacer(const ir_variable * variable_to_replace,ir_rvalue * value)133    deref_replacer(const ir_variable *variable_to_replace, ir_rvalue *value)
134       : variable_to_replace(variable_to_replace), value(value),
135 	progress(false)
136    {
137       assert(this->variable_to_replace != NULL);
138       assert(this->value != NULL);
139    }
140 
handle_rvalue(ir_rvalue ** rvalue)141    virtual void handle_rvalue(ir_rvalue **rvalue)
142    {
143       ir_dereference_variable *const dv = (*rvalue)->as_dereference_variable();
144 
145       if ((dv != NULL) && (dv->var == this->variable_to_replace)) {
146 	 this->progress = true;
147 	 *rvalue = this->value->clone(ralloc_parent(*rvalue), NULL);
148       }
149    }
150 
151    const ir_variable *variable_to_replace;
152    ir_rvalue *value;
153    bool progress;
154 };
155 
156 /**
157  * Find a variable index dereference of an array in an rvalue tree
158  */
159 class find_variable_index : public ir_hierarchical_visitor {
160 public:
find_variable_index()161    find_variable_index()
162       : deref(NULL)
163    {
164       /* empty */
165    }
166 
visit_enter(ir_dereference_array * ir)167    virtual ir_visitor_status visit_enter(ir_dereference_array *ir)
168    {
169       if (is_array_or_matrix(ir->array)
170 	  && (ir->array_index->as_constant() == NULL)) {
171 	 this->deref = ir;
172 	 return visit_stop;
173       }
174 
175       return visit_continue;
176    }
177 
178    /**
179     * First array dereference found in the tree that has a non-constant index.
180     */
181    ir_dereference_array *deref;
182 };
183 
184 struct assignment_generator
185 {
186    ir_instruction* base_ir;
187    ir_dereference *rvalue;
188    ir_variable *old_index;
189    bool is_write;
190    unsigned int write_mask;
191    ir_variable* var;
192 
assignment_generatorassignment_generator193    assignment_generator()
194    {
195    }
196 
generateassignment_generator197    void generate(unsigned i, ir_rvalue* condition, exec_list *list) const
198    {
199       /* Just clone the rest of the deref chain when trying to get at the
200        * underlying variable.
201        */
202       void *mem_ctx = ralloc_parent(base_ir);
203 
204       /* Clone the old r-value in its entirety.  Then replace any occurances of
205        * the old variable index with the new constant index.
206        */
207       ir_dereference *element = this->rvalue->clone(mem_ctx, NULL);
208       ir_constant *const index = new(mem_ctx) ir_constant(i);
209       deref_replacer r(this->old_index, index);
210       element->accept(&r);
211       assert(r.progress);
212 
213       /* Generate a conditional assignment to (or from) the constant indexed
214        * array dereference.
215        */
216       ir_rvalue *variable = new(mem_ctx) ir_dereference_variable(this->var);
217       ir_assignment *const assignment = (is_write)
218 	 ? new(mem_ctx) ir_assignment(element, variable, condition, write_mask)
219 	 : new(mem_ctx) ir_assignment(variable, element, condition);
220 
221       list->push_tail(assignment);
222    }
223 };
224 
225 struct switch_generator
226 {
227    /* make TFunction a template parameter if you need to use other generators */
228    typedef assignment_generator TFunction;
229    const TFunction& generator;
230 
231    ir_variable* index;
232    unsigned linear_sequence_max_length;
233    unsigned condition_components;
234 
235    void *mem_ctx;
236 
switch_generatorswitch_generator237    switch_generator(const TFunction& generator, ir_variable *index,
238 		    unsigned linear_sequence_max_length,
239 		    unsigned condition_components)
240       : generator(generator), index(index),
241 	linear_sequence_max_length(linear_sequence_max_length),
242 	condition_components(condition_components)
243    {
244       this->mem_ctx = ralloc_parent(index);
245    }
246 
linear_sequenceswitch_generator247    void linear_sequence(unsigned begin, unsigned end, exec_list *list)
248    {
249       if (begin == end)
250          return;
251 
252       /* If the array access is a read, read the first element of this subregion
253        * unconditionally.  The remaining tests will possibly overwrite this
254        * value with one of the other array elements.
255        *
256        * This optimization cannot be done for writes because it will cause the
257        * first element of the subregion to be written possibly *in addition* to
258        * one of the other elements.
259        */
260       unsigned first;
261       if (!this->generator.is_write) {
262 	 this->generator.generate(begin, 0, list);
263 	 first = begin + 1;
264       } else {
265 	 first = begin;
266       }
267 
268       for (unsigned i = first; i < end; i += 4) {
269          const unsigned comps = MIN2(condition_components, end - i);
270 
271 	 ir_rvalue *const cond_deref =
272 	    compare_index_block(list, index, i, comps, this->mem_ctx);
273 
274          if (comps == 1) {
275             this->generator.generate(i, cond_deref->clone(this->mem_ctx, NULL),
276 				     list);
277          } else {
278             for (unsigned j = 0; j < comps; j++) {
279 	       ir_rvalue *const cond_swiz =
280 		  new(this->mem_ctx) ir_swizzle(cond_deref->clone(this->mem_ctx, NULL),
281 						j, 0, 0, 0, 1);
282 
283                this->generator.generate(i + j, cond_swiz, list);
284             }
285          }
286       }
287    }
288 
bisectswitch_generator289    void bisect(unsigned begin, unsigned end, exec_list *list)
290    {
291       unsigned middle = (begin + end) >> 1;
292 
293       assert(index->type->is_integer());
294 
295       ir_constant *const middle_c = (index->type->base_type == GLSL_TYPE_UINT)
296 	 ? new(this->mem_ctx) ir_constant((unsigned)middle)
297          : new(this->mem_ctx) ir_constant((int)middle);
298 
299 
300       ir_dereference_variable *deref =
301 	 new(this->mem_ctx) ir_dereference_variable(this->index);
302 
303       ir_expression *less =
304 	 new(this->mem_ctx) ir_expression(ir_binop_less, glsl_type::bool_type,
305 					  deref, middle_c);
306 
307       ir_if *if_less = new(this->mem_ctx) ir_if(less);
308 
309       generate(begin, middle, &if_less->then_instructions);
310       generate(middle, end, &if_less->else_instructions);
311 
312       list->push_tail(if_less);
313    }
314 
generateswitch_generator315    void generate(unsigned begin, unsigned end, exec_list *list)
316    {
317       unsigned length = end - begin;
318       if (length <= this->linear_sequence_max_length)
319          return linear_sequence(begin, end, list);
320       else
321          return bisect(begin, end, list);
322    }
323 };
324 
325 /**
326  * Visitor class for replacing expressions with ir_constant values.
327  */
328 
329 class variable_index_to_cond_assign_visitor : public ir_rvalue_visitor {
330 public:
variable_index_to_cond_assign_visitor(bool lower_input,bool lower_output,bool lower_temp,bool lower_uniform)331    variable_index_to_cond_assign_visitor(bool lower_input,
332 					 bool lower_output,
333 					 bool lower_temp,
334 					 bool lower_uniform)
335    {
336       this->progress = false;
337       this->lower_inputs = lower_input;
338       this->lower_outputs = lower_output;
339       this->lower_temps = lower_temp;
340       this->lower_uniforms = lower_uniform;
341    }
342 
343    bool progress;
344    bool lower_inputs;
345    bool lower_outputs;
346    bool lower_temps;
347    bool lower_uniforms;
348 
storage_type_needs_lowering(ir_dereference_array * deref) const349    bool storage_type_needs_lowering(ir_dereference_array *deref) const
350    {
351       /* If a variable isn't eventually the target of this dereference, then
352        * it must be a constant or some sort of anonymous temporary storage.
353        *
354        * FINISHME: Is this correct?  Most drivers treat arrays of constants as
355        * FINISHME: uniforms.  It seems like this should do the same.
356        */
357       const ir_variable *const var = deref->array->variable_referenced();
358       if (var == NULL)
359 	 return this->lower_temps;
360 
361       switch (var->mode) {
362       case ir_var_auto:
363       case ir_var_temporary:
364 	 return this->lower_temps;
365       case ir_var_uniform:
366 	 return this->lower_uniforms;
367       case ir_var_in:
368       case ir_var_const_in:
369 	 return (var->location == -1) ? this->lower_temps : this->lower_inputs;
370       case ir_var_out:
371 	 return (var->location == -1) ? this->lower_temps : this->lower_outputs;
372       case ir_var_inout:
373 	 return this->lower_temps;
374       }
375 
376       assert(!"Should not get here.");
377       return false;
378    }
379 
needs_lowering(ir_dereference_array * deref) const380    bool needs_lowering(ir_dereference_array *deref) const
381    {
382       if (deref == NULL || deref->array_index->as_constant()
383 	  || !is_array_or_matrix(deref->array))
384 	 return false;
385 
386       return this->storage_type_needs_lowering(deref);
387    }
388 
convert_dereference_array(ir_dereference_array * orig_deref,ir_assignment * orig_assign,ir_dereference * orig_base)389    ir_variable *convert_dereference_array(ir_dereference_array *orig_deref,
390 					  ir_assignment* orig_assign,
391 					  ir_dereference *orig_base)
392    {
393       assert(is_array_or_matrix(orig_deref->array));
394 
395       const unsigned length = (orig_deref->array->type->is_array())
396          ? orig_deref->array->type->length
397          : orig_deref->array->type->matrix_columns;
398 
399       void *const mem_ctx = ralloc_parent(base_ir);
400 
401       /* Temporary storage for either the result of the dereference of
402        * the array, or the RHS that's being assigned into the
403        * dereference of the array.
404        */
405       ir_variable *var;
406 
407       if (orig_assign) {
408 	 var = new(mem_ctx) ir_variable(orig_assign->rhs->type,
409 					"dereference_array_value",
410 					ir_var_temporary);
411 	 base_ir->insert_before(var);
412 
413 	 ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(var);
414 	 ir_assignment *assign = new(mem_ctx) ir_assignment(lhs,
415 							    orig_assign->rhs,
416 							    NULL);
417 
418          base_ir->insert_before(assign);
419       } else {
420 	 var = new(mem_ctx) ir_variable(orig_deref->type,
421 					"dereference_array_value",
422 					ir_var_temporary);
423 	 base_ir->insert_before(var);
424       }
425 
426       /* Store the index to a temporary to avoid reusing its tree. */
427       ir_variable *index =
428 	 new(mem_ctx) ir_variable(orig_deref->array_index->type,
429 				  "dereference_array_index", ir_var_temporary);
430       base_ir->insert_before(index);
431 
432       ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(index);
433       ir_assignment *assign =
434 	 new(mem_ctx) ir_assignment(lhs, orig_deref->array_index, NULL);
435       base_ir->insert_before(assign);
436 
437       orig_deref->array_index = lhs->clone(mem_ctx, NULL);
438 
439       assignment_generator ag;
440       ag.rvalue = orig_base;
441       ag.base_ir = base_ir;
442       ag.old_index = index;
443       ag.var = var;
444       if (orig_assign) {
445 	 ag.is_write = true;
446 	 ag.write_mask = orig_assign->write_mask;
447       } else {
448 	 ag.is_write = false;
449       }
450 
451       switch_generator sg(ag, index, 4, 4);
452 
453       /* If the original assignment has a condition, respect that original
454        * condition!  This is acomplished by wrapping the new conditional
455        * assignments in an if-statement that uses the original condition.
456        */
457       if ((orig_assign != NULL) && (orig_assign->condition != NULL)) {
458 	 /* No need to clone the condition because the IR that it hangs on is
459 	  * going to be removed from the instruction sequence.
460 	  */
461 	 ir_if *if_stmt = new(mem_ctx) ir_if(orig_assign->condition);
462 
463 	 sg.generate(0, length, &if_stmt->then_instructions);
464 	 base_ir->insert_before(if_stmt);
465       } else {
466 	 exec_list list;
467 
468 	 sg.generate(0, length, &list);
469 	 base_ir->insert_before(&list);
470       }
471 
472       return var;
473    }
474 
handle_rvalue(ir_rvalue ** pir)475    virtual void handle_rvalue(ir_rvalue **pir)
476    {
477       if (this->in_assignee)
478 	 return;
479 
480       if (!*pir)
481          return;
482 
483       ir_dereference_array* orig_deref = (*pir)->as_dereference_array();
484       if (needs_lowering(orig_deref)) {
485          ir_variable *var =
486 	    convert_dereference_array(orig_deref, NULL, orig_deref);
487          assert(var);
488          *pir = new(ralloc_parent(base_ir)) ir_dereference_variable(var);
489          this->progress = true;
490       }
491    }
492 
493    ir_visitor_status
visit_leave(ir_assignment * ir)494    visit_leave(ir_assignment *ir)
495    {
496       ir_rvalue_visitor::visit_leave(ir);
497 
498       find_variable_index f;
499       ir->lhs->accept(&f);
500 
501       if ((f.deref != NULL) && storage_type_needs_lowering(f.deref)) {
502          convert_dereference_array(f.deref, ir, ir->lhs);
503          ir->remove();
504          this->progress = true;
505       }
506 
507       return visit_continue;
508    }
509 };
510 
511 bool
lower_variable_index_to_cond_assign(exec_list * instructions,bool lower_input,bool lower_output,bool lower_temp,bool lower_uniform)512 lower_variable_index_to_cond_assign(exec_list *instructions,
513 				    bool lower_input,
514 				    bool lower_output,
515 				    bool lower_temp,
516 				    bool lower_uniform)
517 {
518    variable_index_to_cond_assign_visitor v(lower_input,
519 					   lower_output,
520 					   lower_temp,
521 					   lower_uniform);
522 
523    /* Continue lowering until no progress is made.  If there are multiple
524     * levels of indirection (e.g., non-constant indexing of array elements and
525     * matrix columns of an array of matrix), each pass will only lower one
526     * level of indirection.
527     */
528    bool progress_ever = false;
529    do {
530       v.progress = false;
531       visit_list_elements(&v, instructions);
532       progress_ever = v.progress || progress_ever;
533    } while (v.progress);
534 
535    return progress_ever;
536 }
537