1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 
43 #include "_cvaux.h"
44 
45 #if 0
46 
47 #define LN2PI 1.837877f
48 #define BIG_FLT 1.e+10f
49 
50 
51 #define _CV_ERGODIC 1
52 #define _CV_CAUSAL 2
53 
54 #define _CV_LAST_STATE 1
55 #define _CV_BEST_STATE 2
56 
57 //*F///////////////////////////////////////////////////////////////////////////////////////
58 //    Name: icvForward1DHMM
59 //    Purpose: The function performs baum-welsh algorithm
60 //    Context:
61 //    Parameters: obs_info - addres of pointer to CvImgObsInfo structure
62 //                num_hor_obs - number of horizontal observation vectors
63 //                num_ver_obs - number of horizontal observation vectors
64 //                obs_size - length of observation vector
65 //
66 //    Returns: error status
67 //
68 //    Notes:
69 //F*/
70 #if 0
71 CvStatus icvForward1DHMM( int num_states, int num_obs, CvMatr64d A,
72                           CvMatr64d B,
73                           double* scales)
74 {
75     // assume that observation and transition
76     // probabilities already computed
77     int m_HMMType  = _CV_CAUSAL;
78     double* m_pi = icvAlloc( num_states* sizeof( double) );
79 
80     /* alpha is matrix
81        rows throuhg states
82        columns through time
83     */
84     double* alpha = icvAlloc( num_states*num_obs * sizeof( double ) );
85 
86     /* All calculations will be in non-logarithmic domain */
87 
88     /* Initialization */
89     /* set initial state probabilities */
90     m_pi[0] = 1;
91     for (i = 1; i < num_states; i++)
92     {
93         m_pi[i] = 0.0;
94     }
95 
96     for  (i = 0; i < num_states; i++)
97     {
98         alpha[i] = m_pi[i] * m_b[ i];
99     }
100 
101     /******************************************************************/
102     /*   Induction                                                    */
103 
104     if ( m_HMMType == _CV_ERGODIC )
105     {
106         int t;
107         for (t = 1 ; t < num_obs; t++)
108         {
109             for (j = 0; j < num_states; j++)
110             {
111                double sum = 0.0;
112                int i;
113 
114                 for (i = 0; i < num_states; i++)
115                 {
116                      sum += alpha[(t - 1) * num_states + i] * A[i * num_states + j];
117                 }
118 
119                 alpha[(t - 1) * num_states + j] = sum * B[t * num_states + j];
120 
121                 /* add computed alpha to scale factor */
122                 sum_alpha += alpha[(t - 1) * num_states + j];
123             }
124 
125             double scale = 1/sum_alpha;
126 
127             /* scale alpha */
128             for (j = 0; j < num_states; j++)
129             {
130                 alpha[(t - 1) * num_states + j] *= scale;
131             }
132 
133             scales[t] = scale;
134 
135         }
136     }
137 
138 #endif
139 
140 
141 
142 //*F///////////////////////////////////////////////////////////////////////////////////////
143 //    Name: icvCreateObsInfo
144 //    Purpose: The function allocates memory for CvImgObsInfo structure
145 //             and its inner stuff
146 //    Context:
147 //    Parameters: obs_info - addres of pointer to CvImgObsInfo structure
148 //                num_hor_obs - number of horizontal observation vectors
149 //                num_ver_obs - number of horizontal observation vectors
150 //                obs_size - length of observation vector
151 //
152 //    Returns: error status
153 //
154 //    Notes:
155 //F*/
156 /*CvStatus icvCreateObsInfo( CvImgObsInfo** obs_info,
157                               CvSize num_obs, int obs_size )
158 {
159     int total = num_obs.height * num_obs.width;
160 
161     CvImgObsInfo* obs = (CvImgObsInfo*)icvAlloc( sizeof( CvImgObsInfo) );
162 
163     obs->obs_x = num_obs.width;
164     obs->obs_y = num_obs.height;
165 
166     obs->obs = (float*)icvAlloc( total * obs_size * sizeof(float) );
167 
168     obs->state = (int*)icvAlloc( 2 * total * sizeof(int) );
169     obs->mix = (int*)icvAlloc( total * sizeof(int) );
170 
171     obs->obs_size = obs_size;
172 
173     obs_info[0] = obs;
174 
175     return CV_NO_ERR;
176 }*/
177 
178 /*CvStatus icvReleaseObsInfo( CvImgObsInfo** p_obs_info )
179 {
180     CvImgObsInfo* obs_info = p_obs_info[0];
181 
182     icvFree( &(obs_info->obs) );
183     icvFree( &(obs_info->mix) );
184     icvFree( &(obs_info->state) );
185     icvFree( &(obs_info) );
186 
187     p_obs_info[0] = NULL;
188 
189     return CV_NO_ERR;
190 } */
191 
192 
193 //*F///////////////////////////////////////////////////////////////////////////////////////
194 //    Name: icvCreate1DHMM
195 //    Purpose: The function allocates memory for 1-dimensional HMM
196 //             and its inner stuff
197 //    Context:
198 //    Parameters: hmm - addres of pointer to CvEHMM structure
199 //                state_number - number of states in HMM
200 //                num_mix - number of gaussian mixtures in HMM states
201 //                          size of array is defined by previous parameter
202 //                obs_size - length of observation vectors
203 //
204 //    Returns: error status
205 //    Notes:
206 //F*/
207 CvStatus icvCreate1DHMM( CvEHMM** this_hmm,
208                          int state_number, int* num_mix, int obs_size )
209 {
210     int i;
211     int real_states = state_number;
212 
213     CvEHMMState* all_states;
214     CvEHMM* hmm;
215     int total_mix = 0;
216     float* pointers;
217 
218     /* allocate memory for hmm */
219     hmm = (CvEHMM*)icvAlloc( sizeof(CvEHMM) );
220 
221     /* set number of superstates */
222     hmm->num_states = state_number;
223     hmm->level = 0;
224 
225     /* allocate memory for all states */
226     all_states = (CvEHMMState *)icvAlloc( real_states * sizeof( CvEHMMState ) );
227 
228     /* assign number of mixtures */
229     for( i = 0; i < real_states; i++ )
230     {
231         all_states[i].num_mix = num_mix[i];
232     }
233 
234     /* compute size of inner of all real states */
235     for( i = 0; i < real_states; i++ )
236     {
237         total_mix += num_mix[i];
238     }
239     /* allocate memory for states stuff */
240     pointers = (float*)icvAlloc( total_mix * (2/*for mu invvar */ * obs_size +
241                                  2/*for weight and log_var_val*/ ) * sizeof( float) );
242 
243     /* organize memory */
244     for( i = 0; i < real_states; i++ )
245     {
246         all_states[i].mu      = pointers; pointers += num_mix[i] * obs_size;
247         all_states[i].inv_var = pointers; pointers += num_mix[i] * obs_size;
248 
249         all_states[i].log_var_val = pointers; pointers += num_mix[i];
250         all_states[i].weight      = pointers; pointers += num_mix[i];
251     }
252     hmm->u.state = all_states;
253 
254     hmm->transP = icvCreateMatrix_32f( hmm->num_states, hmm->num_states );
255     hmm->obsProb = NULL;
256 
257     /* if all ok - return pointer */
258     *this_hmm = hmm;
259     return CV_NO_ERR;
260 }
261 
262 CvStatus icvRelease1DHMM( CvEHMM** phmm )
263 {
264     CvEHMM* hmm = phmm[0];
265     icvDeleteMatrix( hmm->transP );
266 
267     if (hmm->obsProb != NULL)
268     {
269         int* tmp = ((int*)(hmm->obsProb)) - 3;
270         icvFree( &(tmp)  );
271     }
272 
273     icvFree( &(hmm->u.state->mu) );
274     icvFree( &(hmm->u.state) );
275 
276     phmm[0] = NULL;
277 
278     return CV_NO_ERR;
279 }
280 
281 /*can be used in CHMM & DHMM */
282 CvStatus icvUniform1DSegm( Cv1DObsInfo* obs_info, CvEHMM* hmm )
283 {
284     /* implementation is very bad */
285     int  i;
286     CvEHMMState* first_state;
287 
288     /* check arguments */
289     if ( !obs_info || !hmm ) return CV_NULLPTR_ERR;
290 
291     first_state = hmm->u.state;
292 
293     for (i = 0; i < obs_info->obs_x; i++)
294     {
295         //bad line (division )
296         int state = (i * hmm->num_states)/obs_info->obs_x;
297         obs_info->state[i] = state;
298     }
299     return CV_NO_ERR;
300 }
301 
302 
303 
304 /*F///////////////////////////////////////////////////////////////////////////////////////
305 //    Name: InitMixSegm
306 //    Purpose: The function implements the mixture segmentation of the states of the embedded HMM
307 //    Context: used with the Viterbi training of the embedded HMM
308 //             Function uses K-Means algorithm for clustering
309 //
310 //    Parameters:  obs_info_array - array of pointers to image observations
311 //                 num_img - length of above array
312 //                 hmm - pointer to HMM structure
313 //
314 //    Returns: error status
315 //
316 //    Notes:
317 //F*/
318 CvStatus icvInit1DMixSegm(Cv1DObsInfo** obs_info_array, int num_img, CvEHMM* hmm)
319 {
320     int  k, i, j;
321     int* num_samples; /* number of observations in every state */
322     int* counter;     /* array of counters for every state */
323 
324     int**  a_class;   /* for every state - characteristic array */
325 
326     CvVect32f** samples; /* for every state - pointer to observation vectors */
327     int***  samples_mix;   /* for every state - array of pointers to vectors mixtures */
328 
329     CvTermCriteria criteria = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER,
330                                               1000,    /* iter */
331                                               0.01f ); /* eps  */
332 
333     int total = hmm->num_states;
334     CvEHMMState* first_state = hmm->u.state;
335 
336     /* for every state integer is allocated - number of vectors in state */
337     num_samples = (int*)icvAlloc( total * sizeof(int) );
338 
339     /* integer counter is allocated for every state */
340     counter = (int*)icvAlloc( total * sizeof(int) );
341 
342     samples = (CvVect32f**)icvAlloc( total * sizeof(CvVect32f*) );
343     samples_mix = (int***)icvAlloc( total * sizeof(int**) );
344 
345     /* clear */
346     memset( num_samples, 0 , total*sizeof(int) );
347     memset( counter, 0 , total*sizeof(int) );
348 
349 
350     /* for every state the number of vectors which belong to it is computed (smth. like histogram) */
351     for (k = 0; k < num_img; k++)
352     {
353         CvImgObsInfo* obs = obs_info_array[k];
354 
355         for (i = 0; i < obs->obs_x; i++)
356         {
357             int state = obs->state[ i ];
358             num_samples[state] += 1;
359         }
360     }
361 
362     /* for every state int* is allocated */
363     a_class = (int**)icvAlloc( total*sizeof(int*) );
364 
365     for (i = 0; i < total; i++)
366     {
367         a_class[i] = (int*)icvAlloc( num_samples[i] * sizeof(int) );
368         samples[i] = (CvVect32f*)icvAlloc( num_samples[i] * sizeof(CvVect32f) );
369         samples_mix[i] = (int**)icvAlloc( num_samples[i] * sizeof(int*) );
370     }
371 
372     /* for every state vectors which belong to state are gathered */
373     for (k = 0; k < num_img; k++)
374     {
375         CvImgObsInfo* obs = obs_info_array[k];
376         int num_obs = obs->obs_x;
377         float* vector = obs->obs;
378 
379         for (i = 0; i < num_obs; i++, vector+=obs->obs_size )
380         {
381             int state = obs->state[i];
382 
383             samples[state][counter[state]] = vector;
384             samples_mix[state][counter[state]] = &(obs->mix[i]);
385             counter[state]++;
386         }
387     }
388 
389     /* clear counters */
390     memset( counter, 0, total*sizeof(int) );
391 
392     /* do the actual clustering using the K Means algorithm */
393     for (i = 0; i < total; i++)
394     {
395         if ( first_state[i].num_mix == 1)
396         {
397             for (k = 0; k < num_samples[i]; k++)
398             {
399                 /* all vectors belong to one mixture */
400                 a_class[i][k] = 0;
401             }
402         }
403         else if( num_samples[i] )
404         {
405             /* clusterize vectors  */
406             icvKMeans( first_state[i].num_mix, samples[i], num_samples[i],
407                 obs_info_array[0]->obs_size, criteria, a_class[i] );
408         }
409     }
410 
411     /* for every vector number of mixture is assigned */
412     for( i = 0; i < total; i++ )
413     {
414         for (j = 0; j < num_samples[i]; j++)
415         {
416             samples_mix[i][j][0] = a_class[i][j];
417         }
418     }
419 
420    for (i = 0; i < total; i++)
421     {
422         icvFree( &(a_class[i]) );
423         icvFree( &(samples[i]) );
424         icvFree( &(samples_mix[i]) );
425     }
426 
427     icvFree( &a_class );
428     icvFree( &samples );
429     icvFree( &samples_mix );
430     icvFree( &counter );
431     icvFree( &num_samples );
432 
433 
434     return CV_NO_ERR;
435 }
436 
437 /*F///////////////////////////////////////////////////////////////////////////////////////
438 //    Name: ComputeUniModeGauss
439 //    Purpose: The function computes the Gaussian pdf for a sample vector
440 //    Context:
441 //    Parameters:  obsVeq - pointer to the sample vector
442 //                 mu - pointer to the mean vector of the Gaussian pdf
443 //                 var - pointer to the variance vector of the Gaussian pdf
444 //                 VecSize - the size of sample vector
445 //
446 //    Returns: the pdf of the sample vector given the specified Gaussian
447 //
448 //    Notes:
449 //F*/
450 /*float icvComputeUniModeGauss(CvVect32f vect, CvVect32f mu,
451                               CvVect32f inv_var, float log_var_val, int vect_size)
452 {
453     int n;
454     double tmp;
455     double prob;
456 
457     prob = -log_var_val;
458 
459     for (n = 0; n < vect_size; n++)
460     {
461         tmp = (vect[n] - mu[n]) * inv_var[n];
462         prob = prob - tmp * tmp;
463    }
464    //prob *= 0.5f;
465 
466    return (float)prob;
467 }*/
468 
469 /*F///////////////////////////////////////////////////////////////////////////////////////
470 //    Name: ComputeGaussMixture
471 //    Purpose: The function computes the mixture Gaussian pdf of a sample vector.
472 //    Context:
473 //    Parameters:  obsVeq - pointer to the sample vector
474 //                 mu  - two-dimensional pointer to the mean vector of the Gaussian pdf;
475 //                       the first dimension is indexed over the number of mixtures and
476 //                       the second dimension is indexed along the size of the mean vector
477 //                 var - two-dimensional pointer to the variance vector of the Gaussian pdf;
478 //                       the first dimension is indexed over the number of mixtures and
479 //                       the second dimension is indexed along the size of the variance vector
480 //                 VecSize - the size of sample vector
481 //                 weight - pointer to the wights of the Gaussian mixture
482 //                 NumMix - the number of Gaussian mixtures
483 //
484 //    Returns: the pdf of the sample vector given the specified Gaussian mixture.
485 //
486 //    Notes:
487 //F*/
488 /* Calculate probability of observation at state in logarithmic scale*/
489 /*float icvComputeGaussMixture( CvVect32f vect, float* mu,
490                                 float* inv_var, float* log_var_val,
491                                 int vect_size, float* weight, int num_mix )
492 {
493     double prob, l_prob;
494 
495     prob = 0.0f;
496 
497     if (num_mix == 1)
498     {
499         return icvComputeUniModeGauss( vect, mu, inv_var, log_var_val[0], vect_size);
500     }
501     else
502     {
503         int m;
504         for (m = 0; m < num_mix; m++)
505         {
506             if ( weight[m] > 0.0)
507             {
508                 l_prob = icvComputeUniModeGauss(vect, mu + m*vect_size,
509                                                         inv_var + m * vect_size,
510                                                         log_var_val[m],
511                                                         vect_size);
512 
513                 prob = prob + weight[m]*exp((double)l_prob);
514             }
515         }
516         prob = log(prob);
517     }
518     return (float)prob;
519 }
520 */
521 
522 /*F///////////////////////////////////////////////////////////////////////////////////////
523 //    Name: EstimateObsProb
524 //    Purpose: The function computes the probability of every observation in every state
525 //    Context:
526 //    Parameters:  obs_info - observations
527 //                 hmm      - hmm
528 //    Returns: error status
529 //
530 //    Notes:
531 //F*/
532 CvStatus icvEstimate1DObsProb(CvImgObsInfo* obs_info, CvEHMM* hmm )
533 {
534     int j;
535     int total_states = 0;
536 
537     /* check if matrix exist and check current size
538        if not sufficient - realloc */
539     int status = 0; /* 1 - not allocated, 2 - allocated but small size,
540                        3 - size is enough, but distribution is bad, 0 - all ok */
541 
542     /*for( j = 0; j < hmm->num_states; j++ )
543     {
544        total_states += hmm->u.ehmm[j].num_states;
545     }*/
546     total_states = hmm->num_states;
547 
548     if ( hmm->obsProb == NULL )
549     {
550         /* allocare memory */
551         int need_size = ( obs_info->obs_x /* * obs_info->obs_y*/ * total_states * sizeof(float) /* +
552                           obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f) */);
553 
554         int* buffer = (int*)icvAlloc( need_size + 3 * sizeof(int) );
555         buffer[0] = need_size;
556         buffer[1] = obs_info->obs_y;
557         buffer[2] = obs_info->obs_x;
558         hmm->obsProb = (float**) (buffer + 3);
559         status = 3;
560 
561     }
562     else
563     {
564         /* check current size */
565         int* total= (int*)(((int*)(hmm->obsProb)) - 3);
566         int need_size = ( obs_info->obs_x /* * obs_info->obs_y*/ * total_states * sizeof(float) /* +
567                            obs_info->obs_y * hmm->num_states * sizeof( CvMatr32f(float*)  )*/ );
568 
569         assert( sizeof(float*) == sizeof(int) );
570 
571         if ( need_size > (*total) )
572         {
573             int* buffer = ((int*)(hmm->obsProb)) - 3;
574             icvFree( &buffer);
575             buffer = (int*)icvAlloc( need_size + 3);
576             buffer[0] = need_size;
577             buffer[1] = obs_info->obs_y;
578             buffer[2] = obs_info->obs_x;
579 
580             hmm->obsProb = (float**)(buffer + 3);
581 
582             status = 3;
583         }
584     }
585     if (!status)
586     {
587         int* obsx = ((int*)(hmm->obsProb)) - 1;
588         //int* obsy = ((int*)(hmm->obsProb)) - 2;
589 
590         assert( /*(*obsy > 0) &&*/ (*obsx > 0) );
591 
592         /* is good distribution? */
593         if ( (obs_info->obs_x > (*obsx) ) /* || (obs_info->obs_y > (*obsy) ) */ )
594             status = 3;
595     }
596 
597     assert( (status == 0) || (status == 3) );
598     /* if bad status - do reallocation actions */
599     if ( status )
600     {
601         float** tmp = hmm->obsProb;
602         //float*  tmpf;
603 
604         /* distribute pointers of ehmm->obsProb */
605 /*        for( i = 0; i < hmm->num_states; i++ )
606         {
607             hmm->u.ehmm[i].obsProb = tmp;
608             tmp += obs_info->obs_y;
609         }
610 */
611         //tmpf = (float*)tmp;
612 
613         /* distribute pointers of ehmm->obsProb[j] */
614 /*      for( i = 0; i < hmm->num_states; i++ )
615         {
616             CvEHMM* ehmm = &( hmm->u.ehmm[i] );
617 
618             for( j = 0; j < obs_info->obs_y; j++ )
619             {
620                 ehmm->obsProb[j] = tmpf;
621                 tmpf += ehmm->num_states * obs_info->obs_x;
622             }
623         }
624 */
625         hmm->obsProb = tmp;
626 
627     }/* end of pointer distribution */
628 
629 #if 1
630     {
631 #define MAX_BUF_SIZE  1200
632         float  local_log_mix_prob[MAX_BUF_SIZE];
633         double local_mix_prob[MAX_BUF_SIZE];
634         int    vect_size = obs_info->obs_size;
635         CvStatus res = CV_NO_ERR;
636 
637         float*  log_mix_prob = local_log_mix_prob;
638         double* mix_prob = local_mix_prob;
639 
640         int  max_size = 0;
641         int  obs_x = obs_info->obs_x;
642 
643         /* calculate temporary buffer size */
644         //for( i = 0; i < hmm->num_states; i++ )
645         //{
646         //    CvEHMM* ehmm = &(hmm->u.ehmm[i]);
647             CvEHMMState* state = hmm->u.state;
648 
649             int max_mix = 0;
650             for( j = 0; j < hmm->num_states; j++ )
651             {
652                 int t = state[j].num_mix;
653                 if( max_mix < t ) max_mix = t;
654             }
655             max_mix *= hmm->num_states;
656             /*if( max_size < max_mix )*/ max_size = max_mix;
657         //}
658 
659         max_size *= obs_x * vect_size;
660 
661         /* allocate buffer */
662         if( max_size > MAX_BUF_SIZE )
663         {
664             log_mix_prob = (float*)icvAlloc( max_size*(sizeof(float) + sizeof(double)));
665             if( !log_mix_prob ) return CV_OUTOFMEM_ERR;
666             mix_prob = (double*)(log_mix_prob + max_size);
667         }
668 
669         memset( log_mix_prob, 0, max_size*sizeof(float));
670 
671         /*****************computing probabilities***********************/
672 
673         /* loop through external states */
674         //for( i = 0; i < hmm->num_states; i++ )
675         {
676         //    CvEHMM* ehmm = &(hmm->u.ehmm[i]);
677             CvEHMMState* state = hmm->u.state;
678 
679             int max_mix = 0;
680             int n_states = hmm->num_states;
681 
682             /* determine maximal number of mixtures (again) */
683             for( j = 0; j < hmm->num_states; j++ )
684             {
685                 int t = state[j].num_mix;
686                 if( max_mix < t ) max_mix = t;
687             }
688 
689             /* loop through rows of the observation matrix */
690             //for( j = 0; j < obs_info->obs_y; j++ )
691             {
692                 int  m, n;
693 
694                 float* obs = obs_info->obs;/* + j * obs_x * vect_size; */
695                 float* log_mp = max_mix > 1 ? log_mix_prob : (float*)(hmm->obsProb);
696                 double* mp = mix_prob;
697 
698                 /* several passes are done below */
699 
700                 /* 1. calculate logarithms of probabilities for each mixture */
701 
702                 /* loop through mixtures */
703     /*  !!!! */     for( m = 0; m < max_mix; m++ )
704                 {
705                     /* set pointer to first observation in the line */
706                     float* vect = obs;
707 
708                     /* cycles through obseravtions in the line */
709                     for( n = 0; n < obs_x; n++, vect += vect_size, log_mp += n_states )
710                     {
711                         int k, l;
712                         for( l = 0; l < n_states; l++ )
713                         {
714                             if( state[l].num_mix > m )
715                             {
716                                 float* mu = state[l].mu + m*vect_size;
717                                 float* inv_var = state[l].inv_var + m*vect_size;
718                                 double prob = -state[l].log_var_val[m];
719                                 for( k = 0; k < vect_size; k++ )
720                                 {
721                                     double t = (vect[k] - mu[k])*inv_var[k];
722                                     prob -= t*t;
723                                 }
724                                 log_mp[l] = MAX( (float)prob, -500 );
725                             }
726                         }
727                     }
728                 }
729 
730                 /* skip the rest if there is a single mixture */
731                 if( max_mix != 1 )
732                 {
733                     /* 2. calculate exponent of log_mix_prob
734                           (i.e. probability for each mixture) */
735                     res = icvbExp_32f64f( log_mix_prob, mix_prob,
736                                             max_mix * obs_x * n_states );
737                     if( res < 0 ) goto processing_exit;
738 
739                     /* 3. sum all mixtures with weights */
740                     /* 3a. first mixture - simply scale by weight */
741                     for( n = 0; n < obs_x; n++, mp += n_states )
742                     {
743                         int l;
744                         for( l = 0; l < n_states; l++ )
745                         {
746                             mp[l] *= state[l].weight[0];
747                         }
748                     }
749 
750                     /* 3b. add other mixtures */
751                     for( m = 1; m < max_mix; m++ )
752                     {
753                         int ofs = -m*obs_x*n_states;
754                         for( n = 0; n < obs_x; n++, mp += n_states )
755                         {
756                             int l;
757                             for( l = 0; l < n_states; l++ )
758                             {
759                                 if( m < state[l].num_mix )
760                                 {
761                                     mp[l + ofs] += mp[l] * state[l].weight[m];
762                                 }
763                             }
764                         }
765                     }
766 
767                     /* 4. Put logarithms of summary probabilities to the destination matrix */
768                     res = icvbLog_64f32f( mix_prob, (float*)(hmm->obsProb),//[j],
769                                             obs_x * n_states );
770                     if( res < 0 ) goto processing_exit;
771                 }
772             }
773         }
774 
775 processing_exit:
776 
777         if( log_mix_prob != local_log_mix_prob ) icvFree( &log_mix_prob );
778         return res;
779 #undef MAX_BUF_SIZE
780     }
781 #else
782 /*    for( i = 0; i < hmm->num_states; i++ )
783     {
784         CvEHMM* ehmm = &(hmm->u.ehmm[i]);
785         CvEHMMState* state = ehmm->u.state;
786 
787         for( j = 0; j < obs_info->obs_y; j++ )
788         {
789             int k,m;
790 
791             int obs_index = j * obs_info->obs_x;
792 
793             float* B = ehmm->obsProb[j];
794 
795             // cycles through obs and states
796             for( k = 0; k < obs_info->obs_x; k++ )
797             {
798                 CvVect32f vect = (obs_info->obs) + (obs_index + k) * vect_size;
799 
800                 float* matr_line = B + k * ehmm->num_states;
801 
802                 for( m = 0; m < ehmm->num_states; m++ )
803                 {
804                     matr_line[m] = icvComputeGaussMixture( vect, state[m].mu, state[m].inv_var,
805                                                              state[m].log_var_val, vect_size, state[m].weight,
806                                                              state[m].num_mix );
807                 }
808             }
809         }
810     }
811 */
812 #endif
813 }
814 
815 
816 /*F///////////////////////////////////////////////////////////////////////////////////////
817 //    Name: EstimateTransProb
818 //    Purpose: The function calculates the state and super state transition probabilities
819 //             of the model given the images,
820 //             the state segmentation and the input parameters
821 //    Context:
822 //    Parameters: obs_info_array - array of pointers to image observations
823 //                num_img - length of above array
824 //                hmm - pointer to HMM structure
825 //    Returns: void
826 //
827 //    Notes:
828 //F*/
829 CvStatus icvEstimate1DTransProb( Cv1DObsInfo** obs_info_array,
830                                  int num_seq,
831                                  CvEHMM* hmm )
832 {
833     int    i, j, k;
834 
835     /* as a counter we will use transP matrix */
836 
837     /* initialization */
838 
839     /* clear transP */
840     icvSetZero_32f( hmm->transP, hmm->num_states, hmm->num_states );
841 
842 
843     /* compute the counters */
844     for (i = 0; i < num_seq; i++)
845     {
846         int counter = 0;
847         Cv1DObsInfo* info = obs_info_array[i];
848 
849         for (k = 0; k < info->obs_x; k++, counter++)
850         {
851             /* compute how many transitions from state to state
852                occured */
853             int state;
854             int nextstate;
855 
856             state = info->state[counter];
857 
858             if (k < info->obs_x - 1)
859             {
860                 int transP_size = hmm->num_states;
861 
862                 nextstate = info->state[counter+1];
863                 hmm->transP[ state * transP_size + nextstate] += 1;
864             }
865         }
866     }
867 
868     /* estimate superstate matrix */
869     for( i = 0; i < hmm->num_states; i++)
870     {
871         float total = 0;
872         float inv_total;
873         for( j = 0; j < hmm->num_states; j++)
874         {
875             total += hmm->transP[i * hmm->num_states + j];
876         }
877         //assert( total );
878 
879         inv_total = total ? 1.f/total : 0;
880 
881         for( j = 0; j < hmm->num_states; j++)
882         {
883             hmm->transP[i * hmm->num_states + j] =
884                 hmm->transP[i * hmm->num_states + j] ?
885                 (float)log( hmm->transP[i * hmm->num_states + j] * inv_total ) : -BIG_FLT;
886         }
887     }
888 
889     return CV_NO_ERR;
890 }
891 
892 
893 /*F///////////////////////////////////////////////////////////////////////////////////////
894 //    Name: MixSegmL2
895 //    Purpose: The function implements the mixture segmentation of the states of the embedded HMM
896 //    Context: used with the Viterbi training of the embedded HMM
897 //
898 //    Parameters:
899 //             obs_info_array
900 //             num_img
901 //             hmm
902 //    Returns: void
903 //
904 //    Notes:
905 //F*/
906 CvStatus icv1DMixSegmL2(CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm )
907 {
908     int     k, i, m;
909 
910     CvEHMMState* state = hmm->u.state;
911 
912     for (k = 0; k < num_img; k++)
913     {
914         //int counter = 0;
915         CvImgObsInfo* info = obs_info_array[k];
916 
917         for (i = 0; i < info->obs_x; i++)
918         {
919             int e_state = info->state[i];
920             float min_dist;
921 
922             min_dist = icvSquareDistance((info->obs) + (i * info->obs_size),
923                                                state[e_state].mu, info->obs_size);
924             info->mix[i] = 0;
925 
926             for (m = 1; m < state[e_state].num_mix; m++)
927             {
928                 float dist=icvSquareDistance( (info->obs) + (i * info->obs_size),
929                                                state[e_state].mu + m * info->obs_size,
930                                                info->obs_size);
931                 if (dist < min_dist)
932                 {
933                     min_dist = dist;
934                     /* assign mixture with smallest distance */
935                     info->mix[i] = m;
936                 }
937             }
938         }
939     }
940     return CV_NO_ERR;
941 }
942 
943 /*F///////////////////////////////////////////////////////////////////////////////////////
944 //    Name: icvEViterbi
945 //    Purpose: The function calculates the embedded Viterbi algorithm
946 //             for 1 image
947 //    Context:
948 //    Parameters:
949 //             obs_info - observations
950 //             hmm      - HMM
951 //
952 //    Returns: the Embedded Viterbi probability (float)
953 //             and do state segmentation of observations
954 //
955 //    Notes:
956 //F*/
957 float icvViterbi(Cv1DObsInfo* obs_info, CvEHMM* hmm)
958 {
959     int    i, counter;
960     float  log_likelihood;
961 
962     //CvEHMMState* first_state = hmm->u.state;
963 
964     /* memory allocation for superB */
965     /*CvMatr32f superB = picvCreateMatrix_32f(hmm->num_states, obs_info->obs_x );*/
966 
967     /* memory allocation for q */
968     int* super_q = (int*)icvAlloc( obs_info->obs_x * sizeof(int) );
969 
970     /* perform Viterbi segmentation (process 1D HMM) */
971     icvViterbiSegmentation( hmm->num_states, obs_info->obs_x,
972                             hmm->transP, (float*)(hmm->obsProb), 0,
973                             _CV_LAST_STATE, &super_q, obs_info->obs_x,
974                              obs_info->obs_x, &log_likelihood );
975 
976     log_likelihood /= obs_info->obs_x ;
977 
978     counter = 0;
979     /* assign new state to observation vectors */
980     for (i = 0; i < obs_info->obs_x; i++)
981     {
982          int state = super_q[i];
983          obs_info->state[i] = state;
984     }
985 
986     /* memory deallocation for superB */
987     /*picvDeleteMatrix( superB );*/
988     icvFree( &super_q );
989 
990     return log_likelihood;
991 }
992 
993 CvStatus icvEstimate1DHMMStateParams(CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm)
994 
995 {
996     /* compute gamma, weights, means, vars */
997     int k, i, j, m;
998     int counter = 0;
999     int total = 0;
1000     int vect_len = obs_info_array[0]->obs_size;
1001 
1002     float start_log_var_val = LN2PI * vect_len;
1003 
1004     CvVect32f tmp_vect = icvCreateVector_32f( vect_len );
1005 
1006     CvEHMMState* first_state = hmm->u.state;
1007 
1008     assert( sizeof(float) == sizeof(int) );
1009 
1010     total+= hmm->num_states;
1011 
1012     /***************Gamma***********************/
1013     /* initialize gamma */
1014     for( i = 0; i < total; i++ )
1015     {
1016         for (m = 0; m < first_state[i].num_mix; m++)
1017         {
1018             ((int*)(first_state[i].weight))[m] = 0;
1019         }
1020     }
1021 
1022     /* maybe gamma must be computed in mixsegm process ?? */
1023 
1024     /* compute gamma */
1025     counter = 0;
1026     for (k = 0; k < num_img; k++)
1027     {
1028         CvImgObsInfo* info = obs_info_array[k];
1029         int num_obs = info->obs_y * info->obs_x;
1030 
1031         for (i = 0; i < num_obs; i++)
1032         {
1033             int state, mixture;
1034             state = info->state[i];
1035             mixture = info->mix[i];
1036             /* computes gamma - number of observations corresponding
1037                to every mixture of every state */
1038             ((int*)(first_state[state].weight))[mixture] += 1;
1039         }
1040     }
1041     /***************Mean and Var***********************/
1042     /* compute means and variances of every item */
1043     /* initially variance placed to inv_var */
1044     /* zero mean and variance */
1045     for (i = 0; i < total; i++)
1046     {
1047         memset( (void*)first_state[i].mu, 0, first_state[i].num_mix * vect_len *
1048                                                                          sizeof(float) );
1049         memset( (void*)first_state[i].inv_var, 0, first_state[i].num_mix * vect_len *
1050                                                                          sizeof(float) );
1051     }
1052 
1053     /* compute sums */
1054     for (i = 0; i < num_img; i++)
1055     {
1056         CvImgObsInfo* info = obs_info_array[i];
1057         int total_obs = info->obs_x;// * info->obs_y;
1058 
1059         float* vector = info->obs;
1060 
1061         for (j = 0; j < total_obs; j++, vector+=vect_len )
1062         {
1063             int state = info->state[j];
1064             int mixture = info->mix[j];
1065 
1066             CvVect32f mean  = first_state[state].mu + mixture * vect_len;
1067             CvVect32f mean2 = first_state[state].inv_var + mixture * vect_len;
1068 
1069             icvAddVector_32f( mean, vector, mean, vect_len );
1070             icvAddSquare_32f_C1IR( vector, vect_len * sizeof(float),
1071                                     mean2, vect_len * sizeof(float), cvSize(vect_len, 1) );
1072         }
1073     }
1074 
1075     /*compute the means and variances */
1076     /* assume gamma already computed */
1077     counter = 0;
1078     for (i = 0; i < total; i++)
1079     {
1080         CvEHMMState* state = &(first_state[i]);
1081 
1082         for (m = 0; m < state->num_mix; m++)
1083         {
1084             int k;
1085             CvVect32f mu  = state->mu + m * vect_len;
1086             CvVect32f invar = state->inv_var + m * vect_len;
1087 
1088             if ( ((int*)state->weight)[m] > 1)
1089             {
1090                 float inv_gamma = 1.f/((int*)(state->weight))[m];
1091 
1092                 icvScaleVector_32f( mu, mu, vect_len, inv_gamma);
1093                 icvScaleVector_32f( invar, invar, vect_len, inv_gamma);
1094             }
1095 
1096             icvMulVectors_32f(mu, mu, tmp_vect, vect_len);
1097             icvSubVector_32f( invar, tmp_vect, invar, vect_len);
1098 
1099             /* low bound of variance - 0.01 (Ara's experimental result) */
1100             for( k = 0; k < vect_len; k++ )
1101             {
1102                 invar[k] = (invar[k] > 0.01f) ? invar[k] : 0.01f;
1103             }
1104 
1105             /* compute log_var */
1106             state->log_var_val[m] = start_log_var_val;
1107             for( k = 0; k < vect_len; k++ )
1108             {
1109                 state->log_var_val[m] += (float)log( invar[k] );
1110             }
1111 
1112             state->log_var_val[m] *= 0.5;
1113 
1114             /* compute inv_var = 1/sqrt(2*variance) */
1115             icvScaleVector_32f(invar, invar, vect_len, 2.f );
1116             icvbInvSqrt_32f(invar, invar, vect_len );
1117         }
1118     }
1119 
1120     /***************Weights***********************/
1121     /* normilize gammas - i.e. compute mixture weights */
1122 
1123     //compute weights
1124     for (i = 0; i < total; i++)
1125     {
1126         int gamma_total = 0;
1127         float norm;
1128 
1129         for (m = 0; m < first_state[i].num_mix; m++)
1130         {
1131             gamma_total += ((int*)(first_state[i].weight))[m];
1132         }
1133 
1134         norm = gamma_total ? (1.f/(float)gamma_total) : 0.f;
1135 
1136         for (m = 0; m < first_state[i].num_mix; m++)
1137         {
1138             first_state[i].weight[m] = ((int*)(first_state[i].weight))[m] * norm;
1139         }
1140     }
1141 
1142     icvDeleteVector( tmp_vect);
1143     return CV_NO_ERR;
1144 }
1145 
1146 
1147 
1148 
1149 
1150 #endif
1151 
1152