1 #if !defined(_FX_JPEG_TURBO_)
2 /*
3  * jmemmgr.c
4  *
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the JPEG system-independent memory management
10  * routines.  This code is usable across a wide variety of machines; most
11  * of the system dependencies have been isolated in a separate file.
12  * The major functions provided here are:
13  *   * pool-based allocation and freeing of memory;
14  *   * policy decisions about how to divide available memory among the
15  *     virtual arrays;
16  *   * control logic for swapping virtual arrays between main memory and
17  *     backing storage.
18  * The separate system-dependent file provides the actual backing-storage
19  * access code, and it contains the policy decision about how much total
20  * main memory to use.
21  * This file is system-dependent in the sense that some of its functions
22  * are unnecessary in some systems.  For example, if there is enough virtual
23  * memory so that backing storage will never be used, much of the virtual
24  * array control logic could be removed.  (Of course, if you have that much
25  * memory then you shouldn't care about a little bit of unused code...)
26  */
27 
28 #define JPEG_INTERNALS
29 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
30 #include "jinclude.h"
31 #include "jpeglib.h"
32 #include "jmemsys.h"		/* import the system-dependent declarations */
33 
34 #define NO_GETENV	/* XYQ: 2007-5-22 Don't use it */
35 
36 #ifndef NO_GETENV
37 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
38 extern char * getenv JPP((const char * name));
39 #endif
40 #endif
41 
42 
43 /*
44  * Some important notes:
45  *   The allocation routines provided here must never return NULL.
46  *   They should exit to error_exit if unsuccessful.
47  *
48  *   It's not a good idea to try to merge the sarray and barray routines,
49  *   even though they are textually almost the same, because samples are
50  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
51  *   in machines where byte pointers have a different representation from
52  *   word pointers, the resulting machine code could not be the same.
53  */
54 
55 
56 /*
57  * Many machines require storage alignment: longs must start on 4-byte
58  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
59  * always returns pointers that are multiples of the worst-case alignment
60  * requirement, and we had better do so too.
61  * There isn't any really portable way to determine the worst-case alignment
62  * requirement.  This module assumes that the alignment requirement is
63  * multiples of sizeof(ALIGN_TYPE).
64  * By default, we define ALIGN_TYPE as double.  This is necessary on some
65  * workstations (where doubles really do need 8-byte alignment) and will work
66  * fine on nearly everything.  If your machine has lesser alignment needs,
67  * you can save a few bytes by making ALIGN_TYPE smaller.
68  * The only place I know of where this will NOT work is certain Macintosh
69  * 680x0 compilers that define double as a 10-byte IEEE extended float.
70  * Doing 10-byte alignment is counterproductive because longwords won't be
71  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
72  * such a compiler.
73  */
74 
75 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
76 #define ALIGN_TYPE  double
77 #endif
78 
79 
80 /*
81  * We allocate objects from "pools", where each pool is gotten with a single
82  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
83  * overhead within a pool, except for alignment padding.  Each pool has a
84  * header with a link to the next pool of the same class.
85  * Small and large pool headers are identical except that the latter's
86  * link pointer must be FAR on 80x86 machines.
87  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
88  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
89  * of the alignment requirement of ALIGN_TYPE.
90  */
91 
92 typedef union small_pool_struct * small_pool_ptr;
93 
94 typedef union small_pool_struct {
95   struct {
96     small_pool_ptr next;	/* next in list of pools */
97     size_t bytes_used;		/* how many bytes already used within pool */
98     size_t bytes_left;		/* bytes still available in this pool */
99   } hdr;
100   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
101 } small_pool_hdr;
102 
103 typedef union large_pool_struct FAR * large_pool_ptr;
104 
105 typedef union large_pool_struct {
106   struct {
107     large_pool_ptr next;	/* next in list of pools */
108     size_t bytes_used;		/* how many bytes already used within pool */
109     size_t bytes_left;		/* bytes still available in this pool */
110   } hdr;
111   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
112 } large_pool_hdr;
113 
114 
115 /*
116  * Here is the full definition of a memory manager object.
117  */
118 
119 typedef struct {
120   struct jpeg_memory_mgr pub;	/* public fields */
121 
122   /* Each pool identifier (lifetime class) names a linked list of pools. */
123   small_pool_ptr small_list[JPOOL_NUMPOOLS];
124   large_pool_ptr large_list[JPOOL_NUMPOOLS];
125 
126   /* Since we only have one lifetime class of virtual arrays, only one
127    * linked list is necessary (for each datatype).  Note that the virtual
128    * array control blocks being linked together are actually stored somewhere
129    * in the small-pool list.
130    */
131   jvirt_sarray_ptr virt_sarray_list;
132   jvirt_barray_ptr virt_barray_list;
133 
134   /* This counts total space obtained from jpeg_get_small/large */
135   long total_space_allocated;
136 
137   /* alloc_sarray and alloc_barray set this value for use by virtual
138    * array routines.
139    */
140   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
141 } my_memory_mgr;
142 
143 typedef my_memory_mgr * my_mem_ptr;
144 
145 
146 /*
147  * The control blocks for virtual arrays.
148  * Note that these blocks are allocated in the "small" pool area.
149  * System-dependent info for the associated backing store (if any) is hidden
150  * inside the backing_store_info struct.
151  */
152 
153 struct jvirt_sarray_control {
154   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
155   JDIMENSION rows_in_array;	/* total virtual array height */
156   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
157   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
158   JDIMENSION rows_in_mem;	/* height of memory buffer */
159   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
160   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
161   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
162   boolean pre_zero;		/* pre-zero mode requested? */
163   boolean dirty;		/* do current buffer contents need written? */
164   boolean b_s_open;		/* is backing-store data valid? */
165   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
166   backing_store_info b_s_info;	/* System-dependent control info */
167 };
168 
169 struct jvirt_barray_control {
170   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
171   JDIMENSION rows_in_array;	/* total virtual array height */
172   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
173   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
174   JDIMENSION rows_in_mem;	/* height of memory buffer */
175   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
176   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
177   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
178   boolean pre_zero;		/* pre-zero mode requested? */
179   boolean dirty;		/* do current buffer contents need written? */
180   boolean b_s_open;		/* is backing-store data valid? */
181   jvirt_barray_ptr next;	/* link to next virtual barray control block */
182   backing_store_info b_s_info;	/* System-dependent control info */
183 };
184 
185 
186 #ifdef MEM_STATS		/* optional extra stuff for statistics */
187 
188 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)189 print_mem_stats (j_common_ptr cinfo, int pool_id)
190 {
191   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
192   small_pool_ptr shdr_ptr;
193   large_pool_ptr lhdr_ptr;
194 
195   /* Since this is only a debugging stub, we can cheat a little by using
196    * fprintf directly rather than going through the trace message code.
197    * This is helpful because message parm array can't handle longs.
198    */
199   FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
200 	  pool_id, mem->total_space_allocated);
201 
202   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
203        lhdr_ptr = lhdr_ptr->hdr.next) {
204     FXSYS_fprintf(stderr, "  Large chunk used %ld\n",
205 	    (long) lhdr_ptr->hdr.bytes_used);
206   }
207 
208   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
209        shdr_ptr = shdr_ptr->hdr.next) {
210     FXSYS_fprintf(stderr, "  Small chunk used %ld free %ld\n",
211 	    (long) shdr_ptr->hdr.bytes_used,
212 	    (long) shdr_ptr->hdr.bytes_left);
213   }
214 }
215 
216 #endif /* MEM_STATS */
217 
218 
219 LOCAL(void)
out_of_memory(j_common_ptr cinfo,int which)220 out_of_memory (j_common_ptr cinfo, int which)
221 /* Report an out-of-memory error and stop execution */
222 /* If we compiled MEM_STATS support, report alloc requests before dying */
223 {
224 #ifdef MEM_STATS
225   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
226 #endif
227   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
228 }
229 
230 
231 /*
232  * Allocation of "small" objects.
233  *
234  * For these, we use pooled storage.  When a new pool must be created,
235  * we try to get enough space for the current request plus a "slop" factor,
236  * where the slop will be the amount of leftover space in the new pool.
237  * The speed vs. space tradeoff is largely determined by the slop values.
238  * A different slop value is provided for each pool class (lifetime),
239  * and we also distinguish the first pool of a class from later ones.
240  * NOTE: the values given work fairly well on both 16- and 32-bit-int
241  * machines, but may be too small if longs are 64 bits or more.
242  */
243 
244 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
245 {
246 	1600,			/* first PERMANENT pool */
247 	16000			/* first IMAGE pool */
248 };
249 
250 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
251 {
252 	0,			/* additional PERMANENT pools */
253 	5000			/* additional IMAGE pools */
254 };
255 
256 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
257 
258 
259 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)260 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
261 /* Allocate a "small" object */
262 {
263   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
264   small_pool_ptr hdr_ptr, prev_hdr_ptr;
265   char * data_ptr;
266   size_t odd_bytes, min_request, slop;
267 
268   /* Check for unsatisfiable request (do now to ensure no overflow below) */
269   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
270     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
271 
272   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
273   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
274   if (odd_bytes > 0)
275     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
276 
277   /* See if space is available in any existing pool */
278   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
279     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
280   prev_hdr_ptr = NULL;
281   hdr_ptr = mem->small_list[pool_id];
282   while (hdr_ptr != NULL) {
283     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
284       break;			/* found pool with enough space */
285     prev_hdr_ptr = hdr_ptr;
286     hdr_ptr = hdr_ptr->hdr.next;
287   }
288 
289   /* Time to make a new pool? */
290   if (hdr_ptr == NULL) {
291     /* min_request is what we need now, slop is what will be leftover */
292     min_request = sizeofobject + SIZEOF(small_pool_hdr);
293     if (prev_hdr_ptr == NULL)	/* first pool in class? */
294       slop = first_pool_slop[pool_id];
295     else
296       slop = extra_pool_slop[pool_id];
297     /* Don't ask for more than MAX_ALLOC_CHUNK */
298     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
299       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
300     /* Try to get space, if fail reduce slop and try again */
301     for (;;) {
302       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
303       if (hdr_ptr != NULL)
304 	break;
305       slop /= 2;
306       if (slop < MIN_SLOP)	/* give up when it gets real small */
307 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
308     }
309     mem->total_space_allocated += min_request + slop;
310     /* Success, initialize the new pool header and add to end of list */
311     hdr_ptr->hdr.next = NULL;
312     hdr_ptr->hdr.bytes_used = 0;
313     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
314     if (prev_hdr_ptr == NULL)	/* first pool in class? */
315       mem->small_list[pool_id] = hdr_ptr;
316     else
317       prev_hdr_ptr->hdr.next = hdr_ptr;
318   }
319 
320   /* OK, allocate the object from the current pool */
321   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
322   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
323   hdr_ptr->hdr.bytes_used += sizeofobject;
324   hdr_ptr->hdr.bytes_left -= sizeofobject;
325 
326   return (void *) data_ptr;
327 }
328 
329 
330 /*
331  * Allocation of "large" objects.
332  *
333  * The external semantics of these are the same as "small" objects,
334  * except that FAR pointers are used on 80x86.  However the pool
335  * management heuristics are quite different.  We assume that each
336  * request is large enough that it may as well be passed directly to
337  * jpeg_get_large; the pool management just links everything together
338  * so that we can free it all on demand.
339  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
340  * structures.  The routines that create these structures (see below)
341  * deliberately bunch rows together to ensure a large request size.
342  */
343 
344 METHODDEF(void FAR *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)345 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
346 /* Allocate a "large" object */
347 {
348   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
349   large_pool_ptr hdr_ptr;
350   size_t odd_bytes;
351 
352   /* Check for unsatisfiable request (do now to ensure no overflow below) */
353   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
354     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
355 
356   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
357   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
358   if (odd_bytes > 0)
359     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
360 
361   /* Always make a new pool */
362   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
363     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
364 
365   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
366 					    SIZEOF(large_pool_hdr));
367   if (hdr_ptr == NULL)
368     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
369   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
370 
371   /* Success, initialize the new pool header and add to list */
372   hdr_ptr->hdr.next = mem->large_list[pool_id];
373   /* We maintain space counts in each pool header for statistical purposes,
374    * even though they are not needed for allocation.
375    */
376   hdr_ptr->hdr.bytes_used = sizeofobject;
377   hdr_ptr->hdr.bytes_left = 0;
378   mem->large_list[pool_id] = hdr_ptr;
379 
380   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
381 }
382 
383 
384 /*
385  * Creation of 2-D sample arrays.
386  * The pointers are in near heap, the samples themselves in FAR heap.
387  *
388  * To minimize allocation overhead and to allow I/O of large contiguous
389  * blocks, we allocate the sample rows in groups of as many rows as possible
390  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
391  * NB: the virtual array control routines, later in this file, know about
392  * this chunking of rows.  The rowsperchunk value is left in the mem manager
393  * object so that it can be saved away if this sarray is the workspace for
394  * a virtual array.
395  */
396 
397 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)398 alloc_sarray (j_common_ptr cinfo, int pool_id,
399 	      JDIMENSION samplesperrow, JDIMENSION numrows)
400 /* Allocate a 2-D sample array */
401 {
402   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
403   JSAMPARRAY result;
404   JSAMPROW workspace;
405   JDIMENSION rowsperchunk, currow, i;
406   long ltemp;
407 
408   /* Calculate max # of rows allowed in one allocation chunk */
409   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
410 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
411   if (ltemp <= 0)
412     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
413   if (ltemp < (long) numrows)
414     rowsperchunk = (JDIMENSION) ltemp;
415   else
416     rowsperchunk = numrows;
417   mem->last_rowsperchunk = rowsperchunk;
418 
419   /* Get space for row pointers (small object) */
420   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
421 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
422 
423   /* Get the rows themselves (large objects) */
424   currow = 0;
425   while (currow < numrows) {
426     rowsperchunk = MIN(rowsperchunk, numrows - currow);
427     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
428 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
429 		  * SIZEOF(JSAMPLE)));
430     for (i = rowsperchunk; i > 0; i--) {
431       result[currow++] = workspace;
432       workspace += samplesperrow;
433     }
434   }
435 
436   return result;
437 }
438 
439 
440 /*
441  * Creation of 2-D coefficient-block arrays.
442  * This is essentially the same as the code for sample arrays, above.
443  */
444 
445 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)446 alloc_barray (j_common_ptr cinfo, int pool_id,
447 	      JDIMENSION blocksperrow, JDIMENSION numrows)
448 /* Allocate a 2-D coefficient-block array */
449 {
450   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
451   JBLOCKARRAY result;
452   JBLOCKROW workspace;
453   JDIMENSION rowsperchunk, currow, i;
454   long ltemp;
455 
456   /* Calculate max # of rows allowed in one allocation chunk */
457   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
458 	  ((long) blocksperrow * SIZEOF(JBLOCK));
459   if (ltemp <= 0)
460     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
461   if (ltemp < (long) numrows)
462     rowsperchunk = (JDIMENSION) ltemp;
463   else
464     rowsperchunk = numrows;
465   mem->last_rowsperchunk = rowsperchunk;
466 
467   /* Get space for row pointers (small object) */
468   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
469 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
470 
471   /* Get the rows themselves (large objects) */
472   currow = 0;
473   while (currow < numrows) {
474     rowsperchunk = MIN(rowsperchunk, numrows - currow);
475     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
476 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
477 		  * SIZEOF(JBLOCK)));
478     for (i = rowsperchunk; i > 0; i--) {
479       result[currow++] = workspace;
480       workspace += blocksperrow;
481     }
482   }
483 
484   return result;
485 }
486 
487 
488 /*
489  * About virtual array management:
490  *
491  * The above "normal" array routines are only used to allocate strip buffers
492  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
493  * are handled as "virtual" arrays.  The array is still accessed a strip at a
494  * time, but the memory manager must save the whole array for repeated
495  * accesses.  The intended implementation is that there is a strip buffer in
496  * memory (as high as is possible given the desired memory limit), plus a
497  * backing file that holds the rest of the array.
498  *
499  * The request_virt_array routines are told the total size of the image and
500  * the maximum number of rows that will be accessed at once.  The in-memory
501  * buffer must be at least as large as the maxaccess value.
502  *
503  * The request routines create control blocks but not the in-memory buffers.
504  * That is postponed until realize_virt_arrays is called.  At that time the
505  * total amount of space needed is known (approximately, anyway), so free
506  * memory can be divided up fairly.
507  *
508  * The access_virt_array routines are responsible for making a specific strip
509  * area accessible (after reading or writing the backing file, if necessary).
510  * Note that the access routines are told whether the caller intends to modify
511  * the accessed strip; during a read-only pass this saves having to rewrite
512  * data to disk.  The access routines are also responsible for pre-zeroing
513  * any newly accessed rows, if pre-zeroing was requested.
514  *
515  * In current usage, the access requests are usually for nonoverlapping
516  * strips; that is, successive access start_row numbers differ by exactly
517  * num_rows = maxaccess.  This means we can get good performance with simple
518  * buffer dump/reload logic, by making the in-memory buffer be a multiple
519  * of the access height; then there will never be accesses across bufferload
520  * boundaries.  The code will still work with overlapping access requests,
521  * but it doesn't handle bufferload overlaps very efficiently.
522  */
523 
524 
525 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)526 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
527 		     JDIMENSION samplesperrow, JDIMENSION numrows,
528 		     JDIMENSION maxaccess)
529 /* Request a virtual 2-D sample array */
530 {
531   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
532   jvirt_sarray_ptr result;
533 
534   /* Only IMAGE-lifetime virtual arrays are currently supported */
535   if (pool_id != JPOOL_IMAGE)
536     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
537 
538   /* get control block */
539   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
540 					  SIZEOF(struct jvirt_sarray_control));
541 
542   result->mem_buffer = NULL;	/* marks array not yet realized */
543   result->rows_in_array = numrows;
544   result->samplesperrow = samplesperrow;
545   result->maxaccess = maxaccess;
546   result->pre_zero = pre_zero;
547   result->b_s_open = FALSE;	/* no associated backing-store object */
548   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
549   mem->virt_sarray_list = result;
550 
551   return result;
552 }
553 
554 
555 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)556 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
557 		     JDIMENSION blocksperrow, JDIMENSION numrows,
558 		     JDIMENSION maxaccess)
559 /* Request a virtual 2-D coefficient-block array */
560 {
561   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
562   jvirt_barray_ptr result;
563 
564   /* Only IMAGE-lifetime virtual arrays are currently supported */
565   if (pool_id != JPOOL_IMAGE)
566     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
567 
568   /* get control block */
569   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
570 					  SIZEOF(struct jvirt_barray_control));
571 
572   result->mem_buffer = NULL;	/* marks array not yet realized */
573   result->rows_in_array = numrows;
574   result->blocksperrow = blocksperrow;
575   result->maxaccess = maxaccess;
576   result->pre_zero = pre_zero;
577   result->b_s_open = FALSE;	/* no associated backing-store object */
578   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
579   mem->virt_barray_list = result;
580 
581   return result;
582 }
583 
584 
585 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)586 realize_virt_arrays (j_common_ptr cinfo)
587 /* Allocate the in-memory buffers for any unrealized virtual arrays */
588 {
589   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
590   long space_per_minheight, maximum_space, avail_mem;
591   long minheights, max_minheights;
592   jvirt_sarray_ptr sptr;
593   jvirt_barray_ptr bptr;
594 
595   /* Compute the minimum space needed (maxaccess rows in each buffer)
596    * and the maximum space needed (full image height in each buffer).
597    * These may be of use to the system-dependent jpeg_mem_available routine.
598    */
599   space_per_minheight = 0;
600   maximum_space = 0;
601   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
602     if (sptr->mem_buffer == NULL) { /* if not realized yet */
603       space_per_minheight += (long) sptr->maxaccess *
604 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
605       maximum_space += (long) sptr->rows_in_array *
606 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
607     }
608   }
609   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
610     if (bptr->mem_buffer == NULL) { /* if not realized yet */
611       space_per_minheight += (long) bptr->maxaccess *
612 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
613       maximum_space += (long) bptr->rows_in_array *
614 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
615     }
616   }
617 
618   if (space_per_minheight <= 0)
619     return;			/* no unrealized arrays, no work */
620 
621   /* Determine amount of memory to actually use; this is system-dependent. */
622   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
623 				 mem->total_space_allocated);
624 
625   /* If the maximum space needed is available, make all the buffers full
626    * height; otherwise parcel it out with the same number of minheights
627    * in each buffer.
628    */
629   if (avail_mem >= maximum_space)
630     max_minheights = 1000000000L;
631   else {
632     max_minheights = avail_mem / space_per_minheight;
633     /* If there doesn't seem to be enough space, try to get the minimum
634      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
635      */
636     if (max_minheights <= 0)
637       max_minheights = 1;
638   }
639 
640   /* Allocate the in-memory buffers and initialize backing store as needed. */
641 
642   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
643     if (sptr->mem_buffer == NULL) { /* if not realized yet */
644       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
645       if (minheights <= max_minheights) {
646 	/* This buffer fits in memory */
647 	sptr->rows_in_mem = sptr->rows_in_array;
648       } else {
649 	/* It doesn't fit in memory, create backing store. */
650 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
651 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
652 				(long) sptr->rows_in_array *
653 				(long) sptr->samplesperrow *
654 				(long) SIZEOF(JSAMPLE));
655 	sptr->b_s_open = TRUE;
656       }
657       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
658 				      sptr->samplesperrow, sptr->rows_in_mem);
659       sptr->rowsperchunk = mem->last_rowsperchunk;
660       sptr->cur_start_row = 0;
661       sptr->first_undef_row = 0;
662       sptr->dirty = FALSE;
663     }
664   }
665 
666   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
667     if (bptr->mem_buffer == NULL) { /* if not realized yet */
668       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
669       if (minheights <= max_minheights) {
670 	/* This buffer fits in memory */
671 	bptr->rows_in_mem = bptr->rows_in_array;
672       } else {
673 	/* It doesn't fit in memory, create backing store. */
674 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
675 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
676 				(long) bptr->rows_in_array *
677 				(long) bptr->blocksperrow *
678 				(long) SIZEOF(JBLOCK));
679 	bptr->b_s_open = TRUE;
680       }
681       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
682 				      bptr->blocksperrow, bptr->rows_in_mem);
683       bptr->rowsperchunk = mem->last_rowsperchunk;
684       bptr->cur_start_row = 0;
685       bptr->first_undef_row = 0;
686       bptr->dirty = FALSE;
687     }
688   }
689 }
690 
691 
692 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)693 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
694 /* Do backing store read or write of a virtual sample array */
695 {
696   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
697 
698   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
699   file_offset = ptr->cur_start_row * bytesperrow;
700   /* Loop to read or write each allocation chunk in mem_buffer */
701   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
702     /* One chunk, but check for short chunk at end of buffer */
703     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
704     /* Transfer no more than is currently defined */
705     thisrow = (long) ptr->cur_start_row + i;
706     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
707     /* Transfer no more than fits in file */
708     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
709     if (rows <= 0)		/* this chunk might be past end of file! */
710       break;
711     byte_count = rows * bytesperrow;
712     if (writing)
713       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
714 					    (void FAR *) ptr->mem_buffer[i],
715 					    file_offset, byte_count);
716     else
717       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
718 					   (void FAR *) ptr->mem_buffer[i],
719 					   file_offset, byte_count);
720     file_offset += byte_count;
721   }
722 }
723 
724 
725 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)726 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
727 /* Do backing store read or write of a virtual coefficient-block array */
728 {
729   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
730 
731   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
732   file_offset = ptr->cur_start_row * bytesperrow;
733   /* Loop to read or write each allocation chunk in mem_buffer */
734   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
735     /* One chunk, but check for short chunk at end of buffer */
736     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
737     /* Transfer no more than is currently defined */
738     thisrow = (long) ptr->cur_start_row + i;
739     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
740     /* Transfer no more than fits in file */
741     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
742     if (rows <= 0)		/* this chunk might be past end of file! */
743       break;
744     byte_count = rows * bytesperrow;
745     if (writing)
746       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
747 					    (void FAR *) ptr->mem_buffer[i],
748 					    file_offset, byte_count);
749     else
750       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
751 					   (void FAR *) ptr->mem_buffer[i],
752 					   file_offset, byte_count);
753     file_offset += byte_count;
754   }
755 }
756 
757 
758 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)759 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
760 		    JDIMENSION start_row, JDIMENSION num_rows,
761 		    boolean writable)
762 /* Access the part of a virtual sample array starting at start_row */
763 /* and extending for num_rows rows.  writable is true if  */
764 /* caller intends to modify the accessed area. */
765 {
766   JDIMENSION end_row = start_row + num_rows;
767   JDIMENSION undef_row;
768 
769   /* debugging check */
770   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
771       ptr->mem_buffer == NULL)
772     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
773 
774   /* Make the desired part of the virtual array accessible */
775   if (start_row < ptr->cur_start_row ||
776       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
777     if (! ptr->b_s_open)
778       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
779     /* Flush old buffer contents if necessary */
780     if (ptr->dirty) {
781       do_sarray_io(cinfo, ptr, TRUE);
782       ptr->dirty = FALSE;
783     }
784     /* Decide what part of virtual array to access.
785      * Algorithm: if target address > current window, assume forward scan,
786      * load starting at target address.  If target address < current window,
787      * assume backward scan, load so that target area is top of window.
788      * Note that when switching from forward write to forward read, will have
789      * start_row = 0, so the limiting case applies and we load from 0 anyway.
790      */
791     if (start_row > ptr->cur_start_row) {
792       ptr->cur_start_row = start_row;
793     } else {
794       /* use long arithmetic here to avoid overflow & unsigned problems */
795       long ltemp;
796 
797       ltemp = (long) end_row - (long) ptr->rows_in_mem;
798       if (ltemp < 0)
799 	ltemp = 0;		/* don't fall off front end of file */
800       ptr->cur_start_row = (JDIMENSION) ltemp;
801     }
802     /* Read in the selected part of the array.
803      * During the initial write pass, we will do no actual read
804      * because the selected part is all undefined.
805      */
806     do_sarray_io(cinfo, ptr, FALSE);
807   }
808   /* Ensure the accessed part of the array is defined; prezero if needed.
809    * To improve locality of access, we only prezero the part of the array
810    * that the caller is about to access, not the entire in-memory array.
811    */
812   if (ptr->first_undef_row < end_row) {
813     if (ptr->first_undef_row < start_row) {
814       if (writable)		/* writer skipped over a section of array */
815 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
816       undef_row = start_row;	/* but reader is allowed to read ahead */
817     } else {
818       undef_row = ptr->first_undef_row;
819     }
820     if (writable)
821       ptr->first_undef_row = end_row;
822     if (ptr->pre_zero) {
823       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
824       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
825       end_row -= ptr->cur_start_row;
826       while (undef_row < end_row) {
827 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
828 	undef_row++;
829       }
830     } else {
831       if (! writable)		/* reader looking at undefined data */
832 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
833     }
834   }
835   /* Flag the buffer dirty if caller will write in it */
836   if (writable)
837     ptr->dirty = TRUE;
838   /* Return address of proper part of the buffer */
839   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
840 }
841 
842 
843 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)844 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
845 		    JDIMENSION start_row, JDIMENSION num_rows,
846 		    boolean writable)
847 /* Access the part of a virtual block array starting at start_row */
848 /* and extending for num_rows rows.  writable is true if  */
849 /* caller intends to modify the accessed area. */
850 {
851   JDIMENSION end_row = start_row + num_rows;
852   JDIMENSION undef_row;
853 
854   /* debugging check */
855   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
856       ptr->mem_buffer == NULL)
857     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
858 
859   /* Make the desired part of the virtual array accessible */
860   if (start_row < ptr->cur_start_row ||
861       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
862     if (! ptr->b_s_open)
863       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
864     /* Flush old buffer contents if necessary */
865     if (ptr->dirty) {
866       do_barray_io(cinfo, ptr, TRUE);
867       ptr->dirty = FALSE;
868     }
869     /* Decide what part of virtual array to access.
870      * Algorithm: if target address > current window, assume forward scan,
871      * load starting at target address.  If target address < current window,
872      * assume backward scan, load so that target area is top of window.
873      * Note that when switching from forward write to forward read, will have
874      * start_row = 0, so the limiting case applies and we load from 0 anyway.
875      */
876     if (start_row > ptr->cur_start_row) {
877       ptr->cur_start_row = start_row;
878     } else {
879       /* use long arithmetic here to avoid overflow & unsigned problems */
880       long ltemp;
881 
882       ltemp = (long) end_row - (long) ptr->rows_in_mem;
883       if (ltemp < 0)
884 	ltemp = 0;		/* don't fall off front end of file */
885       ptr->cur_start_row = (JDIMENSION) ltemp;
886     }
887     /* Read in the selected part of the array.
888      * During the initial write pass, we will do no actual read
889      * because the selected part is all undefined.
890      */
891     do_barray_io(cinfo, ptr, FALSE);
892   }
893   /* Ensure the accessed part of the array is defined; prezero if needed.
894    * To improve locality of access, we only prezero the part of the array
895    * that the caller is about to access, not the entire in-memory array.
896    */
897   if (ptr->first_undef_row < end_row) {
898     if (ptr->first_undef_row < start_row) {
899       if (writable)		/* writer skipped over a section of array */
900 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
901       undef_row = start_row;	/* but reader is allowed to read ahead */
902     } else {
903       undef_row = ptr->first_undef_row;
904     }
905     if (writable)
906       ptr->first_undef_row = end_row;
907     if (ptr->pre_zero) {
908       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
909       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
910       end_row -= ptr->cur_start_row;
911       while (undef_row < end_row) {
912 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
913 	undef_row++;
914       }
915     } else {
916       if (! writable)		/* reader looking at undefined data */
917 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
918     }
919   }
920   /* Flag the buffer dirty if caller will write in it */
921   if (writable)
922     ptr->dirty = TRUE;
923   /* Return address of proper part of the buffer */
924   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
925 }
926 
927 
928 /*
929  * Release all objects belonging to a specified pool.
930  */
931 
932 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)933 free_pool (j_common_ptr cinfo, int pool_id)
934 {
935   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
936   small_pool_ptr shdr_ptr;
937   large_pool_ptr lhdr_ptr;
938   size_t space_freed;
939 
940   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
941     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
942 
943 #ifdef MEM_STATS
944   if (cinfo->err->trace_level > 1)
945     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
946 #endif
947 
948   /* If freeing IMAGE pool, close any virtual arrays first */
949   if (pool_id == JPOOL_IMAGE) {
950     jvirt_sarray_ptr sptr;
951     jvirt_barray_ptr bptr;
952 
953     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
954       if (sptr->b_s_open) {	/* there may be no backing store */
955 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
956 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
957       }
958     }
959     mem->virt_sarray_list = NULL;
960     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
961       if (bptr->b_s_open) {	/* there may be no backing store */
962 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
963 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
964       }
965     }
966     mem->virt_barray_list = NULL;
967   }
968 
969   /* Release large objects */
970   lhdr_ptr = mem->large_list[pool_id];
971   mem->large_list[pool_id] = NULL;
972 
973   while (lhdr_ptr != NULL) {
974     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
975     space_freed = lhdr_ptr->hdr.bytes_used +
976 		  lhdr_ptr->hdr.bytes_left +
977 		  SIZEOF(large_pool_hdr);
978     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
979     mem->total_space_allocated -= space_freed;
980     lhdr_ptr = next_lhdr_ptr;
981   }
982 
983   /* Release small objects */
984   shdr_ptr = mem->small_list[pool_id];
985   mem->small_list[pool_id] = NULL;
986 
987   while (shdr_ptr != NULL) {
988     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
989     space_freed = shdr_ptr->hdr.bytes_used +
990 		  shdr_ptr->hdr.bytes_left +
991 		  SIZEOF(small_pool_hdr);
992     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
993     mem->total_space_allocated -= space_freed;
994     shdr_ptr = next_shdr_ptr;
995   }
996 }
997 
998 
999 /*
1000  * Close up shop entirely.
1001  * Note that this cannot be called unless cinfo->mem is non-NULL.
1002  */
1003 
1004 METHODDEF(void)
self_destruct(j_common_ptr cinfo)1005 self_destruct (j_common_ptr cinfo)
1006 {
1007   int pool;
1008 
1009   /* Close all backing store, release all memory.
1010    * Releasing pools in reverse order might help avoid fragmentation
1011    * with some (brain-damaged) malloc libraries.
1012    */
1013   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1014     free_pool(cinfo, pool);
1015   }
1016 
1017   /* Release the memory manager control block too. */
1018   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1019   cinfo->mem = NULL;		/* ensures I will be called only once */
1020 
1021   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
1022 }
1023 
1024 
1025 /*
1026  * Memory manager initialization.
1027  * When this is called, only the error manager pointer is valid in cinfo!
1028  */
1029 
1030 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1031 jinit_memory_mgr (j_common_ptr cinfo)
1032 {
1033   my_mem_ptr mem;
1034   long max_to_use;
1035   int pool;
1036   size_t test_mac;
1037 
1038   cinfo->mem = NULL;		/* for safety if init fails */
1039 
1040   /* Check for configuration errors.
1041    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1042    * doesn't reflect any real hardware alignment requirement.
1043    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1044    * in common if and only if X is a power of 2, ie has only one one-bit.
1045    * Some compilers may give an "unreachable code" warning here; ignore it.
1046    */
1047   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1048     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1049   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1050    * a multiple of SIZEOF(ALIGN_TYPE).
1051    * Again, an "unreachable code" warning may be ignored here.
1052    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1053    */
1054   test_mac = (size_t) MAX_ALLOC_CHUNK;
1055   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1056       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1057     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1058 
1059   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1060 
1061   /* Attempt to allocate memory manager's control block */
1062   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1063 
1064   if (mem == NULL) {
1065     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
1066     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1067   }
1068 
1069   /* OK, fill in the method pointers */
1070   mem->pub.alloc_small = alloc_small;
1071   mem->pub.alloc_large = alloc_large;
1072   mem->pub.alloc_sarray = alloc_sarray;
1073   mem->pub.alloc_barray = alloc_barray;
1074   mem->pub.request_virt_sarray = request_virt_sarray;
1075   mem->pub.request_virt_barray = request_virt_barray;
1076   mem->pub.realize_virt_arrays = realize_virt_arrays;
1077   mem->pub.access_virt_sarray = access_virt_sarray;
1078   mem->pub.access_virt_barray = access_virt_barray;
1079   mem->pub.free_pool = free_pool;
1080   mem->pub.self_destruct = self_destruct;
1081 
1082   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1083   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1084 
1085   /* Initialize working state */
1086   mem->pub.max_memory_to_use = max_to_use;
1087 
1088   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1089     mem->small_list[pool] = NULL;
1090     mem->large_list[pool] = NULL;
1091   }
1092   mem->virt_sarray_list = NULL;
1093   mem->virt_barray_list = NULL;
1094 
1095   mem->total_space_allocated = SIZEOF(my_memory_mgr);
1096 
1097   /* Declare ourselves open for business */
1098   cinfo->mem = & mem->pub;
1099 
1100   /* Check for an environment variable JPEGMEM; if found, override the
1101    * default max_memory setting from jpeg_mem_init.  Note that the
1102    * surrounding application may again override this value.
1103    * If your system doesn't support getenv(), define NO_GETENV to disable
1104    * this feature.
1105    */
1106 #ifndef NO_GETENV
1107   { char * memenv;
1108 
1109     if ((memenv = getenv("JPEGMEM")) != NULL) {
1110       char ch = 'x';
1111 
1112       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1113 	if (ch == 'm' || ch == 'M')
1114 	  max_to_use *= 1000L;
1115 	mem->pub.max_memory_to_use = max_to_use * 1000L;
1116       }
1117     }
1118   }
1119 #endif
1120 
1121 }
1122 
1123 #endif //_FX_JPEG_TURBO_
1124