1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkLazyPtr_DEFINED
9 #define SkLazyPtr_DEFINED
10 
11 /** Declare a lazily-chosen static pointer (or array of pointers) of type T.
12  *
13  *  Example usage:
14  *
15  *  Foo* GetSingletonFoo() {
16  *      SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton);  // Created with SkNEW, destroyed with SkDELETE.
17  *      return singleton.get();
18  *  }
19  *
20  *  These macros take an optional T* (*Create)() and void (*Destroy)(T*) at the end.
21  *  If not given, we'll use SkNEW and SkDELETE.
22  *  These options are most useful when T doesn't have a public constructor or destructor.
23  *  Create comes first, so you may use a custom Create with a default Destroy, but not vice versa.
24  *
25  *  Foo* CustomCreate() { return ...; }
26  *  void CustomDestroy(Foo* ptr) { ... }
27  *  Foo* GetSingletonFooWithCustomCleanup() {
28  *      SK_DECLARE_STATIC_LAZY_PTR(Foo, singleton, CustomCreate, CustomDestroy);
29  *      return singleton.get();
30  *  }
31  *
32  *  If you have a bunch of related static pointers of the same type, you can
33  *  declare an array of lazy pointers together, and we'll pass the index to Create().
34  *
35  *  Foo* CreateFoo(int i) { return ...; }
36  *  Foo* GetCachedFoo(Foo::Enum enumVal) {
37  *      SK_DECLARE_STATIC_LAZY_PTR_ARRAY(Foo, Foo::kEnumCount, cachedFoos, CreateFoo);
38  *      return cachedFoos[enumVal];
39  *  }
40  *
41  *
42  *  You can think of SK_DECLARE_STATIC_LAZY_PTR as a cheaper specialization of
43  *  SkOnce.  There is no mutex or extra storage used past the pointer itself.
44  *
45  *  We may call Create more than once, but all threads will see the same pointer
46  *  returned from get().  Any extra calls to Create will be cleaned up.
47  *
48  *  These macros must be used in a global scope, not in function scope or as a class member.
49  */
50 
51 #define SK_DECLARE_STATIC_LAZY_PTR(T, name, ...) \
52     namespace {} static Private::SkStaticLazyPtr<T, ##__VA_ARGS__> name
53 
54 #define SK_DECLARE_STATIC_LAZY_PTR_ARRAY(T, name, N, ...) \
55     namespace {} static Private::SkStaticLazyPtrArray<T, N, ##__VA_ARGS__> name
56 
57 // namespace {} forces these macros to only be legal in global scopes.  Chrome has thread-safety
58 // problems with them in function-local statics because it uses -fno-threadsafe-statics, and even
59 // in builds with threadsafe statics, those threadsafe statics are just unnecessary overhead.
60 
61 // Everything below here is private implementation details.  Don't touch, don't even look.
62 
63 #include "SkAtomics.h"
64 
65 // See FIXME below.
66 class SkFontConfigInterfaceDirect;
67 
68 namespace Private {
69 
70 // Set *dst to ptr if *dst is NULL.  Returns value of *dst, destroying ptr if not swapped in.
71 // Issues acquire memory barrier on failure, release on success.
72 template <typename P, void (*Destroy)(P)>
try_cas(P * dst,P ptr)73 static P try_cas(P* dst, P ptr) {
74     P prev = NULL;
75     if (sk_atomic_compare_exchange(dst, &prev, ptr,
76                                    sk_memory_order_release/*on success*/,
77                                    sk_memory_order_acquire/*on failure*/)) {
78         // We need a release barrier before returning ptr.  The compare_exchange provides it.
79         SkASSERT(!prev);
80         return ptr;
81     } else {
82         Destroy(ptr);
83         // We need an acquire barrier before returning prev.  The compare_exchange provided it.
84         SkASSERT(prev);
85         return prev;
86     }
87 }
88 
sk_new()89 template <typename T> T* sk_new() { return SkNEW(T); }
sk_delete(T * ptr)90 template <typename T> void sk_delete(T* ptr) { SkDELETE(ptr); }
91 
92 // We're basing these implementations here on this article:
93 //   http://preshing.com/20140709/the-purpose-of-memory_order_consume-in-cpp11/
94 //
95 // Because the users of SkLazyPtr and SkLazyPtrArray will read the pointers
96 // _through_ our atomically set pointer, there is a data dependency between our
97 // atomic and the guarded data, and so we only need writer-releases /
98 // reader-consumes memory pairing rather than the more general write-releases /
99 // reader-acquires convention.
100 //
101 // This is nice, because a consume load is free on all our platforms: x86,
102 // ARM, MIPS.  In contrast, an acquire load issues a memory barrier on non-x86.
103 
104 template <typename T>
consume_load(T * ptr)105 T consume_load(T* ptr) {
106 #if defined(THREAD_SANITIZER)
107     // TSAN gets anxious if we don't tell it what we're actually doing, a consume load.
108     return sk_atomic_load(ptr, sk_memory_order_consume);
109 #else
110     // All current compilers blindly upgrade consume memory order to acquire memory order.
111     // For our purposes, though, no memory barrier is required, so we lie and use relaxed.
112     return sk_atomic_load(ptr, sk_memory_order_relaxed);
113 #endif
114 }
115 
116 // This has no constructor and must be zero-initalized (the macro above does this).
117 template <typename T, T* (*Create)() = sk_new<T>, void (*Destroy)(T*) = sk_delete<T> >
118 class SkStaticLazyPtr {
119 public:
get()120     T* get() {
121         // If fPtr has already been filled, we need a consume barrier when loading it.
122         // If not, we need a release barrier when setting it.  try_cas will do that.
123         T* ptr = consume_load(&fPtr);
124         return ptr ? ptr : try_cas<T*, Destroy>(&fPtr, Create());
125     }
126 
127 private:
128     T* fPtr;
129 };
130 
sk_new_arg(int i)131 template <typename T> T* sk_new_arg(int i) { return SkNEW_ARGS(T, (i)); }
132 
133 // This has no constructor and must be zero-initalized (the macro above does this).
134 template <typename T, int N, T* (*Create)(int) = sk_new_arg<T>, void (*Destroy)(T*) = sk_delete<T> >
135 class SkStaticLazyPtrArray {
136 public:
137     T* operator[](int i) {
138         SkASSERT(i >= 0 && i < N);
139         // If fPtr has already been filled, we need an consume barrier when loading it.
140         // If not, we need a release barrier when setting it.  try_cas will do that.
141         T* ptr = consume_load(&fArray[i]);
142         return ptr ? ptr : try_cas<T*, Destroy>(&fArray[i], Create(i));
143     }
144 
145 private:
146     T* fArray[N];
147 };
148 
149 }  // namespace Private
150 
151 // This version is suitable for use as a class member.
152 // It's much the same as above except:
153 //   - it has a constructor to zero itself;
154 //   - it has a destructor to clean up;
155 //   - get() calls SkNew(T) to create the pointer;
156 //   - get(functor) calls functor to create the pointer.
157 template <typename T, void (*Destroy)(T*) = Private::sk_delete<T> >
158 class SkLazyPtr : SkNoncopyable {
159 public:
SkLazyPtr()160     SkLazyPtr() : fPtr(NULL) {}
~SkLazyPtr()161     ~SkLazyPtr() { if (fPtr) { Destroy((T*)fPtr); } }
162 
get()163     T* get() const {
164         T* ptr = Private::consume_load(&fPtr);
165         return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, SkNEW(T));
166     }
167 
168     template <typename Create>
get(const Create & create)169     T* get(const Create& create) const {
170         T* ptr = Private::consume_load(&fPtr);
171         return ptr ? ptr : Private::try_cas<T*, Destroy>(&fPtr, create());
172     }
173 
174 private:
175     mutable T* fPtr;
176 };
177 
178 
179 #endif//SkLazyPtr_DEFINED
180