1 /* 2 * Copyright 2014 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkRecord_DEFINED 9 #define SkRecord_DEFINED 10 11 #include "SkRecords.h" 12 #include "SkTLogic.h" 13 #include "SkTemplates.h" 14 #include "SkVarAlloc.h" 15 16 // SkRecord represents a sequence of SkCanvas calls, saved for future use. 17 // These future uses may include: replay, optimization, serialization, or combinations of those. 18 // 19 // Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to 20 // work with SkRecord, you probably want to look at SkRecorder which presents an SkCanvas interface 21 // for creating an SkRecord, and SkRecordDraw which plays an SkRecord back into another SkCanvas. 22 // 23 // SkRecord often looks like it's compatible with any type T, but really it's compatible with any 24 // type T which has a static const SkRecords::Type kType. That is to say, SkRecord is compatible 25 // only with SkRecords::* structs defined in SkRecords.h. Your compiler will helpfully yell if you 26 // get this wrong. 27 28 class SkRecord : public SkNVRefCnt<SkRecord> { 29 enum { 30 // TODO: tune these two constants. 31 kInlineRecords = 4, // Ideally our lower limit on recorded ops per picture. 32 kInlineAllocLgBytes = 8, // 1<<8 == 256 bytes inline, then SkVarAlloc starting at 512 bytes. 33 }; 34 public: SkRecord()35 SkRecord() 36 : fCount(0) 37 , fReserved(kInlineRecords) 38 , fAlloc(kInlineAllocLgBytes+1, // First malloc'd block is 2x as large as fInlineAlloc. 39 fInlineAlloc, sizeof(fInlineAlloc)) {} 40 ~SkRecord(); 41 42 // Returns the number of canvas commands in this SkRecord. count()43 unsigned count() const { return fCount; } 44 45 // Visit the i-th canvas command with a functor matching this interface: 46 // template <typename T> 47 // R operator()(const T& record) { ... } 48 // This operator() must be defined for at least all SkRecords::*. 49 template <typename R, typename F> visit(unsigned i,F & f)50 R visit(unsigned i, F& f) const { 51 SkASSERT(i < this->count()); 52 return fRecords[i].visit<R>(f); 53 } 54 55 // Mutate the i-th canvas command with a functor matching this interface: 56 // template <typename T> 57 // R operator()(T* record) { ... } 58 // This operator() must be defined for at least all SkRecords::*. 59 template <typename R, typename F> mutate(unsigned i,F & f)60 R mutate(unsigned i, F& f) { 61 SkASSERT(i < this->count()); 62 return fRecords[i].mutate<R>(f); 63 } 64 65 // TODO: It'd be nice to infer R from F for visit and mutate. 66 67 // Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed. 68 // Here T can be any class, not just those from SkRecords. Throws on failure. 69 template <typename T> 70 T* alloc(size_t count = 1) { 71 return (T*)fAlloc.alloc(sizeof(T) * count, SK_MALLOC_THROW); 72 } 73 74 // Add a new command of type T to the end of this SkRecord. 75 // You are expected to placement new an object of type T onto this pointer. 76 template <typename T> append()77 T* append() { 78 if (fCount == fReserved) { 79 this->grow(); 80 } 81 return fRecords[fCount++].set(this->allocCommand<T>()); 82 } 83 84 // Replace the i-th command with a new command of type T. 85 // You are expected to placement new an object of type T onto this pointer. 86 // References to the original command are invalidated. 87 template <typename T> replace(unsigned i)88 T* replace(unsigned i) { 89 SkASSERT(i < this->count()); 90 91 Destroyer destroyer; 92 this->mutate<void>(i, destroyer); 93 94 return fRecords[i].set(this->allocCommand<T>()); 95 } 96 97 // Replace the i-th command with a new command of type T. 98 // You are expected to placement new an object of type T onto this pointer. 99 // You must show proof that you've already adopted the existing command. 100 template <typename T, typename Existing> replace(unsigned i,const SkRecords::Adopted<Existing> & proofOfAdoption)101 T* replace(unsigned i, const SkRecords::Adopted<Existing>& proofOfAdoption) { 102 SkASSERT(i < this->count()); 103 104 SkASSERT(Existing::kType == fRecords[i].type()); 105 SkASSERT(proofOfAdoption == fRecords[i].ptr()); 106 107 return fRecords[i].set(this->allocCommand<T>()); 108 } 109 110 // Does not return the bytes in any pointers embedded in the Records; callers 111 // need to iterate with a visitor to measure those they care for. 112 size_t bytesUsed() const; 113 114 private: 115 // An SkRecord is structured as an array of pointers into a big chunk of memory where 116 // records representing each canvas draw call are stored: 117 // 118 // fRecords: [*][*][*]... 119 // | | | 120 // | | | 121 // | | +---------------------------------------+ 122 // | +-----------------+ | 123 // | | | 124 // v v v 125 // fAlloc: [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]... 126 // 127 // We store the types of each of the pointers alongside the pointer. 128 // The cost to append a T to this structure is 8 + sizeof(T) bytes. 129 130 // A mutator that can be used with replace to destroy canvas commands. 131 struct Destroyer { 132 template <typename T> operatorDestroyer133 void operator()(T* record) { record->~T(); } 134 }; 135 136 template <typename T> SK_WHEN(SkTIsEmpty<T>,T *)137 SK_WHEN(SkTIsEmpty<T>, T*) allocCommand() { 138 static T singleton = {}; 139 return &singleton; 140 } 141 142 template <typename T> allocCommand()143 SK_WHEN(!SkTIsEmpty<T>, T*) allocCommand() { return this->alloc<T>(); } 144 145 void grow(); 146 147 // A typed pointer to some bytes in fAlloc. visit() and mutate() allow polymorphic dispatch. 148 struct Record { 149 // On 32-bit machines we store type in 4 bytes, followed by a pointer. Simple. 150 // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes. 151 // FWIW, SkRecords::Type is tiny. It can easily fit in one byte. 152 uint64_t fTypeAndPtr; 153 static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48; 154 155 // Point this record to its data in fAlloc. Returns ptr for convenience. 156 template <typename T> setRecord157 T* set(T* ptr) { 158 fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr; 159 SkASSERT(this->ptr() == ptr && this->type() == T::kType); 160 return ptr; 161 } 162 typeRecord163 SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); } ptrRecord164 void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); } 165 166 // Visit this record with functor F (see public API above). 167 template <typename R, typename F> visitRecord168 R visit(F& f) const { 169 #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr()); 170 switch(this->type()) { SK_RECORD_TYPES(CASE) } 171 #undef CASE 172 SkDEBUGFAIL("Unreachable"); 173 return R(); 174 } 175 176 // Mutate this record with functor F (see public API above). 177 template <typename R, typename F> mutateRecord178 R mutate(F& f) { 179 #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr()); 180 switch(this->type()) { SK_RECORD_TYPES(CASE) } 181 #undef CASE 182 SkDEBUGFAIL("Unreachable"); 183 return R(); 184 } 185 }; 186 187 // fRecords needs to be a data structure that can append fixed length data, and need to 188 // support efficient random access and forward iteration. (It doesn't need to be contiguous.) 189 unsigned fCount, fReserved; 190 SkAutoSTMalloc<kInlineRecords, Record> fRecords; 191 192 // fAlloc needs to be a data structure which can append variable length data in contiguous 193 // chunks, returning a stable handle to that data for later retrieval. 194 SkVarAlloc fAlloc; 195 char fInlineAlloc[1 << kInlineAllocLgBytes]; 196 }; 197 198 #endif//SkRecord_DEFINED 199