1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRecord_DEFINED
9 #define SkRecord_DEFINED
10 
11 #include "SkRecords.h"
12 #include "SkTLogic.h"
13 #include "SkTemplates.h"
14 #include "SkVarAlloc.h"
15 
16 // SkRecord represents a sequence of SkCanvas calls, saved for future use.
17 // These future uses may include: replay, optimization, serialization, or combinations of those.
18 //
19 // Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to
20 // work with SkRecord, you probably want to look at SkRecorder which presents an SkCanvas interface
21 // for creating an SkRecord, and SkRecordDraw which plays an SkRecord back into another SkCanvas.
22 //
23 // SkRecord often looks like it's compatible with any type T, but really it's compatible with any
24 // type T which has a static const SkRecords::Type kType.  That is to say, SkRecord is compatible
25 // only with SkRecords::* structs defined in SkRecords.h.  Your compiler will helpfully yell if you
26 // get this wrong.
27 
28 class SkRecord : public SkNVRefCnt<SkRecord> {
29     enum {
30         // TODO: tune these two constants.
31         kInlineRecords      = 4, // Ideally our lower limit on recorded ops per picture.
32         kInlineAllocLgBytes = 8, // 1<<8 == 256 bytes inline, then SkVarAlloc starting at 512 bytes.
33     };
34 public:
SkRecord()35     SkRecord()
36         : fCount(0)
37         , fReserved(kInlineRecords)
38         , fAlloc(kInlineAllocLgBytes+1,  // First malloc'd block is 2x as large as fInlineAlloc.
39                  fInlineAlloc, sizeof(fInlineAlloc)) {}
40     ~SkRecord();
41 
42     // Returns the number of canvas commands in this SkRecord.
count()43     unsigned count() const { return fCount; }
44 
45     // Visit the i-th canvas command with a functor matching this interface:
46     //   template <typename T>
47     //   R operator()(const T& record) { ... }
48     // This operator() must be defined for at least all SkRecords::*.
49     template <typename R, typename F>
visit(unsigned i,F & f)50     R visit(unsigned i, F& f) const {
51         SkASSERT(i < this->count());
52         return fRecords[i].visit<R>(f);
53     }
54 
55     // Mutate the i-th canvas command with a functor matching this interface:
56     //   template <typename T>
57     //   R operator()(T* record) { ... }
58     // This operator() must be defined for at least all SkRecords::*.
59     template <typename R, typename F>
mutate(unsigned i,F & f)60     R mutate(unsigned i, F& f) {
61         SkASSERT(i < this->count());
62         return fRecords[i].mutate<R>(f);
63     }
64 
65     // TODO: It'd be nice to infer R from F for visit and mutate.
66 
67     // Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed.
68     // Here T can be any class, not just those from SkRecords.  Throws on failure.
69     template <typename T>
70     T* alloc(size_t count = 1) {
71         return (T*)fAlloc.alloc(sizeof(T) * count, SK_MALLOC_THROW);
72     }
73 
74     // Add a new command of type T to the end of this SkRecord.
75     // You are expected to placement new an object of type T onto this pointer.
76     template <typename T>
append()77     T* append() {
78         if (fCount == fReserved) {
79             this->grow();
80         }
81         return fRecords[fCount++].set(this->allocCommand<T>());
82     }
83 
84     // Replace the i-th command with a new command of type T.
85     // You are expected to placement new an object of type T onto this pointer.
86     // References to the original command are invalidated.
87     template <typename T>
replace(unsigned i)88     T* replace(unsigned i) {
89         SkASSERT(i < this->count());
90 
91         Destroyer destroyer;
92         this->mutate<void>(i, destroyer);
93 
94         return fRecords[i].set(this->allocCommand<T>());
95     }
96 
97     // Replace the i-th command with a new command of type T.
98     // You are expected to placement new an object of type T onto this pointer.
99     // You must show proof that you've already adopted the existing command.
100     template <typename T, typename Existing>
replace(unsigned i,const SkRecords::Adopted<Existing> & proofOfAdoption)101     T* replace(unsigned i, const SkRecords::Adopted<Existing>& proofOfAdoption) {
102         SkASSERT(i < this->count());
103 
104         SkASSERT(Existing::kType == fRecords[i].type());
105         SkASSERT(proofOfAdoption == fRecords[i].ptr());
106 
107         return fRecords[i].set(this->allocCommand<T>());
108     }
109 
110     // Does not return the bytes in any pointers embedded in the Records; callers
111     // need to iterate with a visitor to measure those they care for.
112     size_t bytesUsed() const;
113 
114 private:
115     // An SkRecord is structured as an array of pointers into a big chunk of memory where
116     // records representing each canvas draw call are stored:
117     //
118     // fRecords:  [*][*][*]...
119     //             |  |  |
120     //             |  |  |
121     //             |  |  +---------------------------------------+
122     //             |  +-----------------+                        |
123     //             |                    |                        |
124     //             v                    v                        v
125     //   fAlloc:  [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]...
126     //
127     // We store the types of each of the pointers alongside the pointer.
128     // The cost to append a T to this structure is 8 + sizeof(T) bytes.
129 
130     // A mutator that can be used with replace to destroy canvas commands.
131     struct Destroyer {
132         template <typename T>
operatorDestroyer133         void operator()(T* record) { record->~T(); }
134     };
135 
136     template <typename T>
SK_WHEN(SkTIsEmpty<T>,T *)137     SK_WHEN(SkTIsEmpty<T>, T*) allocCommand() {
138         static T singleton = {};
139         return &singleton;
140     }
141 
142     template <typename T>
allocCommand()143     SK_WHEN(!SkTIsEmpty<T>, T*) allocCommand() { return this->alloc<T>(); }
144 
145     void grow();
146 
147     // A typed pointer to some bytes in fAlloc.  visit() and mutate() allow polymorphic dispatch.
148     struct Record {
149         // On 32-bit machines we store type in 4 bytes, followed by a pointer.  Simple.
150         // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes.
151         // FWIW, SkRecords::Type is tiny.  It can easily fit in one byte.
152         uint64_t fTypeAndPtr;
153         static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48;
154 
155         // Point this record to its data in fAlloc.  Returns ptr for convenience.
156         template <typename T>
setRecord157         T* set(T* ptr) {
158             fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr;
159             SkASSERT(this->ptr() == ptr && this->type() == T::kType);
160             return ptr;
161         }
162 
typeRecord163         SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); }
ptrRecord164         void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); }
165 
166         // Visit this record with functor F (see public API above).
167         template <typename R, typename F>
visitRecord168         R visit(F& f) const {
169         #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr());
170             switch(this->type()) { SK_RECORD_TYPES(CASE) }
171         #undef CASE
172             SkDEBUGFAIL("Unreachable");
173             return R();
174         }
175 
176         // Mutate this record with functor F (see public API above).
177         template <typename R, typename F>
mutateRecord178         R mutate(F& f) {
179         #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr());
180             switch(this->type()) { SK_RECORD_TYPES(CASE) }
181         #undef CASE
182             SkDEBUGFAIL("Unreachable");
183             return R();
184         }
185     };
186 
187     // fRecords needs to be a data structure that can append fixed length data, and need to
188     // support efficient random access and forward iteration.  (It doesn't need to be contiguous.)
189     unsigned fCount, fReserved;
190     SkAutoSTMalloc<kInlineRecords, Record> fRecords;
191 
192     // fAlloc needs to be a data structure which can append variable length data in contiguous
193     // chunks, returning a stable handle to that data for later retrieval.
194     SkVarAlloc fAlloc;
195     char fInlineAlloc[1 << kInlineAllocLgBytes];
196 };
197 
198 #endif//SkRecord_DEFINED
199