1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkPathOpsCubic_DEFINED
9 #define SkPathOpsCubic_DEFINED
10 
11 #include "SkPath.h"
12 #include "SkPathOpsPoint.h"
13 
14 struct SkDCubicPair {
firstSkDCubicPair15     const SkDCubic& first() const { return (const SkDCubic&) pts[0]; }
secondSkDCubicPair16     const SkDCubic& second() const { return (const SkDCubic&) pts[3]; }
17     SkDPoint pts[7];
18 };
19 
20 struct SkDCubic {
21     static const int kPointCount = 4;
22     static const int kPointLast = kPointCount - 1;
23     static const int kMaxIntersections = 9;
24 
25     enum SearchAxis {
26         kXAxis,
27         kYAxis
28     };
29 
30     enum CubicType {
31         kUnsplit_SkDCubicType,
32         kSplitAtLoop_SkDCubicType,
33         kSplitAtInflection_SkDCubicType,
34         kSplitAtMaxCurvature_SkDCubicType,
35     };
36 
collapsedSkDCubic37     bool collapsed() const {
38         return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2])
39                 && fPts[0].approximatelyEqual(fPts[3]);
40     }
41 
controlsInsideSkDCubic42     bool controlsInside() const {
43         SkDVector v01 = fPts[0] - fPts[1];
44         SkDVector v02 = fPts[0] - fPts[2];
45         SkDVector v03 = fPts[0] - fPts[3];
46         SkDVector v13 = fPts[1] - fPts[3];
47         SkDVector v23 = fPts[2] - fPts[3];
48         return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0;
49     }
50 
IsCubicSkDCubic51     static bool IsCubic() { return true; }
52 
53     const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
54     SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
55 
56     void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const;
57     double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const;
58     double calcPrecision() const;
59     SkDCubicPair chopAt(double t) const;
60     static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D);
61     static bool ComplexBreak(const SkPoint pts[4], SkScalar* t, CubicType* cubicType);
62     int convexHull(char order[kPointCount]) const;
63 
debugInitSkDCubic64     void debugInit() {
65         sk_bzero(fPts, sizeof(fPts));
66     }
67 
68     void dump() const;  // callable from the debugger when the implementation code is linked in
69     void dumpID(int id) const;
70     void dumpInner() const;
71     SkDVector dxdyAtT(double t) const;
72     bool endsAreExtremaInXOrY() const;
73     static int FindExtrema(const double src[], double tValue[2]);
74     int findInflections(double tValues[2]) const;
75 
FindInflectionsSkDCubic76     static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) {
77         SkDCubic cubic;
78         return cubic.set(a).findInflections(tValues);
79     }
80 
81     int findMaxCurvature(double tValues[]) const;
82     bool hullIntersects(const SkDCubic& c2, bool* isLinear) const;
83     bool hullIntersects(const SkDConic& c, bool* isLinear) const;
84     bool hullIntersects(const SkDQuad& c2, bool* isLinear) const;
85     bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const;
86     bool isLinear(int startIndex, int endIndex) const;
87     bool monotonicInX() const;
88     bool monotonicInY() const;
89     void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const;
90     SkDPoint ptAtT(double t) const;
91     static int RootsReal(double A, double B, double C, double D, double t[3]);
92     static int RootsValidT(const double A, const double B, const double C, double D, double s[3]);
93 
94     int searchRoots(double extremes[6], int extrema, double axisIntercept,
95                     SearchAxis xAxis, double* validRoots) const;
96 
97     /**
98      *  Return the number of valid roots (0 < root < 1) for this cubic intersecting the
99      *  specified horizontal line.
100      */
101     int horizontalIntersect(double yIntercept, double roots[3]) const;
102     /**
103      *  Return the number of valid roots (0 < root < 1) for this cubic intersecting the
104      *  specified vertical line.
105      */
106     int verticalIntersect(double xIntercept, double roots[3]) const;
107 
setSkDCubic108     const SkDCubic& set(const SkPoint pts[kPointCount]) {
109         fPts[0] = pts[0];
110         fPts[1] = pts[1];
111         fPts[2] = pts[2];
112         fPts[3] = pts[3];
113         return *this;
114     }
115 
116     SkDCubic subDivide(double t1, double t2) const;
117 
SubDivideSkDCubic118     static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
119         SkDCubic cubic;
120         return cubic.set(a).subDivide(t1, t2);
121     }
122 
123     void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const;
124 
SubDivideSkDCubic125     static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1,
126                           double t2, SkDPoint p[2]) {
127         SkDCubic cubic;
128         cubic.set(pts).subDivide(a, d, t1, t2, p);
129     }
130 
131     double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const;
132     SkDQuad toQuad() const;
133 
134     static const int gPrecisionUnit;
135 
136     SkDPoint fPts[kPointCount];
137 };
138 
139 /* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask
140    that computes the other two. Note that:
141 
142    one ^ two == 3 for (0, 3), (1, 2)
143    one ^ two <  3 for (0, 1), (0, 2), (1, 3), (2, 3)
144    3 - (one ^ two) is either 0, 1, or 2
145    1 >> (3 - (one ^ two)) is either 0 or 1
146 thus:
147    returned == 2 for (0, 3), (1, 2)
148    returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3)
149 given that:
150    (0, 3) ^ 2 -> (2, 1)  (1, 2) ^ 2 -> (3, 0)
151    (0, 1) ^ 3 -> (3, 2)  (0, 2) ^ 3 -> (3, 1)  (1, 3) ^ 3 -> (2, 0)  (2, 3) ^ 3 -> (1, 0)
152 */
other_two(int one,int two)153 inline int other_two(int one, int two) {
154     return 1 >> (3 - (one ^ two)) ^ 3;
155 }
156 
157 #endif
158