1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  *
7  * The following code is based on the description in RFC 1321.
8  * http://www.ietf.org/rfc/rfc1321.txt
9  */
10 
11 #include "SkTypes.h"
12 #include "SkMD5.h"
13 #include <string.h>
14 
15 /** MD5 basic transformation. Transforms state based on block. */
16 static void transform(uint32_t state[4], const uint8_t block[64]);
17 
18 /** Encodes input into output (4 little endian 32 bit values). */
19 static void encode(uint8_t output[16], const uint32_t input[4]);
20 
21 /** Encodes input into output (little endian 64 bit value). */
22 static void encode(uint8_t output[8], const uint64_t input);
23 
24 /** Decodes input (4 little endian 32 bit values) into storage, if required. */
25 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
26 
SkMD5()27 SkMD5::SkMD5() : byteCount(0) {
28     // These are magic numbers from the specification.
29     this->state[0] = 0x67452301;
30     this->state[1] = 0xefcdab89;
31     this->state[2] = 0x98badcfe;
32     this->state[3] = 0x10325476;
33 }
34 
update(const uint8_t * input,size_t inputLength)35 void SkMD5::update(const uint8_t* input, size_t inputLength) {
36     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
37     unsigned int bufferAvailable = 64 - bufferIndex;
38 
39     unsigned int inputIndex;
40     if (inputLength >= bufferAvailable) {
41         if (bufferIndex) {
42             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
43             transform(this->state, this->buffer);
44             inputIndex = bufferAvailable;
45         } else {
46             inputIndex = 0;
47         }
48 
49         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
50             transform(this->state, &input[inputIndex]);
51         }
52 
53         bufferIndex = 0;
54     } else {
55         inputIndex = 0;
56     }
57 
58     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
59 
60     this->byteCount += inputLength;
61 }
62 
finish(Digest & digest)63 void SkMD5::finish(Digest& digest) {
64     // Get the number of bits before padding.
65     uint8_t bits[8];
66     encode(bits, this->byteCount << 3);
67 
68     // Pad out to 56 mod 64.
69     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
70     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
71     static uint8_t PADDING[64] = {
72         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
73            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
74            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
75            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
76     };
77     this->update(PADDING, paddingLength);
78 
79     // Append length (length before padding, will cause final update).
80     this->update(bits, 8);
81 
82     // Write out digest.
83     encode(digest.data, this->state);
84 
85 #if defined(SK_MD5_CLEAR_DATA)
86     // Clear state.
87     memset(this, 0, sizeof(*this));
88 #endif
89 }
90 
operator ()F91 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
92     //return (x & y) | ((~x) & z);
93     return ((y ^ z) & x) ^ z; //equivelent but faster
94 }};
95 
operator ()G96 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
97     return (x & z) | (y & (~z));
98     //return ((x ^ y) & z) ^ y; //equivelent but slower
99 }};
100 
operator ()H101 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
102     return x ^ y ^ z;
103 }};
104 
operator ()I105 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
106     return y ^ (x | (~z));
107 }};
108 
109 /** Rotates x left n bits. */
rotate_left(uint32_t x,uint8_t n)110 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
111     return (x << n) | (x >> (32 - n));
112 }
113 
114 template <typename T>
operation(T operation,uint32_t & a,uint32_t b,uint32_t c,uint32_t d,uint32_t x,uint8_t s,uint32_t t)115 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
116                              uint32_t x, uint8_t s, uint32_t t) {
117     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
118 }
119 
transform(uint32_t state[4],const uint8_t block[64])120 static void transform(uint32_t state[4], const uint8_t block[64]) {
121     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
122 
123     uint32_t storage[16];
124     const uint32_t* X = decode(storage, block);
125 
126     // Round 1
127     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
128     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
129     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
130     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
131     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
132     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
133     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
134     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
135     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
136     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
137     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
138     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
139     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
140     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
141     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
142     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
143 
144     // Round 2
145     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
146     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
147     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
148     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
149     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
150     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
151     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
152     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
153     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
154     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
155     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
156     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
157     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
158     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
159     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
160     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
161 
162     // Round 3
163     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
164     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
165     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
166     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
167     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
168     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
169     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
170     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
171     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
172     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
173     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
174     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
175     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
176     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
177     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
178     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
179 
180     // Round 4
181     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
182     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
183     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
184     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
185     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
186     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
187     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
188     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
189     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
190     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
191     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
192     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
193     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
194     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
195     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
196     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
197 
198     state[0] += a;
199     state[1] += b;
200     state[2] += c;
201     state[3] += d;
202 
203 #if defined(SK_MD5_CLEAR_DATA)
204     // Clear sensitive information.
205     if (X == &storage) {
206         memset(storage, 0, sizeof(storage));
207     }
208 #endif
209 }
210 
encode(uint8_t output[16],const uint32_t input[4])211 static void encode(uint8_t output[16], const uint32_t input[4]) {
212     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
213         output[j  ] = (uint8_t) (input[i]        & 0xff);
214         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
215         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
216         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
217     }
218 }
219 
encode(uint8_t output[8],const uint64_t input)220 static void encode(uint8_t output[8], const uint64_t input) {
221     output[0] = (uint8_t) (input        & 0xff);
222     output[1] = (uint8_t)((input >>  8) & 0xff);
223     output[2] = (uint8_t)((input >> 16) & 0xff);
224     output[3] = (uint8_t)((input >> 24) & 0xff);
225     output[4] = (uint8_t)((input >> 32) & 0xff);
226     output[5] = (uint8_t)((input >> 40) & 0xff);
227     output[6] = (uint8_t)((input >> 48) & 0xff);
228     output[7] = (uint8_t)((input >> 56) & 0xff);
229 }
230 
is_aligned(const void * pointer,size_t byte_count)231 static inline bool is_aligned(const void *pointer, size_t byte_count) {
232     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
233 }
234 
decode(uint32_t storage[16],const uint8_t input[64])235 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
236 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
237    return reinterpret_cast<const uint32_t*>(input);
238 #else
239 #if defined(SK_CPU_LENDIAN)
240     if (is_aligned(input, 4)) {
241         return reinterpret_cast<const uint32_t*>(input);
242     }
243 #endif
244     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
245         storage[i] =  ((uint32_t)input[j  ])        |
246                      (((uint32_t)input[j+1]) <<  8) |
247                      (((uint32_t)input[j+2]) << 16) |
248                      (((uint32_t)input[j+3]) << 24);
249     }
250     return storage;
251 #endif
252 }
253