1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkTextureCompressor.h"
9 #include "SkTextureCompressor_Blitter.h"
10 #include "SkTextureCompressor_Utils.h"
11
12 #include "SkBlitter.h"
13 #include "SkEndian.h"
14
15 // #define COMPRESS_R11_EAC_SLOW 1
16 // #define COMPRESS_R11_EAC_FAST 1
17 #define COMPRESS_R11_EAC_FASTEST 1
18
19 // Blocks compressed into R11 EAC are represented as follows:
20 // 0000000000000000000000000000000000000000000000000000000000000000
21 // |base_cw|mod|mul| ----------------- indices -------------------
22 //
23 // To reconstruct the value of a given pixel, we use the formula:
24 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
25 //
26 // mod_val is chosen from a palette of values based on the index of the
27 // given pixel. The palette is chosen by the value stored in mod.
28 // This formula returns a value between 0 and 2047, which is converted
29 // to a float from 0 to 1 in OpenGL.
30 //
31 // If mul is zero, then we set mul = 1/8, so that the formula becomes
32 // clamp[0, 2047](base_cw * 8 + 4 + mod_val)
33
34 static const int kNumR11EACPalettes = 16;
35 static const int kR11EACPaletteSize = 8;
36 static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
37 {-3, -6, -9, -15, 2, 5, 8, 14},
38 {-3, -7, -10, -13, 2, 6, 9, 12},
39 {-2, -5, -8, -13, 1, 4, 7, 12},
40 {-2, -4, -6, -13, 1, 3, 5, 12},
41 {-3, -6, -8, -12, 2, 5, 7, 11},
42 {-3, -7, -9, -11, 2, 6, 8, 10},
43 {-4, -7, -8, -11, 3, 6, 7, 10},
44 {-3, -5, -8, -11, 2, 4, 7, 10},
45 {-2, -6, -8, -10, 1, 5, 7, 9},
46 {-2, -5, -8, -10, 1, 4, 7, 9},
47 {-2, -4, -8, -10, 1, 3, 7, 9},
48 {-2, -5, -7, -10, 1, 4, 6, 9},
49 {-3, -4, -7, -10, 2, 3, 6, 9},
50 {-1, -2, -3, -10, 0, 1, 2, 9},
51 {-4, -6, -8, -9, 3, 5, 7, 8},
52 {-3, -5, -7, -9, 2, 4, 6, 8}
53 };
54
55 #if COMPRESS_R11_EAC_SLOW
56
57 // Pack the base codeword, palette, and multiplier into the 64 bits necessary
58 // to decode it.
pack_r11eac_block(uint16_t base_cw,uint16_t palette,uint16_t multiplier,uint64_t indices)59 static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
60 uint64_t indices) {
61 SkASSERT(palette < 16);
62 SkASSERT(multiplier < 16);
63 SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
64
65 const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
66 const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
67 const uint64_t p = static_cast<uint64_t>(palette) << 48;
68 return SkEndian_SwapBE64(b | m | p | indices);
69 }
70
71 // Given a base codeword, a modifier, and a multiplier, compute the proper
72 // pixel value in the range [0, 2047].
compute_r11eac_pixel(int base_cw,int modifier,int multiplier)73 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
74 int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
75 return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
76 }
77
78 // Compress a block into R11 EAC format.
79 // The compression works as follows:
80 // 1. Find the center of the span of the block's values. Use this as the base codeword.
81 // 2. Choose a multiplier based roughly on the size of the span of block values
82 // 3. Iterate through each palette and choose the one with the most accurate
83 // modifiers.
compress_heterogeneous_r11eac_block(const uint8_t block[16])84 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
85 // Find the center of the data...
86 uint16_t bmin = block[0];
87 uint16_t bmax = block[0];
88 for (int i = 1; i < 16; ++i) {
89 bmin = SkTMin<uint16_t>(bmin, block[i]);
90 bmax = SkTMax<uint16_t>(bmax, block[i]);
91 }
92
93 uint16_t center = (bmax + bmin) >> 1;
94 SkASSERT(center <= 255);
95
96 // Based on the min and max, we can guesstimate a proper multiplier
97 // This is kind of a magic choice to start with.
98 uint16_t multiplier = (bmax - center) / 10;
99
100 // Now convert the block to 11 bits and transpose it to match
101 // the proper layout
102 uint16_t cblock[16];
103 for (int i = 0; i < 4; ++i) {
104 for (int j = 0; j < 4; ++j) {
105 int srcIdx = i*4+j;
106 int dstIdx = j*4+i;
107 cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
108 }
109 }
110
111 // Finally, choose the proper palette and indices
112 uint32_t bestError = 0xFFFFFFFF;
113 uint64_t bestIndices = 0;
114 uint16_t bestPalette = 0;
115 for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
116 const int *palette = kR11EACModifierPalettes[paletteIdx];
117
118 // Iterate through each pixel to find the best palette index
119 // and update the indices with the choice. Also store the error
120 // for this palette to be compared against the best error...
121 uint32_t error = 0;
122 uint64_t indices = 0;
123 for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
124 const uint16_t pixel = cblock[pixelIdx];
125
126 // Iterate through each palette value to find the best index
127 // for this particular pixel for this particular palette.
128 uint16_t bestPixelError =
129 abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
130 int bestIndex = 0;
131 for (int i = 1; i < kR11EACPaletteSize; ++i) {
132 const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
133 const uint16_t perror = abs_diff(pixel, p);
134
135 // Is this index better?
136 if (perror < bestPixelError) {
137 bestIndex = i;
138 bestPixelError = perror;
139 }
140 }
141
142 SkASSERT(bestIndex < 8);
143
144 error += bestPixelError;
145 indices <<= 3;
146 indices |= bestIndex;
147 }
148
149 SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
150
151 // Is this palette better?
152 if (error < bestError) {
153 bestPalette = paletteIdx;
154 bestIndices = indices;
155 bestError = error;
156 }
157 }
158
159 // Finally, pack everything together...
160 return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
161 }
162 #endif // COMPRESS_R11_EAC_SLOW
163
164 #if COMPRESS_R11_EAC_FAST
165 // This function takes into account that most blocks that we compress have a gradation from
166 // fully opaque to fully transparent. The compression scheme works by selecting the
167 // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
168 // as the block header (0x8490). The indices are then selected by considering the top
169 // three bits of each alpha value. For alpha masks, this reduces the dynamic range from
170 // 17 to 8, but the quality is still acceptable.
171 //
172 // There are a few caveats that need to be taken care of...
173 //
174 // 1. The block is read in as scanlines, so the indices are stored as:
175 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
176 // However, the decomrpession routine reads them in column-major order, so they
177 // need to be packed as:
178 // 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
179 // So when reading, they must be transposed.
180 //
181 // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
182 // above store the modulation values first decreasing and then increasing:
183 // e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
184 // Hence, we need to convert the indices with the following mapping:
185 // From: 0 1 2 3 4 5 6 7
186 // To: 3 2 1 0 4 5 6 7
compress_heterogeneous_r11eac_block(const uint8_t block[16])187 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
188 uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
189 for(int i = 0; i < 4; ++i) {
190 for(int j = 0; j < 4; ++j) {
191 const int shift = 45-3*(j*4+i);
192 SkASSERT(shift <= 45);
193 const uint64_t idx = block[i*4+j] >> 5;
194 SkASSERT(idx < 8);
195
196 // !SPEED! This is slightly faster than having an if-statement.
197 switch(idx) {
198 case 0:
199 case 1:
200 case 2:
201 case 3:
202 retVal |= (3-idx) << shift;
203 break;
204 default:
205 retVal |= idx << shift;
206 break;
207 }
208 }
209 }
210
211 return SkEndian_SwapBE64(retVal);
212 }
213 #endif // COMPRESS_R11_EAC_FAST
214
215 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
compress_r11eac_block(const uint8_t block[16])216 static uint64_t compress_r11eac_block(const uint8_t block[16]) {
217 // Are all blocks a solid color?
218 bool solid = true;
219 for (int i = 1; i < 16; ++i) {
220 if (block[i] != block[0]) {
221 solid = false;
222 break;
223 }
224 }
225
226 if (solid) {
227 switch(block[0]) {
228 // Fully transparent? We know the encoding...
229 case 0:
230 // (0x0020 << 48) produces the following:
231 // basw_cw: 0
232 // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
233 // multiplier: 2
234 // mod_val: -3
235 //
236 // this gives the following formula:
237 // clamp[0, 2047](0*8+4+(-3)*2*8) = 0
238 //
239 // Furthermore, it is impervious to endianness:
240 // 0x0020000000002000ULL
241 // Will produce one pixel with index 2, which gives:
242 // clamp[0, 2047](0*8+4+(-9)*2*8) = 0
243 return 0x0020000000002000ULL;
244
245 // Fully opaque? We know this encoding too...
246 case 255:
247
248 // -1 produces the following:
249 // basw_cw: 255
250 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
251 // mod_val: 8
252 //
253 // this gives the following formula:
254 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
255 return 0xFFFFFFFFFFFFFFFFULL;
256
257 default:
258 // !TODO! krajcevski:
259 // This will probably never happen, since we're using this format
260 // primarily for compressing alpha maps. Usually the only
261 // non-fullly opaque or fully transparent blocks are not a solid
262 // intermediate color. If we notice that they are, then we can
263 // add another optimization...
264 break;
265 }
266 }
267
268 return compress_heterogeneous_r11eac_block(block);
269 }
270
271 // This function is used by R11 EAC to compress 4x4 blocks
272 // of 8-bit alpha into 64-bit values that comprise the compressed data.
273 // We need to make sure that the dimensions of the src pixels are divisible
274 // by 4, and copy 4x4 blocks one at a time for compression.
275 typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
276
compress_4x4_a8_to_64bit(uint8_t * dst,const uint8_t * src,int width,int height,size_t rowBytes,A84x4To64BitProc proc)277 static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
278 int width, int height, size_t rowBytes,
279 A84x4To64BitProc proc) {
280 // Make sure that our data is well-formed enough to be considered for compression
281 if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
282 return false;
283 }
284
285 int blocksX = width >> 2;
286 int blocksY = height >> 2;
287
288 uint8_t block[16];
289 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
290 for (int y = 0; y < blocksY; ++y) {
291 for (int x = 0; x < blocksX; ++x) {
292 // Load block
293 for (int k = 0; k < 4; ++k) {
294 memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
295 }
296
297 // Compress it
298 *encPtr = proc(block);
299 ++encPtr;
300 }
301 src += 4 * rowBytes;
302 }
303
304 return true;
305 }
306 #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
307
308 // This function converts an integer containing four bytes of alpha
309 // values into an integer containing four bytes of indices into R11 EAC.
310 // Note, there needs to be a mapping of indices:
311 // 0 1 2 3 4 5 6 7
312 // 3 2 1 0 4 5 6 7
313 //
314 // To compute this, we first negate each byte, and then add three, which
315 // gives the mapping
316 // 3 2 1 0 -1 -2 -3 -4
317 //
318 // Then we mask out the negative values, take their absolute value, and
319 // add three.
320 //
321 // Most of the voodoo in this function comes from Hacker's Delight, section 2-18
convert_indices(uint32_t x)322 static inline uint32_t convert_indices(uint32_t x) {
323 // Take the top three bits...
324 x = SkTextureCompressor::ConvertToThreeBitIndex(x);
325
326 // Negate...
327 x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
328
329 // Add three
330 const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
331 x = ((x ^ 0x03030303) & 0x80808080) ^ s;
332
333 // Absolute value
334 const uint32_t a = x & 0x80808080;
335 const uint32_t b = a >> 7;
336
337 // Aside: mask negatives (m is three if the byte was negative)
338 const uint32_t m = (a >> 6) | b;
339
340 // .. continue absolute value
341 x = (x ^ ((a - b) | a)) + b;
342
343 // Add three
344 return x + m;
345 }
346
347 #if COMPRESS_R11_EAC_FASTEST
348 template<unsigned shift>
swap_shift(uint64_t x,uint64_t mask)349 static inline uint64_t swap_shift(uint64_t x, uint64_t mask) {
350 const uint64_t t = (x ^ (x >> shift)) & mask;
351 return x ^ t ^ (t << shift);
352 }
353
interleave6(uint64_t topRows,uint64_t bottomRows)354 static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
355 // If our 3-bit block indices are laid out as:
356 // a b c d
357 // e f g h
358 // i j k l
359 // m n o p
360 //
361 // This function expects topRows and bottomRows to contain the first two rows
362 // of indices interleaved in the least significant bits of a and b. In other words...
363 //
364 // If the architecture is big endian, then topRows and bottomRows will contain the following:
365 // Bits 31-0:
366 // a: 00 a e 00 b f 00 c g 00 d h
367 // b: 00 i m 00 j n 00 k o 00 l p
368 //
369 // If the architecture is little endian, then topRows and bottomRows will contain
370 // the following:
371 // Bits 31-0:
372 // a: 00 d h 00 c g 00 b f 00 a e
373 // b: 00 l p 00 k o 00 j n 00 i m
374 //
375 // This function returns a 48-bit packing of the form:
376 // a e i m b f j n c g k o d h l p
377 //
378 // !SPEED! this function might be even faster if certain SIMD intrinsics are
379 // used..
380
381 // For both architectures, we can figure out a packing of the bits by
382 // using a shuffle and a few shift-rotates...
383 uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
384
385 // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
386
387 x = swap_shift<10>(x, 0x3FC0003FC00000ULL);
388
389 // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
390
391 x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16;
392
393 // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
394
395 x = swap_shift<6>(x, 0xFC0000ULL);
396
397 #if defined (SK_CPU_BENDIAN)
398 // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
399
400 x = swap_shift<36>(x, 0x3FULL);
401
402 // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
403
404 x = swap_shift<12>(x, 0xFFF000000ULL);
405 #else
406 // If our CPU is little endian, then the above logic will
407 // produce the following indices:
408 // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
409
410 x = swap_shift<36>(x, 0xFC0ULL);
411
412 // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
413
414 x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
415 #endif
416
417 // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
418 return x;
419 }
420
421 // This function follows the same basic procedure as compress_heterogeneous_r11eac_block
422 // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
423 // tries to optimize where it can using SIMD.
compress_r11eac_block_fast(const uint8_t * src,size_t rowBytes)424 static uint64_t compress_r11eac_block_fast(const uint8_t* src, size_t rowBytes) {
425 // Store each row of alpha values in an integer
426 const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
427 const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
428 const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
429 const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
430
431 // Check for solid blocks. The explanations for these values
432 // can be found in the comments of compress_r11eac_block above
433 if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
434 if (0 == alphaRow1) {
435 // Fully transparent block
436 return 0x0020000000002000ULL;
437 } else if (0xFFFFFFFF == alphaRow1) {
438 // Fully opaque block
439 return 0xFFFFFFFFFFFFFFFFULL;
440 }
441 }
442
443 // Convert each integer of alpha values into an integer of indices
444 const uint32_t indexRow1 = convert_indices(alphaRow1);
445 const uint32_t indexRow2 = convert_indices(alphaRow2);
446 const uint32_t indexRow3 = convert_indices(alphaRow3);
447 const uint32_t indexRow4 = convert_indices(alphaRow4);
448
449 // Interleave the indices from the top two rows and bottom two rows
450 // prior to passing them to interleave6. Since each index is at most
451 // three bits, then each byte can hold two indices... The way that the
452 // compression scheme expects the packing allows us to efficiently pack
453 // the top two rows and bottom two rows. Interleaving each 6-bit sequence
454 // and tightly packing it into a uint64_t is a little trickier, which is
455 // taken care of in interleave6.
456 const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
457 const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
458 const uint64_t indices = interleave6(r1r2, r3r4);
459
460 // Return the packed incdices in the least significant bits with the magic header
461 return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
462 }
463
compress_a8_to_r11eac_fast(uint8_t * dst,const uint8_t * src,int width,int height,size_t rowBytes)464 static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
465 int width, int height, size_t rowBytes) {
466 // Make sure that our data is well-formed enough to be considered for compression
467 if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
468 return false;
469 }
470
471 const int blocksX = width >> 2;
472 const int blocksY = height >> 2;
473
474 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
475 for (int y = 0; y < blocksY; ++y) {
476 for (int x = 0; x < blocksX; ++x) {
477 // Compress it
478 *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
479 ++encPtr;
480 }
481 src += 4 * rowBytes;
482 }
483 return true;
484 }
485 #endif // COMPRESS_R11_EAC_FASTEST
486
487 ////////////////////////////////////////////////////////////////////////////////
488 //
489 // Utility functions used by the blitter
490 //
491 ////////////////////////////////////////////////////////////////////////////////
492
493 // The R11 EAC format expects that indices are given in column-major order. Since
494 // we receive alpha values in raster order, this usually means that we have to use
495 // pack6 above to properly pack our indices. However, if our indices come from the
496 // blitter, then each integer will be a column of indices, and hence can be efficiently
497 // packed. This function takes the bottom three bits of each byte and places them in
498 // the least significant 12 bits of the resulting integer.
pack_indices_vertical(uint32_t x)499 static inline uint32_t pack_indices_vertical(uint32_t x) {
500 #if defined (SK_CPU_BENDIAN)
501 return
502 (x & 7) |
503 ((x >> 5) & (7 << 3)) |
504 ((x >> 10) & (7 << 6)) |
505 ((x >> 15) & (7 << 9));
506 #else
507 return
508 ((x >> 24) & 7) |
509 ((x >> 13) & (7 << 3)) |
510 ((x >> 2) & (7 << 6)) |
511 ((x << 9) & (7 << 9));
512 #endif
513 }
514
515 // This function returns the compressed format of a block given as four columns of
516 // alpha values. Each column is assumed to be loaded from top to bottom, and hence
517 // must first be converted to indices and then packed into the resulting 64-bit
518 // integer.
compress_block_vertical(uint8_t * dstPtr,const uint8_t * block)519 inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) {
520
521 const uint32_t* src = reinterpret_cast<const uint32_t*>(block);
522 uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr);
523
524 const uint32_t alphaColumn0 = src[0];
525 const uint32_t alphaColumn1 = src[1];
526 const uint32_t alphaColumn2 = src[2];
527 const uint32_t alphaColumn3 = src[3];
528
529 if (alphaColumn0 == alphaColumn1 &&
530 alphaColumn2 == alphaColumn3 &&
531 alphaColumn0 == alphaColumn2) {
532
533 if (0 == alphaColumn0) {
534 // Transparent
535 *dst = 0x0020000000002000ULL;
536 return;
537 }
538 else if (0xFFFFFFFF == alphaColumn0) {
539 // Opaque
540 *dst = 0xFFFFFFFFFFFFFFFFULL;
541 return;
542 }
543 }
544
545 const uint32_t indexColumn0 = convert_indices(alphaColumn0);
546 const uint32_t indexColumn1 = convert_indices(alphaColumn1);
547 const uint32_t indexColumn2 = convert_indices(alphaColumn2);
548 const uint32_t indexColumn3 = convert_indices(alphaColumn3);
549
550 const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
551 const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
552 const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
553 const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
554
555 *dst = SkEndian_SwapBE64(0x8490000000000000ULL |
556 (static_cast<uint64_t>(packedIndexColumn0) << 36) |
557 (static_cast<uint64_t>(packedIndexColumn1) << 24) |
558 static_cast<uint64_t>(packedIndexColumn2 << 12) |
559 static_cast<uint64_t>(packedIndexColumn3));
560 }
561
get_r11_eac_index(uint64_t block,int x,int y)562 static inline int get_r11_eac_index(uint64_t block, int x, int y) {
563 SkASSERT(x >= 0 && x < 4);
564 SkASSERT(y >= 0 && y < 4);
565 const int idx = x*4 + y;
566 return (block >> ((15-idx)*3)) & 0x7;
567 }
568
decompress_r11_eac_block(uint8_t * dst,int dstRowBytes,const uint8_t * src)569 static void decompress_r11_eac_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) {
570 const uint64_t block = SkEndian_SwapBE64(*(reinterpret_cast<const uint64_t *>(src)));
571
572 const int base_cw = (block >> 56) & 0xFF;
573 const int mod = (block >> 52) & 0xF;
574 const int palette_idx = (block >> 48) & 0xF;
575
576 const int* palette = kR11EACModifierPalettes[palette_idx];
577
578 for (int j = 0; j < 4; ++j) {
579 for (int i = 0; i < 4; ++i) {
580 const int idx = get_r11_eac_index(block, i, j);
581 const int val = base_cw*8 + 4 + palette[idx]*mod*8;
582 if (val < 0) {
583 dst[i] = 0;
584 } else if (val > 2047) {
585 dst[i] = 0xFF;
586 } else {
587 dst[i] = (val >> 3) & 0xFF;
588 }
589 }
590 dst += dstRowBytes;
591 }
592 }
593
594 // This is the type passed as the CompressorType argument of the compressed
595 // blitter for the R11 EAC format. The static functions required to be in this
596 // struct are documented in SkTextureCompressor_Blitter.h
597 struct CompressorR11EAC {
CompressA8VerticalCompressorR11EAC598 static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) {
599 compress_block_vertical(dst, src);
600 }
601
CompressA8HorizontalCompressorR11EAC602 static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src,
603 int srcRowBytes) {
604 *(reinterpret_cast<uint64_t*>(dst)) = compress_r11eac_block_fast(src, srcRowBytes);
605 }
606
607 #if PEDANTIC_BLIT_RECT
UpdateBlockCompressorR11EAC608 static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
609 const uint8_t* mask) {
610 // TODO: krajcevski
611 // The implementation of this function should be similar to that of LATC, since
612 // the R11EAC indices directly correspond to pixel values.
613 SkFAIL("Implement me!");
614 }
615 #endif
616 };
617
618 ////////////////////////////////////////////////////////////////////////////////
619
620 namespace SkTextureCompressor {
621
CompressA8ToR11EAC(uint8_t * dst,const uint8_t * src,int width,int height,size_t rowBytes)622 bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, size_t rowBytes) {
623
624 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
625
626 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
627
628 #elif COMPRESS_R11_EAC_FASTEST
629
630 return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
631
632 #else
633 #error "Must choose R11 EAC algorithm"
634 #endif
635 }
636
CreateR11EACBlitter(int width,int height,void * outputBuffer,SkTBlitterAllocator * allocator)637 SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer,
638 SkTBlitterAllocator* allocator) {
639
640 if ((width % 4) != 0 || (height % 4) != 0) {
641 return NULL;
642 }
643
644 // Memset the output buffer to an encoding that decodes to zero. We must do this
645 // in order to avoid having uninitialized values in the buffer if the blitter
646 // decides not to write certain scanlines (and skip entire rows of blocks).
647 // In the case of R11, we use the encoding from recognizing all zero pixels from above.
648 const int nBlocks = (width * height / 16); // 4x4 pixel blocks.
649 uint64_t *dst = reinterpret_cast<uint64_t *>(outputBuffer);
650 for (int i = 0; i < nBlocks; ++i) {
651 *dst = 0x0020000000002000ULL;
652 ++dst;
653 }
654
655 return allocator->createT<
656 SkTCompressedAlphaBlitter<4, 8, CompressorR11EAC>, int, int, void*>
657 (width, height, outputBuffer);
658 }
659
DecompressR11EAC(uint8_t * dst,int dstRowBytes,const uint8_t * src,int width,int height)660 void DecompressR11EAC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) {
661 for (int j = 0; j < height; j += 4) {
662 for (int i = 0; i < width; i += 4) {
663 decompress_r11_eac_block(dst + i, dstRowBytes, src);
664 src += 8;
665 }
666 dst += 4 * dstRowBytes;
667 }
668 }
669
670 } // namespace SkTextureCompressor
671