1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkTextureCompressor.h"
9 #include "SkTextureCompressor_Blitter.h"
10 #include "SkTextureCompressor_Utils.h"
11 
12 #include "SkBlitter.h"
13 #include "SkEndian.h"
14 
15 // #define COMPRESS_R11_EAC_SLOW 1
16 // #define COMPRESS_R11_EAC_FAST 1
17 #define COMPRESS_R11_EAC_FASTEST 1
18 
19 // Blocks compressed into R11 EAC are represented as follows:
20 // 0000000000000000000000000000000000000000000000000000000000000000
21 // |base_cw|mod|mul|  ----------------- indices -------------------
22 //
23 // To reconstruct the value of a given pixel, we use the formula:
24 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
25 //
26 // mod_val is chosen from a palette of values based on the index of the
27 // given pixel. The palette is chosen by the value stored in mod.
28 // This formula returns a value between 0 and 2047, which is converted
29 // to a float from 0 to 1 in OpenGL.
30 //
31 // If mul is zero, then we set mul = 1/8, so that the formula becomes
32 // clamp[0, 2047](base_cw * 8 + 4 + mod_val)
33 
34 static const int kNumR11EACPalettes = 16;
35 static const int kR11EACPaletteSize = 8;
36 static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
37     {-3, -6, -9, -15, 2, 5, 8, 14},
38     {-3, -7, -10, -13, 2, 6, 9, 12},
39     {-2, -5, -8, -13, 1, 4, 7, 12},
40     {-2, -4, -6, -13, 1, 3, 5, 12},
41     {-3, -6, -8, -12, 2, 5, 7, 11},
42     {-3, -7, -9, -11, 2, 6, 8, 10},
43     {-4, -7, -8, -11, 3, 6, 7, 10},
44     {-3, -5, -8, -11, 2, 4, 7, 10},
45     {-2, -6, -8, -10, 1, 5, 7, 9},
46     {-2, -5, -8, -10, 1, 4, 7, 9},
47     {-2, -4, -8, -10, 1, 3, 7, 9},
48     {-2, -5, -7, -10, 1, 4, 6, 9},
49     {-3, -4, -7, -10, 2, 3, 6, 9},
50     {-1, -2, -3, -10, 0, 1, 2, 9},
51     {-4, -6, -8, -9, 3, 5, 7, 8},
52     {-3, -5, -7, -9, 2, 4, 6, 8}
53 };
54 
55 #if COMPRESS_R11_EAC_SLOW
56 
57 // Pack the base codeword, palette, and multiplier into the 64 bits necessary
58 // to decode it.
pack_r11eac_block(uint16_t base_cw,uint16_t palette,uint16_t multiplier,uint64_t indices)59 static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
60                                   uint64_t indices) {
61     SkASSERT(palette < 16);
62     SkASSERT(multiplier < 16);
63     SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
64 
65     const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
66     const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
67     const uint64_t p = static_cast<uint64_t>(palette) << 48;
68     return SkEndian_SwapBE64(b | m | p | indices);
69 }
70 
71 // Given a base codeword, a modifier, and a multiplier, compute the proper
72 // pixel value in the range [0, 2047].
compute_r11eac_pixel(int base_cw,int modifier,int multiplier)73 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
74     int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
75     return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
76 }
77 
78 // Compress a block into R11 EAC format.
79 // The compression works as follows:
80 // 1. Find the center of the span of the block's values. Use this as the base codeword.
81 // 2. Choose a multiplier based roughly on the size of the span of block values
82 // 3. Iterate through each palette and choose the one with the most accurate
83 // modifiers.
compress_heterogeneous_r11eac_block(const uint8_t block[16])84 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
85     // Find the center of the data...
86     uint16_t bmin = block[0];
87     uint16_t bmax = block[0];
88     for (int i = 1; i < 16; ++i) {
89         bmin = SkTMin<uint16_t>(bmin, block[i]);
90         bmax = SkTMax<uint16_t>(bmax, block[i]);
91     }
92 
93     uint16_t center = (bmax + bmin) >> 1;
94     SkASSERT(center <= 255);
95 
96     // Based on the min and max, we can guesstimate a proper multiplier
97     // This is kind of a magic choice to start with.
98     uint16_t multiplier = (bmax - center) / 10;
99 
100     // Now convert the block to 11 bits and transpose it to match
101     // the proper layout
102     uint16_t cblock[16];
103     for (int i = 0; i < 4; ++i) {
104         for (int j = 0; j < 4; ++j) {
105             int srcIdx = i*4+j;
106             int dstIdx = j*4+i;
107             cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
108         }
109     }
110 
111     // Finally, choose the proper palette and indices
112     uint32_t bestError = 0xFFFFFFFF;
113     uint64_t bestIndices = 0;
114     uint16_t bestPalette = 0;
115     for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
116         const int *palette = kR11EACModifierPalettes[paletteIdx];
117 
118         // Iterate through each pixel to find the best palette index
119         // and update the indices with the choice. Also store the error
120         // for this palette to be compared against the best error...
121         uint32_t error = 0;
122         uint64_t indices = 0;
123         for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
124             const uint16_t pixel = cblock[pixelIdx];
125 
126             // Iterate through each palette value to find the best index
127             // for this particular pixel for this particular palette.
128             uint16_t bestPixelError =
129                 abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
130             int bestIndex = 0;
131             for (int i = 1; i < kR11EACPaletteSize; ++i) {
132                 const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
133                 const uint16_t perror = abs_diff(pixel, p);
134 
135                 // Is this index better?
136                 if (perror < bestPixelError) {
137                     bestIndex = i;
138                     bestPixelError = perror;
139                 }
140             }
141 
142             SkASSERT(bestIndex < 8);
143 
144             error += bestPixelError;
145             indices <<= 3;
146             indices |= bestIndex;
147         }
148 
149         SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
150 
151         // Is this palette better?
152         if (error < bestError) {
153             bestPalette = paletteIdx;
154             bestIndices = indices;
155             bestError = error;
156         }
157     }
158 
159     // Finally, pack everything together...
160     return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
161 }
162 #endif // COMPRESS_R11_EAC_SLOW
163 
164 #if COMPRESS_R11_EAC_FAST
165 // This function takes into account that most blocks that we compress have a gradation from
166 // fully opaque to fully transparent. The compression scheme works by selecting the
167 // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
168 // as the block header (0x8490). The indices are then selected by considering the top
169 // three bits of each alpha value. For alpha masks, this reduces the dynamic range from
170 // 17 to 8, but the quality is still acceptable.
171 //
172 // There are a few caveats that need to be taken care of...
173 //
174 // 1. The block is read in as scanlines, so the indices are stored as:
175 //     0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
176 //    However, the decomrpession routine reads them in column-major order, so they
177 //    need to be packed as:
178 //     0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
179 //    So when reading, they must be transposed.
180 //
181 // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
182 //    above store the modulation values first decreasing and then increasing:
183 //      e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
184 //    Hence, we need to convert the indices with the following mapping:
185 //      From: 0 1 2 3 4 5 6 7
186 //      To:   3 2 1 0 4 5 6 7
compress_heterogeneous_r11eac_block(const uint8_t block[16])187 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
188     uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
189     for(int i = 0; i < 4; ++i) {
190         for(int j = 0; j < 4; ++j) {
191             const int shift = 45-3*(j*4+i);
192             SkASSERT(shift <= 45);
193             const uint64_t idx = block[i*4+j] >> 5;
194             SkASSERT(idx < 8);
195 
196             // !SPEED! This is slightly faster than having an if-statement.
197             switch(idx) {
198                 case 0:
199                 case 1:
200                 case 2:
201                 case 3:
202                     retVal |= (3-idx) << shift;
203                     break;
204                 default:
205                     retVal |= idx << shift;
206                     break;
207             }
208         }
209     }
210 
211     return SkEndian_SwapBE64(retVal);
212 }
213 #endif // COMPRESS_R11_EAC_FAST
214 
215 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
compress_r11eac_block(const uint8_t block[16])216 static uint64_t compress_r11eac_block(const uint8_t block[16]) {
217     // Are all blocks a solid color?
218     bool solid = true;
219     for (int i = 1; i < 16; ++i) {
220         if (block[i] != block[0]) {
221             solid = false;
222             break;
223         }
224     }
225 
226     if (solid) {
227         switch(block[0]) {
228             // Fully transparent? We know the encoding...
229             case 0:
230                 // (0x0020 << 48) produces the following:
231                 // basw_cw: 0
232                 // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
233                 // multiplier: 2
234                 // mod_val: -3
235                 //
236                 // this gives the following formula:
237                 // clamp[0, 2047](0*8+4+(-3)*2*8) = 0
238                 //
239                 // Furthermore, it is impervious to endianness:
240                 // 0x0020000000002000ULL
241                 // Will produce one pixel with index 2, which gives:
242                 // clamp[0, 2047](0*8+4+(-9)*2*8) = 0
243                 return 0x0020000000002000ULL;
244 
245             // Fully opaque? We know this encoding too...
246             case 255:
247 
248                 // -1 produces the following:
249                 // basw_cw: 255
250                 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
251                 // mod_val: 8
252                 //
253                 // this gives the following formula:
254                 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
255                 return 0xFFFFFFFFFFFFFFFFULL;
256 
257             default:
258                 // !TODO! krajcevski:
259                 // This will probably never happen, since we're using this format
260                 // primarily for compressing alpha maps. Usually the only
261                 // non-fullly opaque or fully transparent blocks are not a solid
262                 // intermediate color. If we notice that they are, then we can
263                 // add another optimization...
264                 break;
265         }
266     }
267 
268     return compress_heterogeneous_r11eac_block(block);
269 }
270 
271 // This function is used by R11 EAC to compress 4x4 blocks
272 // of 8-bit alpha into 64-bit values that comprise the compressed data.
273 // We need to make sure that the dimensions of the src pixels are divisible
274 // by 4, and copy 4x4 blocks one at a time for compression.
275 typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
276 
compress_4x4_a8_to_64bit(uint8_t * dst,const uint8_t * src,int width,int height,size_t rowBytes,A84x4To64BitProc proc)277 static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
278                                      int width, int height, size_t rowBytes,
279                                      A84x4To64BitProc proc) {
280     // Make sure that our data is well-formed enough to be considered for compression
281     if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
282         return false;
283     }
284 
285     int blocksX = width >> 2;
286     int blocksY = height >> 2;
287 
288     uint8_t block[16];
289     uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
290     for (int y = 0; y < blocksY; ++y) {
291         for (int x = 0; x < blocksX; ++x) {
292             // Load block
293             for (int k = 0; k < 4; ++k) {
294                 memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
295             }
296 
297             // Compress it
298             *encPtr = proc(block);
299             ++encPtr;
300         }
301         src += 4 * rowBytes;
302     }
303 
304     return true;
305 }
306 #endif  // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
307 
308 // This function converts an integer containing four bytes of alpha
309 // values into an integer containing four bytes of indices into R11 EAC.
310 // Note, there needs to be a mapping of indices:
311 // 0 1 2 3 4 5 6 7
312 // 3 2 1 0 4 5 6 7
313 //
314 // To compute this, we first negate each byte, and then add three, which
315 // gives the mapping
316 // 3 2 1 0 -1 -2 -3 -4
317 //
318 // Then we mask out the negative values, take their absolute value, and
319 // add three.
320 //
321 // Most of the voodoo in this function comes from Hacker's Delight, section 2-18
convert_indices(uint32_t x)322 static inline uint32_t convert_indices(uint32_t x) {
323     // Take the top three bits...
324     x = SkTextureCompressor::ConvertToThreeBitIndex(x);
325 
326     // Negate...
327     x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
328 
329     // Add three
330     const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
331     x = ((x ^ 0x03030303) & 0x80808080) ^ s;
332 
333     // Absolute value
334     const uint32_t a = x & 0x80808080;
335     const uint32_t b = a >> 7;
336 
337     // Aside: mask negatives (m is three if the byte was negative)
338     const uint32_t m = (a >> 6) | b;
339 
340     // .. continue absolute value
341     x = (x ^ ((a - b) | a)) + b;
342 
343     // Add three
344     return x + m;
345 }
346 
347 #if COMPRESS_R11_EAC_FASTEST
348 template<unsigned shift>
swap_shift(uint64_t x,uint64_t mask)349 static inline uint64_t swap_shift(uint64_t x, uint64_t mask) {
350     const uint64_t t = (x ^ (x >> shift)) & mask;
351     return x ^ t ^ (t << shift);
352 }
353 
interleave6(uint64_t topRows,uint64_t bottomRows)354 static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
355     // If our 3-bit block indices are laid out as:
356     // a b c d
357     // e f g h
358     // i j k l
359     // m n o p
360     //
361     // This function expects topRows and bottomRows to contain the first two rows
362     // of indices interleaved in the least significant bits of a and b. In other words...
363     //
364     // If the architecture is big endian, then topRows and bottomRows will contain the following:
365     // Bits 31-0:
366     // a: 00 a e 00 b f 00 c g 00 d h
367     // b: 00 i m 00 j n 00 k o 00 l p
368     //
369     // If the architecture is little endian, then topRows and bottomRows will contain
370     // the following:
371     // Bits 31-0:
372     // a: 00 d h 00 c g 00 b f 00 a e
373     // b: 00 l p 00 k o 00 j n 00 i m
374     //
375     // This function returns a 48-bit packing of the form:
376     // a e i m b f j n c g k o d h l p
377     //
378     // !SPEED! this function might be even faster if certain SIMD intrinsics are
379     // used..
380 
381     // For both architectures, we can figure out a packing of the bits by
382     // using a shuffle and a few shift-rotates...
383     uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
384 
385     // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
386 
387     x = swap_shift<10>(x, 0x3FC0003FC00000ULL);
388 
389     // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
390 
391     x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16;
392 
393     // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
394 
395     x = swap_shift<6>(x, 0xFC0000ULL);
396 
397 #if defined (SK_CPU_BENDIAN)
398     // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
399 
400     x = swap_shift<36>(x, 0x3FULL);
401 
402     // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
403 
404     x = swap_shift<12>(x, 0xFFF000000ULL);
405 #else
406     // If our CPU is little endian, then the above logic will
407     // produce the following indices:
408     // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
409 
410     x = swap_shift<36>(x, 0xFC0ULL);
411 
412     // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
413 
414     x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
415 #endif
416 
417     // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
418     return x;
419 }
420 
421 // This function follows the same basic procedure as compress_heterogeneous_r11eac_block
422 // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
423 // tries to optimize where it can using SIMD.
compress_r11eac_block_fast(const uint8_t * src,size_t rowBytes)424 static uint64_t compress_r11eac_block_fast(const uint8_t* src, size_t rowBytes) {
425     // Store each row of alpha values in an integer
426     const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
427     const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
428     const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
429     const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
430 
431     // Check for solid blocks. The explanations for these values
432     // can be found in the comments of compress_r11eac_block above
433     if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
434         if (0 == alphaRow1) {
435             // Fully transparent block
436             return 0x0020000000002000ULL;
437         } else if (0xFFFFFFFF == alphaRow1) {
438             // Fully opaque block
439             return 0xFFFFFFFFFFFFFFFFULL;
440         }
441     }
442 
443     // Convert each integer of alpha values into an integer of indices
444     const uint32_t indexRow1 = convert_indices(alphaRow1);
445     const uint32_t indexRow2 = convert_indices(alphaRow2);
446     const uint32_t indexRow3 = convert_indices(alphaRow3);
447     const uint32_t indexRow4 = convert_indices(alphaRow4);
448 
449     // Interleave the indices from the top two rows and bottom two rows
450     // prior to passing them to interleave6. Since each index is at most
451     // three bits, then each byte can hold two indices... The way that the
452     // compression scheme expects the packing allows us to efficiently pack
453     // the top two rows and bottom two rows. Interleaving each 6-bit sequence
454     // and tightly packing it into a uint64_t is a little trickier, which is
455     // taken care of in interleave6.
456     const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
457     const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
458     const uint64_t indices = interleave6(r1r2, r3r4);
459 
460     // Return the packed incdices in the least significant bits with the magic header
461     return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
462 }
463 
compress_a8_to_r11eac_fast(uint8_t * dst,const uint8_t * src,int width,int height,size_t rowBytes)464 static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
465                                        int width, int height, size_t rowBytes) {
466     // Make sure that our data is well-formed enough to be considered for compression
467     if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
468         return false;
469     }
470 
471     const int blocksX = width >> 2;
472     const int blocksY = height >> 2;
473 
474     uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
475     for (int y = 0; y < blocksY; ++y) {
476         for (int x = 0; x < blocksX; ++x) {
477             // Compress it
478             *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
479             ++encPtr;
480         }
481         src += 4 * rowBytes;
482     }
483     return true;
484 }
485 #endif // COMPRESS_R11_EAC_FASTEST
486 
487 ////////////////////////////////////////////////////////////////////////////////
488 //
489 // Utility functions used by the blitter
490 //
491 ////////////////////////////////////////////////////////////////////////////////
492 
493 // The R11 EAC format expects that indices are given in column-major order. Since
494 // we receive alpha values in raster order, this usually means that we have to use
495 // pack6 above to properly pack our indices. However, if our indices come from the
496 // blitter, then each integer will be a column of indices, and hence can be efficiently
497 // packed. This function takes the bottom three bits of each byte and places them in
498 // the least significant 12 bits of the resulting integer.
pack_indices_vertical(uint32_t x)499 static inline uint32_t pack_indices_vertical(uint32_t x) {
500 #if defined (SK_CPU_BENDIAN)
501     return
502         (x & 7) |
503         ((x >> 5) & (7 << 3)) |
504         ((x >> 10) & (7 << 6)) |
505         ((x >> 15) & (7 << 9));
506 #else
507     return
508         ((x >> 24) & 7) |
509         ((x >> 13) & (7 << 3)) |
510         ((x >> 2) & (7 << 6)) |
511         ((x << 9) & (7 << 9));
512 #endif
513 }
514 
515 // This function returns the compressed format of a block given as four columns of
516 // alpha values. Each column is assumed to be loaded from top to bottom, and hence
517 // must first be converted to indices and then packed into the resulting 64-bit
518 // integer.
compress_block_vertical(uint8_t * dstPtr,const uint8_t * block)519 inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) {
520 
521     const uint32_t* src = reinterpret_cast<const uint32_t*>(block);
522     uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr);
523 
524     const uint32_t alphaColumn0 = src[0];
525     const uint32_t alphaColumn1 = src[1];
526     const uint32_t alphaColumn2 = src[2];
527     const uint32_t alphaColumn3 = src[3];
528 
529     if (alphaColumn0 == alphaColumn1 &&
530         alphaColumn2 == alphaColumn3 &&
531         alphaColumn0 == alphaColumn2) {
532 
533         if (0 == alphaColumn0) {
534             // Transparent
535             *dst = 0x0020000000002000ULL;
536             return;
537         }
538         else if (0xFFFFFFFF == alphaColumn0) {
539             // Opaque
540             *dst = 0xFFFFFFFFFFFFFFFFULL;
541             return;
542         }
543     }
544 
545     const uint32_t indexColumn0 = convert_indices(alphaColumn0);
546     const uint32_t indexColumn1 = convert_indices(alphaColumn1);
547     const uint32_t indexColumn2 = convert_indices(alphaColumn2);
548     const uint32_t indexColumn3 = convert_indices(alphaColumn3);
549 
550     const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
551     const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
552     const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
553     const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
554 
555     *dst = SkEndian_SwapBE64(0x8490000000000000ULL |
556                              (static_cast<uint64_t>(packedIndexColumn0) << 36) |
557                              (static_cast<uint64_t>(packedIndexColumn1) << 24) |
558                              static_cast<uint64_t>(packedIndexColumn2 << 12) |
559                              static_cast<uint64_t>(packedIndexColumn3));
560 }
561 
get_r11_eac_index(uint64_t block,int x,int y)562 static inline int get_r11_eac_index(uint64_t block, int x, int y) {
563     SkASSERT(x >= 0 && x < 4);
564     SkASSERT(y >= 0 && y < 4);
565     const int idx = x*4 + y;
566     return (block >> ((15-idx)*3)) & 0x7;
567 }
568 
decompress_r11_eac_block(uint8_t * dst,int dstRowBytes,const uint8_t * src)569 static void decompress_r11_eac_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) {
570     const uint64_t block = SkEndian_SwapBE64(*(reinterpret_cast<const uint64_t *>(src)));
571 
572     const int base_cw = (block >> 56) & 0xFF;
573     const int mod = (block >> 52) & 0xF;
574     const int palette_idx = (block >> 48) & 0xF;
575 
576     const int* palette = kR11EACModifierPalettes[palette_idx];
577 
578     for (int j = 0; j < 4; ++j) {
579         for (int i = 0; i < 4; ++i) {
580             const int idx = get_r11_eac_index(block, i, j);
581             const int val = base_cw*8 + 4 + palette[idx]*mod*8;
582             if (val < 0) {
583                 dst[i] = 0;
584             } else if (val > 2047) {
585                 dst[i] = 0xFF;
586             } else {
587                 dst[i] = (val >> 3) & 0xFF;
588             }
589         }
590         dst += dstRowBytes;
591     }
592 }
593 
594 // This is the type passed as the CompressorType argument of the compressed
595 // blitter for the R11 EAC format. The static functions required to be in this
596 // struct are documented in SkTextureCompressor_Blitter.h
597 struct CompressorR11EAC {
CompressA8VerticalCompressorR11EAC598     static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) {
599         compress_block_vertical(dst, src);
600     }
601 
CompressA8HorizontalCompressorR11EAC602     static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src,
603                                             int srcRowBytes) {
604         *(reinterpret_cast<uint64_t*>(dst)) = compress_r11eac_block_fast(src, srcRowBytes);
605     }
606 
607 #if PEDANTIC_BLIT_RECT
UpdateBlockCompressorR11EAC608     static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
609                                    const uint8_t* mask) {
610         // TODO: krajcevski
611         // The implementation of this function should be similar to that of LATC, since
612         // the R11EAC indices directly correspond to pixel values.
613         SkFAIL("Implement me!");
614     }
615 #endif
616 };
617 
618 ////////////////////////////////////////////////////////////////////////////////
619 
620 namespace SkTextureCompressor {
621 
CompressA8ToR11EAC(uint8_t * dst,const uint8_t * src,int width,int height,size_t rowBytes)622 bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, size_t rowBytes) {
623 
624 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
625 
626     return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
627 
628 #elif COMPRESS_R11_EAC_FASTEST
629 
630     return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
631 
632 #else
633 #error "Must choose R11 EAC algorithm"
634 #endif
635 }
636 
CreateR11EACBlitter(int width,int height,void * outputBuffer,SkTBlitterAllocator * allocator)637 SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer,
638                                SkTBlitterAllocator* allocator) {
639 
640     if ((width % 4) != 0 || (height % 4) != 0) {
641         return NULL;
642     }
643 
644     // Memset the output buffer to an encoding that decodes to zero. We must do this
645     // in order to avoid having uninitialized values in the buffer if the blitter
646     // decides not to write certain scanlines (and skip entire rows of blocks).
647     // In the case of R11, we use the encoding from recognizing all zero pixels from above.
648     const int nBlocks = (width * height / 16);  // 4x4 pixel blocks.
649     uint64_t *dst = reinterpret_cast<uint64_t *>(outputBuffer);
650     for (int i = 0; i < nBlocks; ++i) {
651         *dst = 0x0020000000002000ULL;
652         ++dst;
653     }
654 
655     return allocator->createT<
656         SkTCompressedAlphaBlitter<4, 8, CompressorR11EAC>, int, int, void*>
657         (width, height, outputBuffer);
658 }
659 
DecompressR11EAC(uint8_t * dst,int dstRowBytes,const uint8_t * src,int width,int height)660 void DecompressR11EAC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) {
661     for (int j = 0; j < height; j += 4) {
662         for (int i = 0; i < width; i += 4) {
663             decompress_r11_eac_block(dst + i, dstRowBytes, src);
664             src += 8;
665         }
666         dst += 4 * dstRowBytes;
667     }
668 }
669 
670 }  // namespace SkTextureCompressor
671