1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #include "src/v8.h"
38
39 #if V8_TARGET_ARCH_ARM
40
41 #include "src/arm/assembler-arm-inl.h"
42 #include "src/base/bits.h"
43 #include "src/base/cpu.h"
44 #include "src/macro-assembler.h"
45 #include "src/serialize.h"
46
47 namespace v8 {
48 namespace internal {
49
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
52 // can be defined to enable ARMv7 and VFPv3 instructions when building the
53 // snapshot.
CpuFeaturesImpliedByCompiler()54 static unsigned CpuFeaturesImpliedByCompiler() {
55 unsigned answer = 0;
56 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
57 if (FLAG_enable_armv7) answer |= 1u << ARMv7;
58 #endif // CAN_USE_ARMV7_INSTRUCTIONS
59 #ifdef CAN_USE_VFP3_INSTRUCTIONS
60 if (FLAG_enable_vfp3) answer |= 1u << VFP3 | 1u << ARMv7;
61 #endif // CAN_USE_VFP3_INSTRUCTIONS
62 #ifdef CAN_USE_VFP32DREGS
63 if (FLAG_enable_32dregs) answer |= 1u << VFP32DREGS;
64 #endif // CAN_USE_VFP32DREGS
65 #ifdef CAN_USE_NEON
66 if (FLAG_enable_neon) answer |= 1u << NEON;
67 #endif // CAN_USE_VFP32DREGS
68 if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
69 answer |= 1u << UNALIGNED_ACCESSES;
70 }
71
72 return answer;
73 }
74
75
ProbeImpl(bool cross_compile)76 void CpuFeatures::ProbeImpl(bool cross_compile) {
77 supported_ |= CpuFeaturesImpliedByCompiler();
78 cache_line_size_ = 64;
79
80 // Only use statically determined features for cross compile (snapshot).
81 if (cross_compile) return;
82
83 #ifndef __arm__
84 // For the simulator build, use whatever the flags specify.
85 if (FLAG_enable_armv7) {
86 supported_ |= 1u << ARMv7;
87 if (FLAG_enable_vfp3) supported_ |= 1u << VFP3;
88 if (FLAG_enable_neon) supported_ |= 1u << NEON | 1u << VFP32DREGS;
89 if (FLAG_enable_sudiv) supported_ |= 1u << SUDIV;
90 if (FLAG_enable_movw_movt) supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
91 if (FLAG_enable_32dregs) supported_ |= 1u << VFP32DREGS;
92 }
93 if (FLAG_enable_mls) supported_ |= 1u << MLS;
94 if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
95
96 #else // __arm__
97 // Probe for additional features at runtime.
98 base::CPU cpu;
99 if (FLAG_enable_vfp3 && cpu.has_vfp3()) {
100 // This implementation also sets the VFP flags if runtime
101 // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
102 // 0406B, page A1-6.
103 supported_ |= 1u << VFP3 | 1u << ARMv7;
104 }
105
106 if (FLAG_enable_neon && cpu.has_neon()) supported_ |= 1u << NEON;
107 if (FLAG_enable_sudiv && cpu.has_idiva()) supported_ |= 1u << SUDIV;
108 if (FLAG_enable_mls && cpu.has_thumb2()) supported_ |= 1u << MLS;
109
110 if (cpu.architecture() >= 7) {
111 if (FLAG_enable_armv7) supported_ |= 1u << ARMv7;
112 if (FLAG_enable_unaligned_accesses) supported_ |= 1u << UNALIGNED_ACCESSES;
113 // Use movw/movt for QUALCOMM ARMv7 cores.
114 if (FLAG_enable_movw_movt && cpu.implementer() == base::CPU::QUALCOMM) {
115 supported_ |= 1u << MOVW_MOVT_IMMEDIATE_LOADS;
116 }
117 }
118
119 // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
120 if (cpu.implementer() == base::CPU::ARM &&
121 (cpu.part() == base::CPU::ARM_CORTEX_A5 ||
122 cpu.part() == base::CPU::ARM_CORTEX_A9)) {
123 cache_line_size_ = 32;
124 }
125
126 if (FLAG_enable_32dregs && cpu.has_vfp3_d32()) supported_ |= 1u << VFP32DREGS;
127 #endif
128
129 DCHECK(!IsSupported(VFP3) || IsSupported(ARMv7));
130 }
131
132
PrintTarget()133 void CpuFeatures::PrintTarget() {
134 const char* arm_arch = NULL;
135 const char* arm_target_type = "";
136 const char* arm_no_probe = "";
137 const char* arm_fpu = "";
138 const char* arm_thumb = "";
139 const char* arm_float_abi = NULL;
140
141 #if !defined __arm__
142 arm_target_type = " simulator";
143 #endif
144
145 #if defined ARM_TEST_NO_FEATURE_PROBE
146 arm_no_probe = " noprobe";
147 #endif
148
149 #if defined CAN_USE_ARMV7_INSTRUCTIONS
150 arm_arch = "arm v7";
151 #else
152 arm_arch = "arm v6";
153 #endif
154
155 #if defined CAN_USE_NEON
156 arm_fpu = " neon";
157 #elif defined CAN_USE_VFP3_INSTRUCTIONS
158 # if defined CAN_USE_VFP32DREGS
159 arm_fpu = " vfp3";
160 # else
161 arm_fpu = " vfp3-d16";
162 # endif
163 #else
164 arm_fpu = " vfp2";
165 #endif
166
167 #ifdef __arm__
168 arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp";
169 #elif USE_EABI_HARDFLOAT
170 arm_float_abi = "hard";
171 #else
172 arm_float_abi = "softfp";
173 #endif
174
175 #if defined __arm__ && (defined __thumb__) || (defined __thumb2__)
176 arm_thumb = " thumb";
177 #endif
178
179 printf("target%s%s %s%s%s %s\n",
180 arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb,
181 arm_float_abi);
182 }
183
184
PrintFeatures()185 void CpuFeatures::PrintFeatures() {
186 printf(
187 "ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d "
188 "MOVW_MOVT_IMMEDIATE_LOADS=%d",
189 CpuFeatures::IsSupported(ARMv7),
190 CpuFeatures::IsSupported(VFP3),
191 CpuFeatures::IsSupported(VFP32DREGS),
192 CpuFeatures::IsSupported(NEON),
193 CpuFeatures::IsSupported(SUDIV),
194 CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
195 CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
196 #ifdef __arm__
197 bool eabi_hardfloat = base::OS::ArmUsingHardFloat();
198 #elif USE_EABI_HARDFLOAT
199 bool eabi_hardfloat = true;
200 #else
201 bool eabi_hardfloat = false;
202 #endif
203 printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
204 }
205
206
207 // -----------------------------------------------------------------------------
208 // Implementation of DwVfpRegister
209
AllocationIndexToString(int index)210 const char* DwVfpRegister::AllocationIndexToString(int index) {
211 DCHECK(index >= 0 && index < NumAllocatableRegisters());
212 DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
213 kNumReservedRegisters - 1);
214 if (index >= kDoubleRegZero.code()) index += kNumReservedRegisters;
215 return VFPRegisters::Name(index, true);
216 }
217
218
219 // -----------------------------------------------------------------------------
220 // Implementation of RelocInfo
221
222 const int RelocInfo::kApplyMask = 0;
223
224
IsCodedSpecially()225 bool RelocInfo::IsCodedSpecially() {
226 // The deserializer needs to know whether a pointer is specially coded. Being
227 // specially coded on ARM means that it is a movw/movt instruction, or is an
228 // out of line constant pool entry. These only occur if
229 // FLAG_enable_ool_constant_pool is true.
230 return FLAG_enable_ool_constant_pool;
231 }
232
233
IsInConstantPool()234 bool RelocInfo::IsInConstantPool() {
235 return Assembler::is_constant_pool_load(pc_);
236 }
237
238
PatchCode(byte * instructions,int instruction_count)239 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
240 // Patch the code at the current address with the supplied instructions.
241 Instr* pc = reinterpret_cast<Instr*>(pc_);
242 Instr* instr = reinterpret_cast<Instr*>(instructions);
243 for (int i = 0; i < instruction_count; i++) {
244 *(pc + i) = *(instr + i);
245 }
246
247 // Indicate that code has changed.
248 CpuFeatures::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
249 }
250
251
252 // Patch the code at the current PC with a call to the target address.
253 // Additional guard instructions can be added if required.
PatchCodeWithCall(Address target,int guard_bytes)254 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
255 // Patch the code at the current address with a call to the target.
256 UNIMPLEMENTED();
257 }
258
259
260 // -----------------------------------------------------------------------------
261 // Implementation of Operand and MemOperand
262 // See assembler-arm-inl.h for inlined constructors
263
Operand(Handle<Object> handle)264 Operand::Operand(Handle<Object> handle) {
265 AllowDeferredHandleDereference using_raw_address;
266 rm_ = no_reg;
267 // Verify all Objects referred by code are NOT in new space.
268 Object* obj = *handle;
269 if (obj->IsHeapObject()) {
270 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
271 imm32_ = reinterpret_cast<intptr_t>(handle.location());
272 rmode_ = RelocInfo::EMBEDDED_OBJECT;
273 } else {
274 // no relocation needed
275 imm32_ = reinterpret_cast<intptr_t>(obj);
276 rmode_ = RelocInfo::NONE32;
277 }
278 }
279
280
Operand(Register rm,ShiftOp shift_op,int shift_imm)281 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
282 DCHECK(is_uint5(shift_imm));
283
284 rm_ = rm;
285 rs_ = no_reg;
286 shift_op_ = shift_op;
287 shift_imm_ = shift_imm & 31;
288
289 if ((shift_op == ROR) && (shift_imm == 0)) {
290 // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode
291 // RRX as ROR #0 (See below).
292 shift_op = LSL;
293 } else if (shift_op == RRX) {
294 // encoded as ROR with shift_imm == 0
295 DCHECK(shift_imm == 0);
296 shift_op_ = ROR;
297 shift_imm_ = 0;
298 }
299 }
300
301
Operand(Register rm,ShiftOp shift_op,Register rs)302 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
303 DCHECK(shift_op != RRX);
304 rm_ = rm;
305 rs_ = no_reg;
306 shift_op_ = shift_op;
307 rs_ = rs;
308 }
309
310
MemOperand(Register rn,int32_t offset,AddrMode am)311 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
312 rn_ = rn;
313 rm_ = no_reg;
314 offset_ = offset;
315 am_ = am;
316 }
317
318
MemOperand(Register rn,Register rm,AddrMode am)319 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
320 rn_ = rn;
321 rm_ = rm;
322 shift_op_ = LSL;
323 shift_imm_ = 0;
324 am_ = am;
325 }
326
327
MemOperand(Register rn,Register rm,ShiftOp shift_op,int shift_imm,AddrMode am)328 MemOperand::MemOperand(Register rn, Register rm,
329 ShiftOp shift_op, int shift_imm, AddrMode am) {
330 DCHECK(is_uint5(shift_imm));
331 rn_ = rn;
332 rm_ = rm;
333 shift_op_ = shift_op;
334 shift_imm_ = shift_imm & 31;
335 am_ = am;
336 }
337
338
NeonMemOperand(Register rn,AddrMode am,int align)339 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
340 DCHECK((am == Offset) || (am == PostIndex));
341 rn_ = rn;
342 rm_ = (am == Offset) ? pc : sp;
343 SetAlignment(align);
344 }
345
346
NeonMemOperand(Register rn,Register rm,int align)347 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
348 rn_ = rn;
349 rm_ = rm;
350 SetAlignment(align);
351 }
352
353
SetAlignment(int align)354 void NeonMemOperand::SetAlignment(int align) {
355 switch (align) {
356 case 0:
357 align_ = 0;
358 break;
359 case 64:
360 align_ = 1;
361 break;
362 case 128:
363 align_ = 2;
364 break;
365 case 256:
366 align_ = 3;
367 break;
368 default:
369 UNREACHABLE();
370 align_ = 0;
371 break;
372 }
373 }
374
375
NeonListOperand(DoubleRegister base,int registers_count)376 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
377 base_ = base;
378 switch (registers_count) {
379 case 1:
380 type_ = nlt_1;
381 break;
382 case 2:
383 type_ = nlt_2;
384 break;
385 case 3:
386 type_ = nlt_3;
387 break;
388 case 4:
389 type_ = nlt_4;
390 break;
391 default:
392 UNREACHABLE();
393 type_ = nlt_1;
394 break;
395 }
396 }
397
398
399 // -----------------------------------------------------------------------------
400 // Specific instructions, constants, and masks.
401
402 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
403 // register r is not encoded.
404 const Instr kPushRegPattern =
405 al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
406 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
407 // register r is not encoded.
408 const Instr kPopRegPattern =
409 al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
410 // ldr rd, [pc, #offset]
411 const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
412 const Instr kLdrPCImmedPattern = 5 * B24 | L | kRegister_pc_Code * B16;
413 // ldr rd, [pp, #offset]
414 const Instr kLdrPpImmedMask = 15 * B24 | 7 * B20 | 15 * B16;
415 const Instr kLdrPpImmedPattern = 5 * B24 | L | kRegister_r8_Code * B16;
416 // ldr rd, [pp, rn]
417 const Instr kLdrPpRegMask = 15 * B24 | 7 * B20 | 15 * B16;
418 const Instr kLdrPpRegPattern = 7 * B24 | L | kRegister_r8_Code * B16;
419 // vldr dd, [pc, #offset]
420 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
421 const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
422 // vldr dd, [pp, #offset]
423 const Instr kVldrDPpMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
424 const Instr kVldrDPpPattern = 13 * B24 | L | kRegister_r8_Code * B16 | 11 * B8;
425 // blxcc rm
426 const Instr kBlxRegMask =
427 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
428 const Instr kBlxRegPattern =
429 B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
430 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
431 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
432 const Instr kMovMvnPattern = 0xd * B21;
433 const Instr kMovMvnFlip = B22;
434 const Instr kMovLeaveCCMask = 0xdff * B16;
435 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
436 const Instr kMovwPattern = 0x30 * B20;
437 const Instr kMovtPattern = 0x34 * B20;
438 const Instr kMovwLeaveCCFlip = 0x5 * B21;
439 const Instr kMovImmedMask = 0x7f * B21;
440 const Instr kMovImmedPattern = 0x1d * B21;
441 const Instr kOrrImmedMask = 0x7f * B21;
442 const Instr kOrrImmedPattern = 0x1c * B21;
443 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
444 const Instr kCmpCmnPattern = 0x15 * B20;
445 const Instr kCmpCmnFlip = B21;
446 const Instr kAddSubFlip = 0x6 * B21;
447 const Instr kAndBicFlip = 0xe * B21;
448
449 // A mask for the Rd register for push, pop, ldr, str instructions.
450 const Instr kLdrRegFpOffsetPattern =
451 al | B26 | L | Offset | kRegister_fp_Code * B16;
452 const Instr kStrRegFpOffsetPattern =
453 al | B26 | Offset | kRegister_fp_Code * B16;
454 const Instr kLdrRegFpNegOffsetPattern =
455 al | B26 | L | NegOffset | kRegister_fp_Code * B16;
456 const Instr kStrRegFpNegOffsetPattern =
457 al | B26 | NegOffset | kRegister_fp_Code * B16;
458 const Instr kLdrStrInstrTypeMask = 0xffff0000;
459
460
Assembler(Isolate * isolate,void * buffer,int buffer_size)461 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
462 : AssemblerBase(isolate, buffer, buffer_size),
463 recorded_ast_id_(TypeFeedbackId::None()),
464 constant_pool_builder_(),
465 positions_recorder_(this) {
466 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
467 num_pending_32_bit_reloc_info_ = 0;
468 num_pending_64_bit_reloc_info_ = 0;
469 next_buffer_check_ = 0;
470 const_pool_blocked_nesting_ = 0;
471 no_const_pool_before_ = 0;
472 first_const_pool_32_use_ = -1;
473 first_const_pool_64_use_ = -1;
474 last_bound_pos_ = 0;
475 constant_pool_available_ = !FLAG_enable_ool_constant_pool;
476 ClearRecordedAstId();
477 }
478
479
~Assembler()480 Assembler::~Assembler() {
481 DCHECK(const_pool_blocked_nesting_ == 0);
482 }
483
484
GetCode(CodeDesc * desc)485 void Assembler::GetCode(CodeDesc* desc) {
486 if (!FLAG_enable_ool_constant_pool) {
487 // Emit constant pool if necessary.
488 CheckConstPool(true, false);
489 DCHECK(num_pending_32_bit_reloc_info_ == 0);
490 DCHECK(num_pending_64_bit_reloc_info_ == 0);
491 }
492 // Set up code descriptor.
493 desc->buffer = buffer_;
494 desc->buffer_size = buffer_size_;
495 desc->instr_size = pc_offset();
496 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
497 desc->origin = this;
498 }
499
500
Align(int m)501 void Assembler::Align(int m) {
502 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
503 while ((pc_offset() & (m - 1)) != 0) {
504 nop();
505 }
506 }
507
508
CodeTargetAlign()509 void Assembler::CodeTargetAlign() {
510 // Preferred alignment of jump targets on some ARM chips.
511 Align(8);
512 }
513
514
GetCondition(Instr instr)515 Condition Assembler::GetCondition(Instr instr) {
516 return Instruction::ConditionField(instr);
517 }
518
519
IsBranch(Instr instr)520 bool Assembler::IsBranch(Instr instr) {
521 return (instr & (B27 | B25)) == (B27 | B25);
522 }
523
524
GetBranchOffset(Instr instr)525 int Assembler::GetBranchOffset(Instr instr) {
526 DCHECK(IsBranch(instr));
527 // Take the jump offset in the lower 24 bits, sign extend it and multiply it
528 // with 4 to get the offset in bytes.
529 return ((instr & kImm24Mask) << 8) >> 6;
530 }
531
532
IsLdrRegisterImmediate(Instr instr)533 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
534 return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
535 }
536
537
IsVldrDRegisterImmediate(Instr instr)538 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
539 return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
540 }
541
542
GetLdrRegisterImmediateOffset(Instr instr)543 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
544 DCHECK(IsLdrRegisterImmediate(instr));
545 bool positive = (instr & B23) == B23;
546 int offset = instr & kOff12Mask; // Zero extended offset.
547 return positive ? offset : -offset;
548 }
549
550
GetVldrDRegisterImmediateOffset(Instr instr)551 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
552 DCHECK(IsVldrDRegisterImmediate(instr));
553 bool positive = (instr & B23) == B23;
554 int offset = instr & kOff8Mask; // Zero extended offset.
555 offset <<= 2;
556 return positive ? offset : -offset;
557 }
558
559
SetLdrRegisterImmediateOffset(Instr instr,int offset)560 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
561 DCHECK(IsLdrRegisterImmediate(instr));
562 bool positive = offset >= 0;
563 if (!positive) offset = -offset;
564 DCHECK(is_uint12(offset));
565 // Set bit indicating whether the offset should be added.
566 instr = (instr & ~B23) | (positive ? B23 : 0);
567 // Set the actual offset.
568 return (instr & ~kOff12Mask) | offset;
569 }
570
571
SetVldrDRegisterImmediateOffset(Instr instr,int offset)572 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
573 DCHECK(IsVldrDRegisterImmediate(instr));
574 DCHECK((offset & ~3) == offset); // Must be 64-bit aligned.
575 bool positive = offset >= 0;
576 if (!positive) offset = -offset;
577 DCHECK(is_uint10(offset));
578 // Set bit indicating whether the offset should be added.
579 instr = (instr & ~B23) | (positive ? B23 : 0);
580 // Set the actual offset. Its bottom 2 bits are zero.
581 return (instr & ~kOff8Mask) | (offset >> 2);
582 }
583
584
IsStrRegisterImmediate(Instr instr)585 bool Assembler::IsStrRegisterImmediate(Instr instr) {
586 return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
587 }
588
589
SetStrRegisterImmediateOffset(Instr instr,int offset)590 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
591 DCHECK(IsStrRegisterImmediate(instr));
592 bool positive = offset >= 0;
593 if (!positive) offset = -offset;
594 DCHECK(is_uint12(offset));
595 // Set bit indicating whether the offset should be added.
596 instr = (instr & ~B23) | (positive ? B23 : 0);
597 // Set the actual offset.
598 return (instr & ~kOff12Mask) | offset;
599 }
600
601
IsAddRegisterImmediate(Instr instr)602 bool Assembler::IsAddRegisterImmediate(Instr instr) {
603 return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
604 }
605
606
SetAddRegisterImmediateOffset(Instr instr,int offset)607 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
608 DCHECK(IsAddRegisterImmediate(instr));
609 DCHECK(offset >= 0);
610 DCHECK(is_uint12(offset));
611 // Set the offset.
612 return (instr & ~kOff12Mask) | offset;
613 }
614
615
GetRd(Instr instr)616 Register Assembler::GetRd(Instr instr) {
617 Register reg;
618 reg.code_ = Instruction::RdValue(instr);
619 return reg;
620 }
621
622
GetRn(Instr instr)623 Register Assembler::GetRn(Instr instr) {
624 Register reg;
625 reg.code_ = Instruction::RnValue(instr);
626 return reg;
627 }
628
629
GetRm(Instr instr)630 Register Assembler::GetRm(Instr instr) {
631 Register reg;
632 reg.code_ = Instruction::RmValue(instr);
633 return reg;
634 }
635
636
GetConsantPoolLoadPattern()637 Instr Assembler::GetConsantPoolLoadPattern() {
638 if (FLAG_enable_ool_constant_pool) {
639 return kLdrPpImmedPattern;
640 } else {
641 return kLdrPCImmedPattern;
642 }
643 }
644
645
GetConsantPoolLoadMask()646 Instr Assembler::GetConsantPoolLoadMask() {
647 if (FLAG_enable_ool_constant_pool) {
648 return kLdrPpImmedMask;
649 } else {
650 return kLdrPCImmedMask;
651 }
652 }
653
654
IsPush(Instr instr)655 bool Assembler::IsPush(Instr instr) {
656 return ((instr & ~kRdMask) == kPushRegPattern);
657 }
658
659
IsPop(Instr instr)660 bool Assembler::IsPop(Instr instr) {
661 return ((instr & ~kRdMask) == kPopRegPattern);
662 }
663
664
IsStrRegFpOffset(Instr instr)665 bool Assembler::IsStrRegFpOffset(Instr instr) {
666 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
667 }
668
669
IsLdrRegFpOffset(Instr instr)670 bool Assembler::IsLdrRegFpOffset(Instr instr) {
671 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
672 }
673
674
IsStrRegFpNegOffset(Instr instr)675 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
676 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
677 }
678
679
IsLdrRegFpNegOffset(Instr instr)680 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
681 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
682 }
683
684
IsLdrPcImmediateOffset(Instr instr)685 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
686 // Check the instruction is indeed a
687 // ldr<cond> <Rd>, [pc +/- offset_12].
688 return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern;
689 }
690
691
IsLdrPpImmediateOffset(Instr instr)692 bool Assembler::IsLdrPpImmediateOffset(Instr instr) {
693 // Check the instruction is indeed a
694 // ldr<cond> <Rd>, [pp +/- offset_12].
695 return (instr & kLdrPpImmedMask) == kLdrPpImmedPattern;
696 }
697
698
IsLdrPpRegOffset(Instr instr)699 bool Assembler::IsLdrPpRegOffset(Instr instr) {
700 // Check the instruction is indeed a
701 // ldr<cond> <Rd>, [pp, +/- <Rm>].
702 return (instr & kLdrPpRegMask) == kLdrPpRegPattern;
703 }
704
705
GetLdrPpRegOffsetPattern()706 Instr Assembler::GetLdrPpRegOffsetPattern() { return kLdrPpRegPattern; }
707
708
IsVldrDPcImmediateOffset(Instr instr)709 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
710 // Check the instruction is indeed a
711 // vldr<cond> <Dd>, [pc +/- offset_10].
712 return (instr & kVldrDPCMask) == kVldrDPCPattern;
713 }
714
715
IsVldrDPpImmediateOffset(Instr instr)716 bool Assembler::IsVldrDPpImmediateOffset(Instr instr) {
717 // Check the instruction is indeed a
718 // vldr<cond> <Dd>, [pp +/- offset_10].
719 return (instr & kVldrDPpMask) == kVldrDPpPattern;
720 }
721
722
IsBlxReg(Instr instr)723 bool Assembler::IsBlxReg(Instr instr) {
724 // Check the instruction is indeed a
725 // blxcc <Rm>
726 return (instr & kBlxRegMask) == kBlxRegPattern;
727 }
728
729
IsBlxIp(Instr instr)730 bool Assembler::IsBlxIp(Instr instr) {
731 // Check the instruction is indeed a
732 // blx ip
733 return instr == kBlxIp;
734 }
735
736
IsTstImmediate(Instr instr)737 bool Assembler::IsTstImmediate(Instr instr) {
738 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
739 (I | TST | S);
740 }
741
742
IsCmpRegister(Instr instr)743 bool Assembler::IsCmpRegister(Instr instr) {
744 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
745 (CMP | S);
746 }
747
748
IsCmpImmediate(Instr instr)749 bool Assembler::IsCmpImmediate(Instr instr) {
750 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
751 (I | CMP | S);
752 }
753
754
GetCmpImmediateRegister(Instr instr)755 Register Assembler::GetCmpImmediateRegister(Instr instr) {
756 DCHECK(IsCmpImmediate(instr));
757 return GetRn(instr);
758 }
759
760
GetCmpImmediateRawImmediate(Instr instr)761 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
762 DCHECK(IsCmpImmediate(instr));
763 return instr & kOff12Mask;
764 }
765
766
767 // Labels refer to positions in the (to be) generated code.
768 // There are bound, linked, and unused labels.
769 //
770 // Bound labels refer to known positions in the already
771 // generated code. pos() is the position the label refers to.
772 //
773 // Linked labels refer to unknown positions in the code
774 // to be generated; pos() is the position of the last
775 // instruction using the label.
776 //
777 // The linked labels form a link chain by making the branch offset
778 // in the instruction steam to point to the previous branch
779 // instruction using the same label.
780 //
781 // The link chain is terminated by a branch offset pointing to the
782 // same position.
783
784
target_at(int pos)785 int Assembler::target_at(int pos) {
786 Instr instr = instr_at(pos);
787 if (is_uint24(instr)) {
788 // Emitted link to a label, not part of a branch.
789 return instr;
790 }
791 DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
792 int imm26 = ((instr & kImm24Mask) << 8) >> 6;
793 if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
794 ((instr & B24) != 0)) {
795 // blx uses bit 24 to encode bit 2 of imm26
796 imm26 += 2;
797 }
798 return pos + kPcLoadDelta + imm26;
799 }
800
801
target_at_put(int pos,int target_pos)802 void Assembler::target_at_put(int pos, int target_pos) {
803 Instr instr = instr_at(pos);
804 if (is_uint24(instr)) {
805 DCHECK(target_pos == pos || target_pos >= 0);
806 // Emitted link to a label, not part of a branch.
807 // Load the position of the label relative to the generated code object
808 // pointer in a register.
809
810 // Here are the instructions we need to emit:
811 // For ARMv7: target24 => target16_1:target16_0
812 // movw dst, #target16_0
813 // movt dst, #target16_1
814 // For ARMv6: target24 => target8_2:target8_1:target8_0
815 // mov dst, #target8_0
816 // orr dst, dst, #target8_1 << 8
817 // orr dst, dst, #target8_2 << 16
818
819 // We extract the destination register from the emitted nop instruction.
820 Register dst = Register::from_code(
821 Instruction::RmValue(instr_at(pos + kInstrSize)));
822 DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code()));
823 uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
824 DCHECK(is_uint24(target24));
825 if (is_uint8(target24)) {
826 // If the target fits in a byte then only patch with a mov
827 // instruction.
828 CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
829 1,
830 CodePatcher::DONT_FLUSH);
831 patcher.masm()->mov(dst, Operand(target24));
832 } else {
833 uint16_t target16_0 = target24 & kImm16Mask;
834 uint16_t target16_1 = target24 >> 16;
835 if (CpuFeatures::IsSupported(ARMv7)) {
836 // Patch with movw/movt.
837 if (target16_1 == 0) {
838 CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
839 1,
840 CodePatcher::DONT_FLUSH);
841 patcher.masm()->movw(dst, target16_0);
842 } else {
843 CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
844 2,
845 CodePatcher::DONT_FLUSH);
846 patcher.masm()->movw(dst, target16_0);
847 patcher.masm()->movt(dst, target16_1);
848 }
849 } else {
850 // Patch with a sequence of mov/orr/orr instructions.
851 uint8_t target8_0 = target16_0 & kImm8Mask;
852 uint8_t target8_1 = target16_0 >> 8;
853 uint8_t target8_2 = target16_1 & kImm8Mask;
854 if (target8_2 == 0) {
855 CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
856 2,
857 CodePatcher::DONT_FLUSH);
858 patcher.masm()->mov(dst, Operand(target8_0));
859 patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
860 } else {
861 CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
862 3,
863 CodePatcher::DONT_FLUSH);
864 patcher.masm()->mov(dst, Operand(target8_0));
865 patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
866 patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
867 }
868 }
869 }
870 return;
871 }
872 int imm26 = target_pos - (pos + kPcLoadDelta);
873 DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
874 if (Instruction::ConditionField(instr) == kSpecialCondition) {
875 // blx uses bit 24 to encode bit 2 of imm26
876 DCHECK((imm26 & 1) == 0);
877 instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
878 } else {
879 DCHECK((imm26 & 3) == 0);
880 instr &= ~kImm24Mask;
881 }
882 int imm24 = imm26 >> 2;
883 DCHECK(is_int24(imm24));
884 instr_at_put(pos, instr | (imm24 & kImm24Mask));
885 }
886
887
print(Label * L)888 void Assembler::print(Label* L) {
889 if (L->is_unused()) {
890 PrintF("unused label\n");
891 } else if (L->is_bound()) {
892 PrintF("bound label to %d\n", L->pos());
893 } else if (L->is_linked()) {
894 Label l = *L;
895 PrintF("unbound label");
896 while (l.is_linked()) {
897 PrintF("@ %d ", l.pos());
898 Instr instr = instr_at(l.pos());
899 if ((instr & ~kImm24Mask) == 0) {
900 PrintF("value\n");
901 } else {
902 DCHECK((instr & 7*B25) == 5*B25); // b, bl, or blx
903 Condition cond = Instruction::ConditionField(instr);
904 const char* b;
905 const char* c;
906 if (cond == kSpecialCondition) {
907 b = "blx";
908 c = "";
909 } else {
910 if ((instr & B24) != 0)
911 b = "bl";
912 else
913 b = "b";
914
915 switch (cond) {
916 case eq: c = "eq"; break;
917 case ne: c = "ne"; break;
918 case hs: c = "hs"; break;
919 case lo: c = "lo"; break;
920 case mi: c = "mi"; break;
921 case pl: c = "pl"; break;
922 case vs: c = "vs"; break;
923 case vc: c = "vc"; break;
924 case hi: c = "hi"; break;
925 case ls: c = "ls"; break;
926 case ge: c = "ge"; break;
927 case lt: c = "lt"; break;
928 case gt: c = "gt"; break;
929 case le: c = "le"; break;
930 case al: c = ""; break;
931 default:
932 c = "";
933 UNREACHABLE();
934 }
935 }
936 PrintF("%s%s\n", b, c);
937 }
938 next(&l);
939 }
940 } else {
941 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
942 }
943 }
944
945
bind_to(Label * L,int pos)946 void Assembler::bind_to(Label* L, int pos) {
947 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
948 while (L->is_linked()) {
949 int fixup_pos = L->pos();
950 next(L); // call next before overwriting link with target at fixup_pos
951 target_at_put(fixup_pos, pos);
952 }
953 L->bind_to(pos);
954
955 // Keep track of the last bound label so we don't eliminate any instructions
956 // before a bound label.
957 if (pos > last_bound_pos_)
958 last_bound_pos_ = pos;
959 }
960
961
bind(Label * L)962 void Assembler::bind(Label* L) {
963 DCHECK(!L->is_bound()); // label can only be bound once
964 bind_to(L, pc_offset());
965 }
966
967
next(Label * L)968 void Assembler::next(Label* L) {
969 DCHECK(L->is_linked());
970 int link = target_at(L->pos());
971 if (link == L->pos()) {
972 // Branch target points to the same instuction. This is the end of the link
973 // chain.
974 L->Unuse();
975 } else {
976 DCHECK(link >= 0);
977 L->link_to(link);
978 }
979 }
980
981
982 // Low-level code emission routines depending on the addressing mode.
983 // If this returns true then you have to use the rotate_imm and immed_8
984 // that it returns, because it may have already changed the instruction
985 // to match them!
fits_shifter(uint32_t imm32,uint32_t * rotate_imm,uint32_t * immed_8,Instr * instr)986 static bool fits_shifter(uint32_t imm32,
987 uint32_t* rotate_imm,
988 uint32_t* immed_8,
989 Instr* instr) {
990 // imm32 must be unsigned.
991 for (int rot = 0; rot < 16; rot++) {
992 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
993 if ((imm8 <= 0xff)) {
994 *rotate_imm = rot;
995 *immed_8 = imm8;
996 return true;
997 }
998 }
999 // If the opcode is one with a complementary version and the complementary
1000 // immediate fits, change the opcode.
1001 if (instr != NULL) {
1002 if ((*instr & kMovMvnMask) == kMovMvnPattern) {
1003 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1004 *instr ^= kMovMvnFlip;
1005 return true;
1006 } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
1007 if (CpuFeatures::IsSupported(ARMv7)) {
1008 if (imm32 < 0x10000) {
1009 *instr ^= kMovwLeaveCCFlip;
1010 *instr |= Assembler::EncodeMovwImmediate(imm32);
1011 *rotate_imm = *immed_8 = 0; // Not used for movw.
1012 return true;
1013 }
1014 }
1015 }
1016 } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
1017 if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1018 *instr ^= kCmpCmnFlip;
1019 return true;
1020 }
1021 } else {
1022 Instr alu_insn = (*instr & kALUMask);
1023 if (alu_insn == ADD ||
1024 alu_insn == SUB) {
1025 if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
1026 *instr ^= kAddSubFlip;
1027 return true;
1028 }
1029 } else if (alu_insn == AND ||
1030 alu_insn == BIC) {
1031 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
1032 *instr ^= kAndBicFlip;
1033 return true;
1034 }
1035 }
1036 }
1037 }
1038 return false;
1039 }
1040
1041
1042 // We have to use the temporary register for things that can be relocated even
1043 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
1044 // space. There is no guarantee that the relocated location can be similarly
1045 // encoded.
must_output_reloc_info(const Assembler * assembler) const1046 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
1047 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
1048 if (assembler != NULL && assembler->predictable_code_size()) return true;
1049 return assembler->serializer_enabled();
1050 } else if (RelocInfo::IsNone(rmode_)) {
1051 return false;
1052 }
1053 return true;
1054 }
1055
1056
use_mov_immediate_load(const Operand & x,const Assembler * assembler)1057 static bool use_mov_immediate_load(const Operand& x,
1058 const Assembler* assembler) {
1059 if (assembler != NULL && !assembler->is_constant_pool_available()) {
1060 return true;
1061 } else if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
1062 (assembler == NULL || !assembler->predictable_code_size())) {
1063 // Prefer movw / movt to constant pool if it is more efficient on the CPU.
1064 return true;
1065 } else if (x.must_output_reloc_info(assembler)) {
1066 // Prefer constant pool if data is likely to be patched.
1067 return false;
1068 } else {
1069 // Otherwise, use immediate load if movw / movt is available.
1070 return CpuFeatures::IsSupported(ARMv7);
1071 }
1072 }
1073
1074
instructions_required(const Assembler * assembler,Instr instr) const1075 int Operand::instructions_required(const Assembler* assembler,
1076 Instr instr) const {
1077 if (rm_.is_valid()) return 1;
1078 uint32_t dummy1, dummy2;
1079 if (must_output_reloc_info(assembler) ||
1080 !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
1081 // The immediate operand cannot be encoded as a shifter operand, or use of
1082 // constant pool is required. First account for the instructions required
1083 // for the constant pool or immediate load
1084 int instructions;
1085 if (use_mov_immediate_load(*this, assembler)) {
1086 // A movw / movt or mov / orr immediate load.
1087 instructions = CpuFeatures::IsSupported(ARMv7) ? 2 : 4;
1088 } else if (assembler != NULL && assembler->use_extended_constant_pool()) {
1089 // An extended constant pool load.
1090 instructions = CpuFeatures::IsSupported(ARMv7) ? 3 : 5;
1091 } else {
1092 // A small constant pool load.
1093 instructions = 1;
1094 }
1095
1096 if ((instr & ~kCondMask) != 13 * B21) { // mov, S not set
1097 // For a mov or mvn instruction which doesn't set the condition
1098 // code, the constant pool or immediate load is enough, otherwise we need
1099 // to account for the actual instruction being requested.
1100 instructions += 1;
1101 }
1102 return instructions;
1103 } else {
1104 // No use of constant pool and the immediate operand can be encoded as a
1105 // shifter operand.
1106 return 1;
1107 }
1108 }
1109
1110
move_32_bit_immediate(Register rd,const Operand & x,Condition cond)1111 void Assembler::move_32_bit_immediate(Register rd,
1112 const Operand& x,
1113 Condition cond) {
1114 RelocInfo rinfo(pc_, x.rmode_, x.imm32_, NULL);
1115 uint32_t imm32 = static_cast<uint32_t>(x.imm32_);
1116 if (x.must_output_reloc_info(this)) {
1117 RecordRelocInfo(rinfo);
1118 }
1119
1120 if (use_mov_immediate_load(x, this)) {
1121 Register target = rd.code() == pc.code() ? ip : rd;
1122 if (CpuFeatures::IsSupported(ARMv7)) {
1123 if (!FLAG_enable_ool_constant_pool && x.must_output_reloc_info(this)) {
1124 // Make sure the movw/movt doesn't get separated.
1125 BlockConstPoolFor(2);
1126 }
1127 movw(target, imm32 & 0xffff, cond);
1128 movt(target, imm32 >> 16, cond);
1129 } else {
1130 DCHECK(FLAG_enable_ool_constant_pool);
1131 mov(target, Operand(imm32 & kImm8Mask), LeaveCC, cond);
1132 orr(target, target, Operand(imm32 & (kImm8Mask << 8)), LeaveCC, cond);
1133 orr(target, target, Operand(imm32 & (kImm8Mask << 16)), LeaveCC, cond);
1134 orr(target, target, Operand(imm32 & (kImm8Mask << 24)), LeaveCC, cond);
1135 }
1136 if (target.code() != rd.code()) {
1137 mov(rd, target, LeaveCC, cond);
1138 }
1139 } else {
1140 DCHECK(is_constant_pool_available());
1141 ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo);
1142 if (section == ConstantPoolArray::EXTENDED_SECTION) {
1143 DCHECK(FLAG_enable_ool_constant_pool);
1144 Register target = rd.code() == pc.code() ? ip : rd;
1145 // Emit instructions to load constant pool offset.
1146 if (CpuFeatures::IsSupported(ARMv7)) {
1147 movw(target, 0, cond);
1148 movt(target, 0, cond);
1149 } else {
1150 mov(target, Operand(0), LeaveCC, cond);
1151 orr(target, target, Operand(0), LeaveCC, cond);
1152 orr(target, target, Operand(0), LeaveCC, cond);
1153 orr(target, target, Operand(0), LeaveCC, cond);
1154 }
1155 // Load from constant pool at offset.
1156 ldr(rd, MemOperand(pp, target), cond);
1157 } else {
1158 DCHECK(section == ConstantPoolArray::SMALL_SECTION);
1159 ldr(rd, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0), cond);
1160 }
1161 }
1162 }
1163
1164
addrmod1(Instr instr,Register rn,Register rd,const Operand & x)1165 void Assembler::addrmod1(Instr instr,
1166 Register rn,
1167 Register rd,
1168 const Operand& x) {
1169 CheckBuffer();
1170 DCHECK((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
1171 if (!x.rm_.is_valid()) {
1172 // Immediate.
1173 uint32_t rotate_imm;
1174 uint32_t immed_8;
1175 if (x.must_output_reloc_info(this) ||
1176 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
1177 // The immediate operand cannot be encoded as a shifter operand, so load
1178 // it first to register ip and change the original instruction to use ip.
1179 // However, if the original instruction is a 'mov rd, x' (not setting the
1180 // condition code), then replace it with a 'ldr rd, [pc]'.
1181 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
1182 Condition cond = Instruction::ConditionField(instr);
1183 if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
1184 move_32_bit_immediate(rd, x, cond);
1185 } else {
1186 mov(ip, x, LeaveCC, cond);
1187 addrmod1(instr, rn, rd, Operand(ip));
1188 }
1189 return;
1190 }
1191 instr |= I | rotate_imm*B8 | immed_8;
1192 } else if (!x.rs_.is_valid()) {
1193 // Immediate shift.
1194 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1195 } else {
1196 // Register shift.
1197 DCHECK(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
1198 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
1199 }
1200 emit(instr | rn.code()*B16 | rd.code()*B12);
1201 if (rn.is(pc) || x.rm_.is(pc)) {
1202 // Block constant pool emission for one instruction after reading pc.
1203 BlockConstPoolFor(1);
1204 }
1205 }
1206
1207
addrmod2(Instr instr,Register rd,const MemOperand & x)1208 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
1209 DCHECK((instr & ~(kCondMask | B | L)) == B26);
1210 int am = x.am_;
1211 if (!x.rm_.is_valid()) {
1212 // Immediate offset.
1213 int offset_12 = x.offset_;
1214 if (offset_12 < 0) {
1215 offset_12 = -offset_12;
1216 am ^= U;
1217 }
1218 if (!is_uint12(offset_12)) {
1219 // Immediate offset cannot be encoded, load it first to register ip
1220 // rn (and rd in a load) should never be ip, or will be trashed.
1221 DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1222 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1223 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
1224 return;
1225 }
1226 DCHECK(offset_12 >= 0); // no masking needed
1227 instr |= offset_12;
1228 } else {
1229 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
1230 // register offset the constructors make sure than both shift_imm_
1231 // and shift_op_ are initialized.
1232 DCHECK(!x.rm_.is(pc));
1233 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
1234 }
1235 DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
1236 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1237 }
1238
1239
addrmod3(Instr instr,Register rd,const MemOperand & x)1240 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
1241 DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
1242 DCHECK(x.rn_.is_valid());
1243 int am = x.am_;
1244 if (!x.rm_.is_valid()) {
1245 // Immediate offset.
1246 int offset_8 = x.offset_;
1247 if (offset_8 < 0) {
1248 offset_8 = -offset_8;
1249 am ^= U;
1250 }
1251 if (!is_uint8(offset_8)) {
1252 // Immediate offset cannot be encoded, load it first to register ip
1253 // rn (and rd in a load) should never be ip, or will be trashed.
1254 DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1255 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
1256 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1257 return;
1258 }
1259 DCHECK(offset_8 >= 0); // no masking needed
1260 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
1261 } else if (x.shift_imm_ != 0) {
1262 // Scaled register offset not supported, load index first
1263 // rn (and rd in a load) should never be ip, or will be trashed.
1264 DCHECK(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
1265 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
1266 Instruction::ConditionField(instr));
1267 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
1268 return;
1269 } else {
1270 // Register offset.
1271 DCHECK((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
1272 instr |= x.rm_.code();
1273 }
1274 DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
1275 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
1276 }
1277
1278
addrmod4(Instr instr,Register rn,RegList rl)1279 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
1280 DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27);
1281 DCHECK(rl != 0);
1282 DCHECK(!rn.is(pc));
1283 emit(instr | rn.code()*B16 | rl);
1284 }
1285
1286
addrmod5(Instr instr,CRegister crd,const MemOperand & x)1287 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
1288 // Unindexed addressing is not encoded by this function.
1289 DCHECK_EQ((B27 | B26),
1290 (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
1291 DCHECK(x.rn_.is_valid() && !x.rm_.is_valid());
1292 int am = x.am_;
1293 int offset_8 = x.offset_;
1294 DCHECK((offset_8 & 3) == 0); // offset must be an aligned word offset
1295 offset_8 >>= 2;
1296 if (offset_8 < 0) {
1297 offset_8 = -offset_8;
1298 am ^= U;
1299 }
1300 DCHECK(is_uint8(offset_8)); // unsigned word offset must fit in a byte
1301 DCHECK((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
1302
1303 // Post-indexed addressing requires W == 1; different than in addrmod2/3.
1304 if ((am & P) == 0)
1305 am |= W;
1306
1307 DCHECK(offset_8 >= 0); // no masking needed
1308 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
1309 }
1310
1311
branch_offset(Label * L,bool jump_elimination_allowed)1312 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
1313 int target_pos;
1314 if (L->is_bound()) {
1315 target_pos = L->pos();
1316 } else {
1317 if (L->is_linked()) {
1318 // Point to previous instruction that uses the link.
1319 target_pos = L->pos();
1320 } else {
1321 // First entry of the link chain points to itself.
1322 target_pos = pc_offset();
1323 }
1324 L->link_to(pc_offset());
1325 }
1326
1327 // Block the emission of the constant pool, since the branch instruction must
1328 // be emitted at the pc offset recorded by the label.
1329 BlockConstPoolFor(1);
1330 return target_pos - (pc_offset() + kPcLoadDelta);
1331 }
1332
1333
1334 // Branch instructions.
b(int branch_offset,Condition cond)1335 void Assembler::b(int branch_offset, Condition cond) {
1336 DCHECK((branch_offset & 3) == 0);
1337 int imm24 = branch_offset >> 2;
1338 DCHECK(is_int24(imm24));
1339 emit(cond | B27 | B25 | (imm24 & kImm24Mask));
1340
1341 if (cond == al) {
1342 // Dead code is a good location to emit the constant pool.
1343 CheckConstPool(false, false);
1344 }
1345 }
1346
1347
bl(int branch_offset,Condition cond)1348 void Assembler::bl(int branch_offset, Condition cond) {
1349 positions_recorder()->WriteRecordedPositions();
1350 DCHECK((branch_offset & 3) == 0);
1351 int imm24 = branch_offset >> 2;
1352 DCHECK(is_int24(imm24));
1353 emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
1354 }
1355
1356
blx(int branch_offset)1357 void Assembler::blx(int branch_offset) { // v5 and above
1358 positions_recorder()->WriteRecordedPositions();
1359 DCHECK((branch_offset & 1) == 0);
1360 int h = ((branch_offset & 2) >> 1)*B24;
1361 int imm24 = branch_offset >> 2;
1362 DCHECK(is_int24(imm24));
1363 emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
1364 }
1365
1366
blx(Register target,Condition cond)1367 void Assembler::blx(Register target, Condition cond) { // v5 and above
1368 positions_recorder()->WriteRecordedPositions();
1369 DCHECK(!target.is(pc));
1370 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
1371 }
1372
1373
bx(Register target,Condition cond)1374 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
1375 positions_recorder()->WriteRecordedPositions();
1376 DCHECK(!target.is(pc)); // use of pc is actually allowed, but discouraged
1377 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
1378 }
1379
1380
1381 // Data-processing instructions.
1382
and_(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1383 void Assembler::and_(Register dst, Register src1, const Operand& src2,
1384 SBit s, Condition cond) {
1385 addrmod1(cond | AND | s, src1, dst, src2);
1386 }
1387
1388
eor(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1389 void Assembler::eor(Register dst, Register src1, const Operand& src2,
1390 SBit s, Condition cond) {
1391 addrmod1(cond | EOR | s, src1, dst, src2);
1392 }
1393
1394
sub(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1395 void Assembler::sub(Register dst, Register src1, const Operand& src2,
1396 SBit s, Condition cond) {
1397 addrmod1(cond | SUB | s, src1, dst, src2);
1398 }
1399
1400
rsb(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1401 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1402 SBit s, Condition cond) {
1403 addrmod1(cond | RSB | s, src1, dst, src2);
1404 }
1405
1406
add(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1407 void Assembler::add(Register dst, Register src1, const Operand& src2,
1408 SBit s, Condition cond) {
1409 addrmod1(cond | ADD | s, src1, dst, src2);
1410 }
1411
1412
adc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1413 void Assembler::adc(Register dst, Register src1, const Operand& src2,
1414 SBit s, Condition cond) {
1415 addrmod1(cond | ADC | s, src1, dst, src2);
1416 }
1417
1418
sbc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1419 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1420 SBit s, Condition cond) {
1421 addrmod1(cond | SBC | s, src1, dst, src2);
1422 }
1423
1424
rsc(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1425 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1426 SBit s, Condition cond) {
1427 addrmod1(cond | RSC | s, src1, dst, src2);
1428 }
1429
1430
tst(Register src1,const Operand & src2,Condition cond)1431 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
1432 addrmod1(cond | TST | S, src1, r0, src2);
1433 }
1434
1435
teq(Register src1,const Operand & src2,Condition cond)1436 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
1437 addrmod1(cond | TEQ | S, src1, r0, src2);
1438 }
1439
1440
cmp(Register src1,const Operand & src2,Condition cond)1441 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
1442 addrmod1(cond | CMP | S, src1, r0, src2);
1443 }
1444
1445
cmp_raw_immediate(Register src,int raw_immediate,Condition cond)1446 void Assembler::cmp_raw_immediate(
1447 Register src, int raw_immediate, Condition cond) {
1448 DCHECK(is_uint12(raw_immediate));
1449 emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
1450 }
1451
1452
cmn(Register src1,const Operand & src2,Condition cond)1453 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
1454 addrmod1(cond | CMN | S, src1, r0, src2);
1455 }
1456
1457
orr(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1458 void Assembler::orr(Register dst, Register src1, const Operand& src2,
1459 SBit s, Condition cond) {
1460 addrmod1(cond | ORR | s, src1, dst, src2);
1461 }
1462
1463
mov(Register dst,const Operand & src,SBit s,Condition cond)1464 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1465 if (dst.is(pc)) {
1466 positions_recorder()->WriteRecordedPositions();
1467 }
1468 // Don't allow nop instructions in the form mov rn, rn to be generated using
1469 // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1470 // or MarkCode(int/NopMarkerTypes) pseudo instructions.
1471 DCHECK(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
1472 addrmod1(cond | MOV | s, r0, dst, src);
1473 }
1474
1475
mov_label_offset(Register dst,Label * label)1476 void Assembler::mov_label_offset(Register dst, Label* label) {
1477 if (label->is_bound()) {
1478 mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
1479 } else {
1480 // Emit the link to the label in the code stream followed by extra nop
1481 // instructions.
1482 // If the label is not linked, then start a new link chain by linking it to
1483 // itself, emitting pc_offset().
1484 int link = label->is_linked() ? label->pos() : pc_offset();
1485 label->link_to(pc_offset());
1486
1487 // When the label is bound, these instructions will be patched with a
1488 // sequence of movw/movt or mov/orr/orr instructions. They will load the
1489 // destination register with the position of the label from the beginning
1490 // of the code.
1491 //
1492 // The link will be extracted from the first instruction and the destination
1493 // register from the second.
1494 // For ARMv7:
1495 // link
1496 // mov dst, dst
1497 // For ARMv6:
1498 // link
1499 // mov dst, dst
1500 // mov dst, dst
1501 //
1502 // When the label gets bound: target_at extracts the link and target_at_put
1503 // patches the instructions.
1504 DCHECK(is_uint24(link));
1505 BlockConstPoolScope block_const_pool(this);
1506 emit(link);
1507 nop(dst.code());
1508 if (!CpuFeatures::IsSupported(ARMv7)) {
1509 nop(dst.code());
1510 }
1511 }
1512 }
1513
1514
movw(Register reg,uint32_t immediate,Condition cond)1515 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1516 DCHECK(CpuFeatures::IsSupported(ARMv7));
1517 emit(cond | 0x30*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1518 }
1519
1520
movt(Register reg,uint32_t immediate,Condition cond)1521 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1522 DCHECK(CpuFeatures::IsSupported(ARMv7));
1523 emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1524 }
1525
1526
bic(Register dst,Register src1,const Operand & src2,SBit s,Condition cond)1527 void Assembler::bic(Register dst, Register src1, const Operand& src2,
1528 SBit s, Condition cond) {
1529 addrmod1(cond | BIC | s, src1, dst, src2);
1530 }
1531
1532
mvn(Register dst,const Operand & src,SBit s,Condition cond)1533 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1534 addrmod1(cond | MVN | s, r0, dst, src);
1535 }
1536
1537
1538 // Multiply instructions.
mla(Register dst,Register src1,Register src2,Register srcA,SBit s,Condition cond)1539 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1540 SBit s, Condition cond) {
1541 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1542 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1543 src2.code()*B8 | B7 | B4 | src1.code());
1544 }
1545
1546
mls(Register dst,Register src1,Register src2,Register srcA,Condition cond)1547 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
1548 Condition cond) {
1549 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1550 DCHECK(IsEnabled(MLS));
1551 emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
1552 src2.code()*B8 | B7 | B4 | src1.code());
1553 }
1554
1555
sdiv(Register dst,Register src1,Register src2,Condition cond)1556 void Assembler::sdiv(Register dst, Register src1, Register src2,
1557 Condition cond) {
1558 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1559 DCHECK(IsEnabled(SUDIV));
1560 emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
1561 src2.code()*B8 | B4 | src1.code());
1562 }
1563
1564
udiv(Register dst,Register src1,Register src2,Condition cond)1565 void Assembler::udiv(Register dst, Register src1, Register src2,
1566 Condition cond) {
1567 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1568 DCHECK(IsEnabled(SUDIV));
1569 emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xf * B12 |
1570 src2.code() * B8 | B4 | src1.code());
1571 }
1572
1573
mul(Register dst,Register src1,Register src2,SBit s,Condition cond)1574 void Assembler::mul(Register dst, Register src1, Register src2,
1575 SBit s, Condition cond) {
1576 DCHECK(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1577 // dst goes in bits 16-19 for this instruction!
1578 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1579 }
1580
1581
smlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1582 void Assembler::smlal(Register dstL,
1583 Register dstH,
1584 Register src1,
1585 Register src2,
1586 SBit s,
1587 Condition cond) {
1588 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1589 DCHECK(!dstL.is(dstH));
1590 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1591 src2.code()*B8 | B7 | B4 | src1.code());
1592 }
1593
1594
smull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1595 void Assembler::smull(Register dstL,
1596 Register dstH,
1597 Register src1,
1598 Register src2,
1599 SBit s,
1600 Condition cond) {
1601 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1602 DCHECK(!dstL.is(dstH));
1603 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1604 src2.code()*B8 | B7 | B4 | src1.code());
1605 }
1606
1607
umlal(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1608 void Assembler::umlal(Register dstL,
1609 Register dstH,
1610 Register src1,
1611 Register src2,
1612 SBit s,
1613 Condition cond) {
1614 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1615 DCHECK(!dstL.is(dstH));
1616 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1617 src2.code()*B8 | B7 | B4 | src1.code());
1618 }
1619
1620
umull(Register dstL,Register dstH,Register src1,Register src2,SBit s,Condition cond)1621 void Assembler::umull(Register dstL,
1622 Register dstH,
1623 Register src1,
1624 Register src2,
1625 SBit s,
1626 Condition cond) {
1627 DCHECK(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1628 DCHECK(!dstL.is(dstH));
1629 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1630 src2.code()*B8 | B7 | B4 | src1.code());
1631 }
1632
1633
1634 // Miscellaneous arithmetic instructions.
clz(Register dst,Register src,Condition cond)1635 void Assembler::clz(Register dst, Register src, Condition cond) {
1636 // v5 and above.
1637 DCHECK(!dst.is(pc) && !src.is(pc));
1638 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1639 15*B8 | CLZ | src.code());
1640 }
1641
1642
1643 // Saturating instructions.
1644
1645 // Unsigned saturate.
usat(Register dst,int satpos,const Operand & src,Condition cond)1646 void Assembler::usat(Register dst,
1647 int satpos,
1648 const Operand& src,
1649 Condition cond) {
1650 // v6 and above.
1651 DCHECK(CpuFeatures::IsSupported(ARMv7));
1652 DCHECK(!dst.is(pc) && !src.rm_.is(pc));
1653 DCHECK((satpos >= 0) && (satpos <= 31));
1654 DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1655 DCHECK(src.rs_.is(no_reg));
1656
1657 int sh = 0;
1658 if (src.shift_op_ == ASR) {
1659 sh = 1;
1660 }
1661
1662 emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1663 src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1664 }
1665
1666
1667 // Bitfield manipulation instructions.
1668
1669 // Unsigned bit field extract.
1670 // Extracts #width adjacent bits from position #lsb in a register, and
1671 // writes them to the low bits of a destination register.
1672 // ubfx dst, src, #lsb, #width
ubfx(Register dst,Register src,int lsb,int width,Condition cond)1673 void Assembler::ubfx(Register dst,
1674 Register src,
1675 int lsb,
1676 int width,
1677 Condition cond) {
1678 // v7 and above.
1679 DCHECK(CpuFeatures::IsSupported(ARMv7));
1680 DCHECK(!dst.is(pc) && !src.is(pc));
1681 DCHECK((lsb >= 0) && (lsb <= 31));
1682 DCHECK((width >= 1) && (width <= (32 - lsb)));
1683 emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1684 lsb*B7 | B6 | B4 | src.code());
1685 }
1686
1687
1688 // Signed bit field extract.
1689 // Extracts #width adjacent bits from position #lsb in a register, and
1690 // writes them to the low bits of a destination register. The extracted
1691 // value is sign extended to fill the destination register.
1692 // sbfx dst, src, #lsb, #width
sbfx(Register dst,Register src,int lsb,int width,Condition cond)1693 void Assembler::sbfx(Register dst,
1694 Register src,
1695 int lsb,
1696 int width,
1697 Condition cond) {
1698 // v7 and above.
1699 DCHECK(CpuFeatures::IsSupported(ARMv7));
1700 DCHECK(!dst.is(pc) && !src.is(pc));
1701 DCHECK((lsb >= 0) && (lsb <= 31));
1702 DCHECK((width >= 1) && (width <= (32 - lsb)));
1703 emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1704 lsb*B7 | B6 | B4 | src.code());
1705 }
1706
1707
1708 // Bit field clear.
1709 // Sets #width adjacent bits at position #lsb in the destination register
1710 // to zero, preserving the value of the other bits.
1711 // bfc dst, #lsb, #width
bfc(Register dst,int lsb,int width,Condition cond)1712 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1713 // v7 and above.
1714 DCHECK(CpuFeatures::IsSupported(ARMv7));
1715 DCHECK(!dst.is(pc));
1716 DCHECK((lsb >= 0) && (lsb <= 31));
1717 DCHECK((width >= 1) && (width <= (32 - lsb)));
1718 int msb = lsb + width - 1;
1719 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1720 }
1721
1722
1723 // Bit field insert.
1724 // Inserts #width adjacent bits from the low bits of the source register
1725 // into position #lsb of the destination register.
1726 // bfi dst, src, #lsb, #width
bfi(Register dst,Register src,int lsb,int width,Condition cond)1727 void Assembler::bfi(Register dst,
1728 Register src,
1729 int lsb,
1730 int width,
1731 Condition cond) {
1732 // v7 and above.
1733 DCHECK(CpuFeatures::IsSupported(ARMv7));
1734 DCHECK(!dst.is(pc) && !src.is(pc));
1735 DCHECK((lsb >= 0) && (lsb <= 31));
1736 DCHECK((width >= 1) && (width <= (32 - lsb)));
1737 int msb = lsb + width - 1;
1738 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1739 src.code());
1740 }
1741
1742
pkhbt(Register dst,Register src1,const Operand & src2,Condition cond)1743 void Assembler::pkhbt(Register dst,
1744 Register src1,
1745 const Operand& src2,
1746 Condition cond ) {
1747 // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1748 // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1749 // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
1750 DCHECK(!dst.is(pc));
1751 DCHECK(!src1.is(pc));
1752 DCHECK(!src2.rm().is(pc));
1753 DCHECK(!src2.rm().is(no_reg));
1754 DCHECK(src2.rs().is(no_reg));
1755 DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
1756 DCHECK(src2.shift_op() == LSL);
1757 emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1758 src2.shift_imm_*B7 | B4 | src2.rm().code());
1759 }
1760
1761
pkhtb(Register dst,Register src1,const Operand & src2,Condition cond)1762 void Assembler::pkhtb(Register dst,
1763 Register src1,
1764 const Operand& src2,
1765 Condition cond) {
1766 // Instruction details available in ARM DDI 0406C.b, A8.8.125.
1767 // cond(31-28) | 01101000(27-20) | Rn(19-16) |
1768 // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
1769 DCHECK(!dst.is(pc));
1770 DCHECK(!src1.is(pc));
1771 DCHECK(!src2.rm().is(pc));
1772 DCHECK(!src2.rm().is(no_reg));
1773 DCHECK(src2.rs().is(no_reg));
1774 DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
1775 DCHECK(src2.shift_op() == ASR);
1776 int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
1777 emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
1778 asr*B7 | B6 | B4 | src2.rm().code());
1779 }
1780
1781
uxtb(Register dst,const Operand & src,Condition cond)1782 void Assembler::uxtb(Register dst,
1783 const Operand& src,
1784 Condition cond) {
1785 // Instruction details available in ARM DDI 0406C.b, A8.8.274.
1786 // cond(31-28) | 01101110(27-20) | 1111(19-16) |
1787 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1788 DCHECK(!dst.is(pc));
1789 DCHECK(!src.rm().is(pc));
1790 DCHECK(!src.rm().is(no_reg));
1791 DCHECK(src.rs().is(no_reg));
1792 DCHECK((src.shift_imm_ == 0) ||
1793 (src.shift_imm_ == 8) ||
1794 (src.shift_imm_ == 16) ||
1795 (src.shift_imm_ == 24));
1796 // Operand maps ROR #0 to LSL #0.
1797 DCHECK((src.shift_op() == ROR) ||
1798 ((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
1799 emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 |
1800 ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
1801 }
1802
1803
uxtab(Register dst,Register src1,const Operand & src2,Condition cond)1804 void Assembler::uxtab(Register dst,
1805 Register src1,
1806 const Operand& src2,
1807 Condition cond) {
1808 // Instruction details available in ARM DDI 0406C.b, A8.8.271.
1809 // cond(31-28) | 01101110(27-20) | Rn(19-16) |
1810 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1811 DCHECK(!dst.is(pc));
1812 DCHECK(!src1.is(pc));
1813 DCHECK(!src2.rm().is(pc));
1814 DCHECK(!src2.rm().is(no_reg));
1815 DCHECK(src2.rs().is(no_reg));
1816 DCHECK((src2.shift_imm_ == 0) ||
1817 (src2.shift_imm_ == 8) ||
1818 (src2.shift_imm_ == 16) ||
1819 (src2.shift_imm_ == 24));
1820 // Operand maps ROR #0 to LSL #0.
1821 DCHECK((src2.shift_op() == ROR) ||
1822 ((src2.shift_op() == LSL) && (src2.shift_imm_ == 0)));
1823 emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 |
1824 ((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code());
1825 }
1826
1827
uxtb16(Register dst,const Operand & src,Condition cond)1828 void Assembler::uxtb16(Register dst,
1829 const Operand& src,
1830 Condition cond) {
1831 // Instruction details available in ARM DDI 0406C.b, A8.8.275.
1832 // cond(31-28) | 01101100(27-20) | 1111(19-16) |
1833 // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
1834 DCHECK(!dst.is(pc));
1835 DCHECK(!src.rm().is(pc));
1836 DCHECK(!src.rm().is(no_reg));
1837 DCHECK(src.rs().is(no_reg));
1838 DCHECK((src.shift_imm_ == 0) ||
1839 (src.shift_imm_ == 8) ||
1840 (src.shift_imm_ == 16) ||
1841 (src.shift_imm_ == 24));
1842 // Operand maps ROR #0 to LSL #0.
1843 DCHECK((src.shift_op() == ROR) ||
1844 ((src.shift_op() == LSL) && (src.shift_imm_ == 0)));
1845 emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 |
1846 ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
1847 }
1848
1849
1850 // Status register access instructions.
mrs(Register dst,SRegister s,Condition cond)1851 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1852 DCHECK(!dst.is(pc));
1853 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1854 }
1855
1856
msr(SRegisterFieldMask fields,const Operand & src,Condition cond)1857 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1858 Condition cond) {
1859 DCHECK(fields >= B16 && fields < B20); // at least one field set
1860 Instr instr;
1861 if (!src.rm_.is_valid()) {
1862 // Immediate.
1863 uint32_t rotate_imm;
1864 uint32_t immed_8;
1865 if (src.must_output_reloc_info(this) ||
1866 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
1867 // Immediate operand cannot be encoded, load it first to register ip.
1868 move_32_bit_immediate(ip, src);
1869 msr(fields, Operand(ip), cond);
1870 return;
1871 }
1872 instr = I | rotate_imm*B8 | immed_8;
1873 } else {
1874 DCHECK(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
1875 instr = src.rm_.code();
1876 }
1877 emit(cond | instr | B24 | B21 | fields | 15*B12);
1878 }
1879
1880
1881 // Load/Store instructions.
ldr(Register dst,const MemOperand & src,Condition cond)1882 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1883 if (dst.is(pc)) {
1884 positions_recorder()->WriteRecordedPositions();
1885 }
1886 addrmod2(cond | B26 | L, dst, src);
1887 }
1888
1889
str(Register src,const MemOperand & dst,Condition cond)1890 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1891 addrmod2(cond | B26, src, dst);
1892 }
1893
1894
ldrb(Register dst,const MemOperand & src,Condition cond)1895 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1896 addrmod2(cond | B26 | B | L, dst, src);
1897 }
1898
1899
strb(Register src,const MemOperand & dst,Condition cond)1900 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1901 addrmod2(cond | B26 | B, src, dst);
1902 }
1903
1904
ldrh(Register dst,const MemOperand & src,Condition cond)1905 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1906 addrmod3(cond | L | B7 | H | B4, dst, src);
1907 }
1908
1909
strh(Register src,const MemOperand & dst,Condition cond)1910 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1911 addrmod3(cond | B7 | H | B4, src, dst);
1912 }
1913
1914
ldrsb(Register dst,const MemOperand & src,Condition cond)1915 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1916 addrmod3(cond | L | B7 | S6 | B4, dst, src);
1917 }
1918
1919
ldrsh(Register dst,const MemOperand & src,Condition cond)1920 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1921 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1922 }
1923
1924
ldrd(Register dst1,Register dst2,const MemOperand & src,Condition cond)1925 void Assembler::ldrd(Register dst1, Register dst2,
1926 const MemOperand& src, Condition cond) {
1927 DCHECK(IsEnabled(ARMv7));
1928 DCHECK(src.rm().is(no_reg));
1929 DCHECK(!dst1.is(lr)); // r14.
1930 DCHECK_EQ(0, dst1.code() % 2);
1931 DCHECK_EQ(dst1.code() + 1, dst2.code());
1932 addrmod3(cond | B7 | B6 | B4, dst1, src);
1933 }
1934
1935
strd(Register src1,Register src2,const MemOperand & dst,Condition cond)1936 void Assembler::strd(Register src1, Register src2,
1937 const MemOperand& dst, Condition cond) {
1938 DCHECK(dst.rm().is(no_reg));
1939 DCHECK(!src1.is(lr)); // r14.
1940 DCHECK_EQ(0, src1.code() % 2);
1941 DCHECK_EQ(src1.code() + 1, src2.code());
1942 DCHECK(IsEnabled(ARMv7));
1943 addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
1944 }
1945
1946
1947 // Preload instructions.
pld(const MemOperand & address)1948 void Assembler::pld(const MemOperand& address) {
1949 // Instruction details available in ARM DDI 0406C.b, A8.8.128.
1950 // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
1951 // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
1952 DCHECK(address.rm().is(no_reg));
1953 DCHECK(address.am() == Offset);
1954 int U = B23;
1955 int offset = address.offset();
1956 if (offset < 0) {
1957 offset = -offset;
1958 U = 0;
1959 }
1960 DCHECK(offset < 4096);
1961 emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
1962 0xf*B12 | offset);
1963 }
1964
1965
1966 // Load/Store multiple instructions.
ldm(BlockAddrMode am,Register base,RegList dst,Condition cond)1967 void Assembler::ldm(BlockAddrMode am,
1968 Register base,
1969 RegList dst,
1970 Condition cond) {
1971 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
1972 DCHECK(base.is(sp) || (dst & sp.bit()) == 0);
1973
1974 addrmod4(cond | B27 | am | L, base, dst);
1975
1976 // Emit the constant pool after a function return implemented by ldm ..{..pc}.
1977 if (cond == al && (dst & pc.bit()) != 0) {
1978 // There is a slight chance that the ldm instruction was actually a call,
1979 // in which case it would be wrong to return into the constant pool; we
1980 // recognize this case by checking if the emission of the pool was blocked
1981 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1982 // the case, we emit a jump over the pool.
1983 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1984 }
1985 }
1986
1987
stm(BlockAddrMode am,Register base,RegList src,Condition cond)1988 void Assembler::stm(BlockAddrMode am,
1989 Register base,
1990 RegList src,
1991 Condition cond) {
1992 addrmod4(cond | B27 | am, base, src);
1993 }
1994
1995
1996 // Exception-generating instructions and debugging support.
1997 // Stops with a non-negative code less than kNumOfWatchedStops support
1998 // enabling/disabling and a counter feature. See simulator-arm.h .
stop(const char * msg,Condition cond,int32_t code)1999 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
2000 #ifndef __arm__
2001 DCHECK(code >= kDefaultStopCode);
2002 {
2003 // The Simulator will handle the stop instruction and get the message
2004 // address. It expects to find the address just after the svc instruction.
2005 BlockConstPoolScope block_const_pool(this);
2006 if (code >= 0) {
2007 svc(kStopCode + code, cond);
2008 } else {
2009 svc(kStopCode + kMaxStopCode, cond);
2010 }
2011 emit(reinterpret_cast<Instr>(msg));
2012 }
2013 #else // def __arm__
2014 if (cond != al) {
2015 Label skip;
2016 b(&skip, NegateCondition(cond));
2017 bkpt(0);
2018 bind(&skip);
2019 } else {
2020 bkpt(0);
2021 }
2022 #endif // def __arm__
2023 }
2024
2025
bkpt(uint32_t imm16)2026 void Assembler::bkpt(uint32_t imm16) { // v5 and above
2027 DCHECK(is_uint16(imm16));
2028 emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
2029 }
2030
2031
svc(uint32_t imm24,Condition cond)2032 void Assembler::svc(uint32_t imm24, Condition cond) {
2033 DCHECK(is_uint24(imm24));
2034 emit(cond | 15*B24 | imm24);
2035 }
2036
2037
2038 // Coprocessor instructions.
cdp(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2039 void Assembler::cdp(Coprocessor coproc,
2040 int opcode_1,
2041 CRegister crd,
2042 CRegister crn,
2043 CRegister crm,
2044 int opcode_2,
2045 Condition cond) {
2046 DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2));
2047 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
2048 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
2049 }
2050
2051
cdp2(Coprocessor coproc,int opcode_1,CRegister crd,CRegister crn,CRegister crm,int opcode_2)2052 void Assembler::cdp2(Coprocessor coproc,
2053 int opcode_1,
2054 CRegister crd,
2055 CRegister crn,
2056 CRegister crm,
2057 int opcode_2) { // v5 and above
2058 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
2059 }
2060
2061
mcr(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2062 void Assembler::mcr(Coprocessor coproc,
2063 int opcode_1,
2064 Register rd,
2065 CRegister crn,
2066 CRegister crm,
2067 int opcode_2,
2068 Condition cond) {
2069 DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2070 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
2071 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2072 }
2073
2074
mcr2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)2075 void Assembler::mcr2(Coprocessor coproc,
2076 int opcode_1,
2077 Register rd,
2078 CRegister crn,
2079 CRegister crm,
2080 int opcode_2) { // v5 and above
2081 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2082 }
2083
2084
mrc(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2,Condition cond)2085 void Assembler::mrc(Coprocessor coproc,
2086 int opcode_1,
2087 Register rd,
2088 CRegister crn,
2089 CRegister crm,
2090 int opcode_2,
2091 Condition cond) {
2092 DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2));
2093 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
2094 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
2095 }
2096
2097
mrc2(Coprocessor coproc,int opcode_1,Register rd,CRegister crn,CRegister crm,int opcode_2)2098 void Assembler::mrc2(Coprocessor coproc,
2099 int opcode_1,
2100 Register rd,
2101 CRegister crn,
2102 CRegister crm,
2103 int opcode_2) { // v5 and above
2104 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
2105 }
2106
2107
ldc(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l,Condition cond)2108 void Assembler::ldc(Coprocessor coproc,
2109 CRegister crd,
2110 const MemOperand& src,
2111 LFlag l,
2112 Condition cond) {
2113 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
2114 }
2115
2116
ldc(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l,Condition cond)2117 void Assembler::ldc(Coprocessor coproc,
2118 CRegister crd,
2119 Register rn,
2120 int option,
2121 LFlag l,
2122 Condition cond) {
2123 // Unindexed addressing.
2124 DCHECK(is_uint8(option));
2125 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
2126 coproc*B8 | (option & 255));
2127 }
2128
2129
ldc2(Coprocessor coproc,CRegister crd,const MemOperand & src,LFlag l)2130 void Assembler::ldc2(Coprocessor coproc,
2131 CRegister crd,
2132 const MemOperand& src,
2133 LFlag l) { // v5 and above
2134 ldc(coproc, crd, src, l, kSpecialCondition);
2135 }
2136
2137
ldc2(Coprocessor coproc,CRegister crd,Register rn,int option,LFlag l)2138 void Assembler::ldc2(Coprocessor coproc,
2139 CRegister crd,
2140 Register rn,
2141 int option,
2142 LFlag l) { // v5 and above
2143 ldc(coproc, crd, rn, option, l, kSpecialCondition);
2144 }
2145
2146
2147 // Support for VFP.
2148
vldr(const DwVfpRegister dst,const Register base,int offset,const Condition cond)2149 void Assembler::vldr(const DwVfpRegister dst,
2150 const Register base,
2151 int offset,
2152 const Condition cond) {
2153 // Ddst = MEM(Rbase + offset).
2154 // Instruction details available in ARM DDI 0406C.b, A8-924.
2155 // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
2156 // Vd(15-12) | 1011(11-8) | offset
2157 int u = 1;
2158 if (offset < 0) {
2159 offset = -offset;
2160 u = 0;
2161 }
2162 int vd, d;
2163 dst.split_code(&vd, &d);
2164
2165 DCHECK(offset >= 0);
2166 if ((offset % 4) == 0 && (offset / 4) < 256) {
2167 emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
2168 0xB*B8 | ((offset / 4) & 255));
2169 } else {
2170 // Larger offsets must be handled by computing the correct address
2171 // in the ip register.
2172 DCHECK(!base.is(ip));
2173 if (u == 1) {
2174 add(ip, base, Operand(offset));
2175 } else {
2176 sub(ip, base, Operand(offset));
2177 }
2178 emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
2179 }
2180 }
2181
2182
vldr(const DwVfpRegister dst,const MemOperand & operand,const Condition cond)2183 void Assembler::vldr(const DwVfpRegister dst,
2184 const MemOperand& operand,
2185 const Condition cond) {
2186 DCHECK(operand.am_ == Offset);
2187 if (operand.rm().is_valid()) {
2188 add(ip, operand.rn(),
2189 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2190 vldr(dst, ip, 0, cond);
2191 } else {
2192 vldr(dst, operand.rn(), operand.offset(), cond);
2193 }
2194 }
2195
2196
vldr(const SwVfpRegister dst,const Register base,int offset,const Condition cond)2197 void Assembler::vldr(const SwVfpRegister dst,
2198 const Register base,
2199 int offset,
2200 const Condition cond) {
2201 // Sdst = MEM(Rbase + offset).
2202 // Instruction details available in ARM DDI 0406A, A8-628.
2203 // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
2204 // Vdst(15-12) | 1010(11-8) | offset
2205 int u = 1;
2206 if (offset < 0) {
2207 offset = -offset;
2208 u = 0;
2209 }
2210 int sd, d;
2211 dst.split_code(&sd, &d);
2212 DCHECK(offset >= 0);
2213
2214 if ((offset % 4) == 0 && (offset / 4) < 256) {
2215 emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
2216 0xA*B8 | ((offset / 4) & 255));
2217 } else {
2218 // Larger offsets must be handled by computing the correct address
2219 // in the ip register.
2220 DCHECK(!base.is(ip));
2221 if (u == 1) {
2222 add(ip, base, Operand(offset));
2223 } else {
2224 sub(ip, base, Operand(offset));
2225 }
2226 emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2227 }
2228 }
2229
2230
vldr(const SwVfpRegister dst,const MemOperand & operand,const Condition cond)2231 void Assembler::vldr(const SwVfpRegister dst,
2232 const MemOperand& operand,
2233 const Condition cond) {
2234 DCHECK(operand.am_ == Offset);
2235 if (operand.rm().is_valid()) {
2236 add(ip, operand.rn(),
2237 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2238 vldr(dst, ip, 0, cond);
2239 } else {
2240 vldr(dst, operand.rn(), operand.offset(), cond);
2241 }
2242 }
2243
2244
vstr(const DwVfpRegister src,const Register base,int offset,const Condition cond)2245 void Assembler::vstr(const DwVfpRegister src,
2246 const Register base,
2247 int offset,
2248 const Condition cond) {
2249 // MEM(Rbase + offset) = Dsrc.
2250 // Instruction details available in ARM DDI 0406C.b, A8-1082.
2251 // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
2252 // Vd(15-12) | 1011(11-8) | (offset/4)
2253 int u = 1;
2254 if (offset < 0) {
2255 offset = -offset;
2256 u = 0;
2257 }
2258 DCHECK(offset >= 0);
2259 int vd, d;
2260 src.split_code(&vd, &d);
2261
2262 if ((offset % 4) == 0 && (offset / 4) < 256) {
2263 emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
2264 ((offset / 4) & 255));
2265 } else {
2266 // Larger offsets must be handled by computing the correct address
2267 // in the ip register.
2268 DCHECK(!base.is(ip));
2269 if (u == 1) {
2270 add(ip, base, Operand(offset));
2271 } else {
2272 sub(ip, base, Operand(offset));
2273 }
2274 emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
2275 }
2276 }
2277
2278
vstr(const DwVfpRegister src,const MemOperand & operand,const Condition cond)2279 void Assembler::vstr(const DwVfpRegister src,
2280 const MemOperand& operand,
2281 const Condition cond) {
2282 DCHECK(operand.am_ == Offset);
2283 if (operand.rm().is_valid()) {
2284 add(ip, operand.rn(),
2285 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2286 vstr(src, ip, 0, cond);
2287 } else {
2288 vstr(src, operand.rn(), operand.offset(), cond);
2289 }
2290 }
2291
2292
vstr(const SwVfpRegister src,const Register base,int offset,const Condition cond)2293 void Assembler::vstr(const SwVfpRegister src,
2294 const Register base,
2295 int offset,
2296 const Condition cond) {
2297 // MEM(Rbase + offset) = SSrc.
2298 // Instruction details available in ARM DDI 0406A, A8-786.
2299 // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
2300 // Vdst(15-12) | 1010(11-8) | (offset/4)
2301 int u = 1;
2302 if (offset < 0) {
2303 offset = -offset;
2304 u = 0;
2305 }
2306 int sd, d;
2307 src.split_code(&sd, &d);
2308 DCHECK(offset >= 0);
2309 if ((offset % 4) == 0 && (offset / 4) < 256) {
2310 emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
2311 0xA*B8 | ((offset / 4) & 255));
2312 } else {
2313 // Larger offsets must be handled by computing the correct address
2314 // in the ip register.
2315 DCHECK(!base.is(ip));
2316 if (u == 1) {
2317 add(ip, base, Operand(offset));
2318 } else {
2319 sub(ip, base, Operand(offset));
2320 }
2321 emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
2322 }
2323 }
2324
2325
vstr(const SwVfpRegister src,const MemOperand & operand,const Condition cond)2326 void Assembler::vstr(const SwVfpRegister src,
2327 const MemOperand& operand,
2328 const Condition cond) {
2329 DCHECK(operand.am_ == Offset);
2330 if (operand.rm().is_valid()) {
2331 add(ip, operand.rn(),
2332 Operand(operand.rm(), operand.shift_op_, operand.shift_imm_));
2333 vstr(src, ip, 0, cond);
2334 } else {
2335 vstr(src, operand.rn(), operand.offset(), cond);
2336 }
2337 }
2338
2339
vldm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2340 void Assembler::vldm(BlockAddrMode am,
2341 Register base,
2342 DwVfpRegister first,
2343 DwVfpRegister last,
2344 Condition cond) {
2345 // Instruction details available in ARM DDI 0406C.b, A8-922.
2346 // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2347 // first(15-12) | 1011(11-8) | (count * 2)
2348 DCHECK_LE(first.code(), last.code());
2349 DCHECK(am == ia || am == ia_w || am == db_w);
2350 DCHECK(!base.is(pc));
2351
2352 int sd, d;
2353 first.split_code(&sd, &d);
2354 int count = last.code() - first.code() + 1;
2355 DCHECK(count <= 16);
2356 emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2357 0xB*B8 | count*2);
2358 }
2359
2360
vstm(BlockAddrMode am,Register base,DwVfpRegister first,DwVfpRegister last,Condition cond)2361 void Assembler::vstm(BlockAddrMode am,
2362 Register base,
2363 DwVfpRegister first,
2364 DwVfpRegister last,
2365 Condition cond) {
2366 // Instruction details available in ARM DDI 0406C.b, A8-1080.
2367 // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2368 // first(15-12) | 1011(11-8) | (count * 2)
2369 DCHECK_LE(first.code(), last.code());
2370 DCHECK(am == ia || am == ia_w || am == db_w);
2371 DCHECK(!base.is(pc));
2372
2373 int sd, d;
2374 first.split_code(&sd, &d);
2375 int count = last.code() - first.code() + 1;
2376 DCHECK(count <= 16);
2377 emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2378 0xB*B8 | count*2);
2379 }
2380
vldm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2381 void Assembler::vldm(BlockAddrMode am,
2382 Register base,
2383 SwVfpRegister first,
2384 SwVfpRegister last,
2385 Condition cond) {
2386 // Instruction details available in ARM DDI 0406A, A8-626.
2387 // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
2388 // first(15-12) | 1010(11-8) | (count/2)
2389 DCHECK_LE(first.code(), last.code());
2390 DCHECK(am == ia || am == ia_w || am == db_w);
2391 DCHECK(!base.is(pc));
2392
2393 int sd, d;
2394 first.split_code(&sd, &d);
2395 int count = last.code() - first.code() + 1;
2396 emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
2397 0xA*B8 | count);
2398 }
2399
2400
vstm(BlockAddrMode am,Register base,SwVfpRegister first,SwVfpRegister last,Condition cond)2401 void Assembler::vstm(BlockAddrMode am,
2402 Register base,
2403 SwVfpRegister first,
2404 SwVfpRegister last,
2405 Condition cond) {
2406 // Instruction details available in ARM DDI 0406A, A8-784.
2407 // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
2408 // first(15-12) | 1011(11-8) | (count/2)
2409 DCHECK_LE(first.code(), last.code());
2410 DCHECK(am == ia || am == ia_w || am == db_w);
2411 DCHECK(!base.is(pc));
2412
2413 int sd, d;
2414 first.split_code(&sd, &d);
2415 int count = last.code() - first.code() + 1;
2416 emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
2417 0xA*B8 | count);
2418 }
2419
2420
DoubleAsTwoUInt32(double d,uint32_t * lo,uint32_t * hi)2421 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
2422 uint64_t i;
2423 memcpy(&i, &d, 8);
2424
2425 *lo = i & 0xffffffff;
2426 *hi = i >> 32;
2427 }
2428
2429
2430 // Only works for little endian floating point formats.
2431 // We don't support VFP on the mixed endian floating point platform.
FitsVMOVDoubleImmediate(double d,uint32_t * encoding)2432 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
2433 DCHECK(CpuFeatures::IsSupported(VFP3));
2434
2435 // VMOV can accept an immediate of the form:
2436 //
2437 // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
2438 //
2439 // The immediate is encoded using an 8-bit quantity, comprised of two
2440 // 4-bit fields. For an 8-bit immediate of the form:
2441 //
2442 // [abcdefgh]
2443 //
2444 // where a is the MSB and h is the LSB, an immediate 64-bit double can be
2445 // created of the form:
2446 //
2447 // [aBbbbbbb,bbcdefgh,00000000,00000000,
2448 // 00000000,00000000,00000000,00000000]
2449 //
2450 // where B = ~b.
2451 //
2452
2453 uint32_t lo, hi;
2454 DoubleAsTwoUInt32(d, &lo, &hi);
2455
2456 // The most obvious constraint is the long block of zeroes.
2457 if ((lo != 0) || ((hi & 0xffff) != 0)) {
2458 return false;
2459 }
2460
2461 // Bits 62:55 must be all clear or all set.
2462 if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
2463 return false;
2464 }
2465
2466 // Bit 63 must be NOT bit 62.
2467 if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
2468 return false;
2469 }
2470
2471 // Create the encoded immediate in the form:
2472 // [00000000,0000abcd,00000000,0000efgh]
2473 *encoding = (hi >> 16) & 0xf; // Low nybble.
2474 *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
2475 *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
2476
2477 return true;
2478 }
2479
2480
vmov(const DwVfpRegister dst,double imm,const Register scratch)2481 void Assembler::vmov(const DwVfpRegister dst,
2482 double imm,
2483 const Register scratch) {
2484 uint32_t enc;
2485 if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
2486 // The double can be encoded in the instruction.
2487 //
2488 // Dd = immediate
2489 // Instruction details available in ARM DDI 0406C.b, A8-936.
2490 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
2491 // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
2492 int vd, d;
2493 dst.split_code(&vd, &d);
2494 emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
2495 } else if (FLAG_enable_vldr_imm && is_constant_pool_available()) {
2496 // TODO(jfb) Temporarily turned off until we have constant blinding or
2497 // some equivalent mitigation: an attacker can otherwise control
2498 // generated data which also happens to be executable, a Very Bad
2499 // Thing indeed.
2500 // Blinding gets tricky because we don't have xor, we probably
2501 // need to add/subtract without losing precision, which requires a
2502 // cookie value that Lithium is probably better positioned to
2503 // choose.
2504 // We could also add a few peepholes here like detecting 0.0 and
2505 // -0.0 and doing a vmov from the sequestered d14, forcing denorms
2506 // to zero (we set flush-to-zero), and normalizing NaN values.
2507 // We could also detect redundant values.
2508 // The code could also randomize the order of values, though
2509 // that's tricky because vldr has a limited reach. Furthermore
2510 // it breaks load locality.
2511 RelocInfo rinfo(pc_, imm);
2512 ConstantPoolArray::LayoutSection section = ConstantPoolAddEntry(rinfo);
2513 if (section == ConstantPoolArray::EXTENDED_SECTION) {
2514 DCHECK(FLAG_enable_ool_constant_pool);
2515 // Emit instructions to load constant pool offset.
2516 movw(ip, 0);
2517 movt(ip, 0);
2518 // Load from constant pool at offset.
2519 vldr(dst, MemOperand(pp, ip));
2520 } else {
2521 DCHECK(section == ConstantPoolArray::SMALL_SECTION);
2522 vldr(dst, MemOperand(FLAG_enable_ool_constant_pool ? pp : pc, 0));
2523 }
2524 } else {
2525 // Synthesise the double from ARM immediates.
2526 uint32_t lo, hi;
2527 DoubleAsTwoUInt32(imm, &lo, &hi);
2528
2529 if (scratch.is(no_reg)) {
2530 if (dst.code() < 16) {
2531 const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
2532 // Move the low part of the double into the lower of the corresponsing S
2533 // registers of D register dst.
2534 mov(ip, Operand(lo));
2535 vmov(loc.low(), ip);
2536
2537 // Move the high part of the double into the higher of the
2538 // corresponsing S registers of D register dst.
2539 mov(ip, Operand(hi));
2540 vmov(loc.high(), ip);
2541 } else {
2542 // D16-D31 does not have S registers, so move the low and high parts
2543 // directly to the D register using vmov.32.
2544 // Note: This may be slower, so we only do this when we have to.
2545 mov(ip, Operand(lo));
2546 vmov(dst, VmovIndexLo, ip);
2547 mov(ip, Operand(hi));
2548 vmov(dst, VmovIndexHi, ip);
2549 }
2550 } else {
2551 // Move the low and high parts of the double to a D register in one
2552 // instruction.
2553 mov(ip, Operand(lo));
2554 mov(scratch, Operand(hi));
2555 vmov(dst, ip, scratch);
2556 }
2557 }
2558 }
2559
2560
vmov(const SwVfpRegister dst,const SwVfpRegister src,const Condition cond)2561 void Assembler::vmov(const SwVfpRegister dst,
2562 const SwVfpRegister src,
2563 const Condition cond) {
2564 // Sd = Sm
2565 // Instruction details available in ARM DDI 0406B, A8-642.
2566 int sd, d, sm, m;
2567 dst.split_code(&sd, &d);
2568 src.split_code(&sm, &m);
2569 emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
2570 }
2571
2572
vmov(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2573 void Assembler::vmov(const DwVfpRegister dst,
2574 const DwVfpRegister src,
2575 const Condition cond) {
2576 // Dd = Dm
2577 // Instruction details available in ARM DDI 0406C.b, A8-938.
2578 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
2579 // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2580 int vd, d;
2581 dst.split_code(&vd, &d);
2582 int vm, m;
2583 src.split_code(&vm, &m);
2584 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
2585 vm);
2586 }
2587
2588
vmov(const DwVfpRegister dst,const VmovIndex index,const Register src,const Condition cond)2589 void Assembler::vmov(const DwVfpRegister dst,
2590 const VmovIndex index,
2591 const Register src,
2592 const Condition cond) {
2593 // Dd[index] = Rt
2594 // Instruction details available in ARM DDI 0406C.b, A8-940.
2595 // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
2596 // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2597 DCHECK(index.index == 0 || index.index == 1);
2598 int vd, d;
2599 dst.split_code(&vd, &d);
2600 emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
2601 d*B7 | B4);
2602 }
2603
2604
vmov(const Register dst,const VmovIndex index,const DwVfpRegister src,const Condition cond)2605 void Assembler::vmov(const Register dst,
2606 const VmovIndex index,
2607 const DwVfpRegister src,
2608 const Condition cond) {
2609 // Dd[index] = Rt
2610 // Instruction details available in ARM DDI 0406C.b, A8.8.342.
2611 // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
2612 // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
2613 DCHECK(index.index == 0 || index.index == 1);
2614 int vn, n;
2615 src.split_code(&vn, &n);
2616 emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
2617 0xB*B8 | n*B7 | B4);
2618 }
2619
2620
vmov(const DwVfpRegister dst,const Register src1,const Register src2,const Condition cond)2621 void Assembler::vmov(const DwVfpRegister dst,
2622 const Register src1,
2623 const Register src2,
2624 const Condition cond) {
2625 // Dm = <Rt,Rt2>.
2626 // Instruction details available in ARM DDI 0406C.b, A8-948.
2627 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2628 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2629 DCHECK(!src1.is(pc) && !src2.is(pc));
2630 int vm, m;
2631 dst.split_code(&vm, &m);
2632 emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2633 src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2634 }
2635
2636
vmov(const Register dst1,const Register dst2,const DwVfpRegister src,const Condition cond)2637 void Assembler::vmov(const Register dst1,
2638 const Register dst2,
2639 const DwVfpRegister src,
2640 const Condition cond) {
2641 // <Rt,Rt2> = Dm.
2642 // Instruction details available in ARM DDI 0406C.b, A8-948.
2643 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2644 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2645 DCHECK(!dst1.is(pc) && !dst2.is(pc));
2646 int vm, m;
2647 src.split_code(&vm, &m);
2648 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2649 dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
2650 }
2651
2652
vmov(const SwVfpRegister dst,const Register src,const Condition cond)2653 void Assembler::vmov(const SwVfpRegister dst,
2654 const Register src,
2655 const Condition cond) {
2656 // Sn = Rt.
2657 // Instruction details available in ARM DDI 0406A, A8-642.
2658 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2659 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2660 DCHECK(!src.is(pc));
2661 int sn, n;
2662 dst.split_code(&sn, &n);
2663 emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
2664 }
2665
2666
vmov(const Register dst,const SwVfpRegister src,const Condition cond)2667 void Assembler::vmov(const Register dst,
2668 const SwVfpRegister src,
2669 const Condition cond) {
2670 // Rt = Sn.
2671 // Instruction details available in ARM DDI 0406A, A8-642.
2672 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2673 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2674 DCHECK(!dst.is(pc));
2675 int sn, n;
2676 src.split_code(&sn, &n);
2677 emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
2678 }
2679
2680
2681 // Type of data to read from or write to VFP register.
2682 // Used as specifier in generic vcvt instruction.
2683 enum VFPType { S32, U32, F32, F64 };
2684
2685
IsSignedVFPType(VFPType type)2686 static bool IsSignedVFPType(VFPType type) {
2687 switch (type) {
2688 case S32:
2689 return true;
2690 case U32:
2691 return false;
2692 default:
2693 UNREACHABLE();
2694 return false;
2695 }
2696 }
2697
2698
IsIntegerVFPType(VFPType type)2699 static bool IsIntegerVFPType(VFPType type) {
2700 switch (type) {
2701 case S32:
2702 case U32:
2703 return true;
2704 case F32:
2705 case F64:
2706 return false;
2707 default:
2708 UNREACHABLE();
2709 return false;
2710 }
2711 }
2712
2713
IsDoubleVFPType(VFPType type)2714 static bool IsDoubleVFPType(VFPType type) {
2715 switch (type) {
2716 case F32:
2717 return false;
2718 case F64:
2719 return true;
2720 default:
2721 UNREACHABLE();
2722 return false;
2723 }
2724 }
2725
2726
2727 // Split five bit reg_code based on size of reg_type.
2728 // 32-bit register codes are Vm:M
2729 // 64-bit register codes are M:Vm
2730 // where Vm is four bits, and M is a single bit.
SplitRegCode(VFPType reg_type,int reg_code,int * vm,int * m)2731 static void SplitRegCode(VFPType reg_type,
2732 int reg_code,
2733 int* vm,
2734 int* m) {
2735 DCHECK((reg_code >= 0) && (reg_code <= 31));
2736 if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2737 // 32 bit type.
2738 *m = reg_code & 0x1;
2739 *vm = reg_code >> 1;
2740 } else {
2741 // 64 bit type.
2742 *m = (reg_code & 0x10) >> 4;
2743 *vm = reg_code & 0x0F;
2744 }
2745 }
2746
2747
2748 // Encode vcvt.src_type.dst_type instruction.
EncodeVCVT(const VFPType dst_type,const int dst_code,const VFPType src_type,const int src_code,VFPConversionMode mode,const Condition cond)2749 static Instr EncodeVCVT(const VFPType dst_type,
2750 const int dst_code,
2751 const VFPType src_type,
2752 const int src_code,
2753 VFPConversionMode mode,
2754 const Condition cond) {
2755 DCHECK(src_type != dst_type);
2756 int D, Vd, M, Vm;
2757 SplitRegCode(src_type, src_code, &Vm, &M);
2758 SplitRegCode(dst_type, dst_code, &Vd, &D);
2759
2760 if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2761 // Conversion between IEEE floating point and 32-bit integer.
2762 // Instruction details available in ARM DDI 0406B, A8.6.295.
2763 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2764 // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2765 DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2766
2767 int sz, opc2, op;
2768
2769 if (IsIntegerVFPType(dst_type)) {
2770 opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2771 sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2772 op = mode;
2773 } else {
2774 DCHECK(IsIntegerVFPType(src_type));
2775 opc2 = 0x0;
2776 sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2777 op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
2778 }
2779
2780 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2781 Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2782 } else {
2783 // Conversion between IEEE double and single precision.
2784 // Instruction details available in ARM DDI 0406B, A8.6.298.
2785 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2786 // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2787 int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2788 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2789 Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2790 }
2791 }
2792
2793
vcvt_f64_s32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2794 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2795 const SwVfpRegister src,
2796 VFPConversionMode mode,
2797 const Condition cond) {
2798 emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
2799 }
2800
2801
vcvt_f32_s32(const SwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2802 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2803 const SwVfpRegister src,
2804 VFPConversionMode mode,
2805 const Condition cond) {
2806 emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
2807 }
2808
2809
vcvt_f64_u32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2810 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2811 const SwVfpRegister src,
2812 VFPConversionMode mode,
2813 const Condition cond) {
2814 emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
2815 }
2816
2817
vcvt_s32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2818 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2819 const DwVfpRegister src,
2820 VFPConversionMode mode,
2821 const Condition cond) {
2822 emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
2823 }
2824
2825
vcvt_u32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2826 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2827 const DwVfpRegister src,
2828 VFPConversionMode mode,
2829 const Condition cond) {
2830 emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
2831 }
2832
2833
vcvt_f64_f32(const DwVfpRegister dst,const SwVfpRegister src,VFPConversionMode mode,const Condition cond)2834 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2835 const SwVfpRegister src,
2836 VFPConversionMode mode,
2837 const Condition cond) {
2838 emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
2839 }
2840
2841
vcvt_f32_f64(const SwVfpRegister dst,const DwVfpRegister src,VFPConversionMode mode,const Condition cond)2842 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2843 const DwVfpRegister src,
2844 VFPConversionMode mode,
2845 const Condition cond) {
2846 emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
2847 }
2848
2849
vcvt_f64_s32(const DwVfpRegister dst,int fraction_bits,const Condition cond)2850 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2851 int fraction_bits,
2852 const Condition cond) {
2853 // Instruction details available in ARM DDI 0406C.b, A8-874.
2854 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
2855 // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
2856 DCHECK(fraction_bits > 0 && fraction_bits <= 32);
2857 DCHECK(CpuFeatures::IsSupported(VFP3));
2858 int vd, d;
2859 dst.split_code(&vd, &d);
2860 int imm5 = 32 - fraction_bits;
2861 int i = imm5 & 1;
2862 int imm4 = (imm5 >> 1) & 0xf;
2863 emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
2864 vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
2865 }
2866
2867
vneg(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2868 void Assembler::vneg(const DwVfpRegister dst,
2869 const DwVfpRegister src,
2870 const Condition cond) {
2871 // Instruction details available in ARM DDI 0406C.b, A8-968.
2872 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
2873 // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2874 int vd, d;
2875 dst.split_code(&vd, &d);
2876 int vm, m;
2877 src.split_code(&vm, &m);
2878
2879 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
2880 m*B5 | vm);
2881 }
2882
2883
vabs(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)2884 void Assembler::vabs(const DwVfpRegister dst,
2885 const DwVfpRegister src,
2886 const Condition cond) {
2887 // Instruction details available in ARM DDI 0406C.b, A8-524.
2888 // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
2889 // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2890 int vd, d;
2891 dst.split_code(&vd, &d);
2892 int vm, m;
2893 src.split_code(&vm, &m);
2894 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
2895 m*B5 | vm);
2896 }
2897
2898
vadd(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2899 void Assembler::vadd(const DwVfpRegister dst,
2900 const DwVfpRegister src1,
2901 const DwVfpRegister src2,
2902 const Condition cond) {
2903 // Dd = vadd(Dn, Dm) double precision floating point addition.
2904 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2905 // Instruction details available in ARM DDI 0406C.b, A8-830.
2906 // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
2907 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
2908 int vd, d;
2909 dst.split_code(&vd, &d);
2910 int vn, n;
2911 src1.split_code(&vn, &n);
2912 int vm, m;
2913 src2.split_code(&vm, &m);
2914 emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
2915 n*B7 | m*B5 | vm);
2916 }
2917
2918
vsub(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2919 void Assembler::vsub(const DwVfpRegister dst,
2920 const DwVfpRegister src1,
2921 const DwVfpRegister src2,
2922 const Condition cond) {
2923 // Dd = vsub(Dn, Dm) double precision floating point subtraction.
2924 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2925 // Instruction details available in ARM DDI 0406C.b, A8-1086.
2926 // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
2927 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2928 int vd, d;
2929 dst.split_code(&vd, &d);
2930 int vn, n;
2931 src1.split_code(&vn, &n);
2932 int vm, m;
2933 src2.split_code(&vm, &m);
2934 emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
2935 n*B7 | B6 | m*B5 | vm);
2936 }
2937
2938
vmul(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2939 void Assembler::vmul(const DwVfpRegister dst,
2940 const DwVfpRegister src1,
2941 const DwVfpRegister src2,
2942 const Condition cond) {
2943 // Dd = vmul(Dn, Dm) double precision floating point multiplication.
2944 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2945 // Instruction details available in ARM DDI 0406C.b, A8-960.
2946 // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
2947 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
2948 int vd, d;
2949 dst.split_code(&vd, &d);
2950 int vn, n;
2951 src1.split_code(&vn, &n);
2952 int vm, m;
2953 src2.split_code(&vm, &m);
2954 emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
2955 n*B7 | m*B5 | vm);
2956 }
2957
2958
vmla(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2959 void Assembler::vmla(const DwVfpRegister dst,
2960 const DwVfpRegister src1,
2961 const DwVfpRegister src2,
2962 const Condition cond) {
2963 // Instruction details available in ARM DDI 0406C.b, A8-932.
2964 // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
2965 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
2966 int vd, d;
2967 dst.split_code(&vd, &d);
2968 int vn, n;
2969 src1.split_code(&vn, &n);
2970 int vm, m;
2971 src2.split_code(&vm, &m);
2972 emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
2973 vm);
2974 }
2975
2976
vmls(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2977 void Assembler::vmls(const DwVfpRegister dst,
2978 const DwVfpRegister src1,
2979 const DwVfpRegister src2,
2980 const Condition cond) {
2981 // Instruction details available in ARM DDI 0406C.b, A8-932.
2982 // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
2983 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
2984 int vd, d;
2985 dst.split_code(&vd, &d);
2986 int vn, n;
2987 src1.split_code(&vn, &n);
2988 int vm, m;
2989 src2.split_code(&vm, &m);
2990 emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
2991 m*B5 | vm);
2992 }
2993
2994
vdiv(const DwVfpRegister dst,const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)2995 void Assembler::vdiv(const DwVfpRegister dst,
2996 const DwVfpRegister src1,
2997 const DwVfpRegister src2,
2998 const Condition cond) {
2999 // Dd = vdiv(Dn, Dm) double precision floating point division.
3000 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
3001 // Instruction details available in ARM DDI 0406C.b, A8-882.
3002 // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
3003 // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
3004 int vd, d;
3005 dst.split_code(&vd, &d);
3006 int vn, n;
3007 src1.split_code(&vn, &n);
3008 int vm, m;
3009 src2.split_code(&vm, &m);
3010 emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
3011 vm);
3012 }
3013
3014
vcmp(const DwVfpRegister src1,const DwVfpRegister src2,const Condition cond)3015 void Assembler::vcmp(const DwVfpRegister src1,
3016 const DwVfpRegister src2,
3017 const Condition cond) {
3018 // vcmp(Dd, Dm) double precision floating point comparison.
3019 // Instruction details available in ARM DDI 0406C.b, A8-864.
3020 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
3021 // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
3022 int vd, d;
3023 src1.split_code(&vd, &d);
3024 int vm, m;
3025 src2.split_code(&vm, &m);
3026 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
3027 m*B5 | vm);
3028 }
3029
3030
vcmp(const DwVfpRegister src1,const double src2,const Condition cond)3031 void Assembler::vcmp(const DwVfpRegister src1,
3032 const double src2,
3033 const Condition cond) {
3034 // vcmp(Dd, #0.0) double precision floating point comparison.
3035 // Instruction details available in ARM DDI 0406C.b, A8-864.
3036 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
3037 // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
3038 DCHECK(src2 == 0.0);
3039 int vd, d;
3040 src1.split_code(&vd, &d);
3041 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
3042 }
3043
3044
vmsr(Register dst,Condition cond)3045 void Assembler::vmsr(Register dst, Condition cond) {
3046 // Instruction details available in ARM DDI 0406A, A8-652.
3047 // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
3048 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3049 emit(cond | 0xE*B24 | 0xE*B20 | B16 |
3050 dst.code()*B12 | 0xA*B8 | B4);
3051 }
3052
3053
vmrs(Register dst,Condition cond)3054 void Assembler::vmrs(Register dst, Condition cond) {
3055 // Instruction details available in ARM DDI 0406A, A8-652.
3056 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
3057 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
3058 emit(cond | 0xE*B24 | 0xF*B20 | B16 |
3059 dst.code()*B12 | 0xA*B8 | B4);
3060 }
3061
3062
vsqrt(const DwVfpRegister dst,const DwVfpRegister src,const Condition cond)3063 void Assembler::vsqrt(const DwVfpRegister dst,
3064 const DwVfpRegister src,
3065 const Condition cond) {
3066 // Instruction details available in ARM DDI 0406C.b, A8-1058.
3067 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
3068 // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
3069 int vd, d;
3070 dst.split_code(&vd, &d);
3071 int vm, m;
3072 src.split_code(&vm, &m);
3073 emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
3074 m*B5 | vm);
3075 }
3076
3077
3078 // Support for NEON.
3079
vld1(NeonSize size,const NeonListOperand & dst,const NeonMemOperand & src)3080 void Assembler::vld1(NeonSize size,
3081 const NeonListOperand& dst,
3082 const NeonMemOperand& src) {
3083 // Instruction details available in ARM DDI 0406C.b, A8.8.320.
3084 // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
3085 // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3086 DCHECK(CpuFeatures::IsSupported(NEON));
3087 int vd, d;
3088 dst.base().split_code(&vd, &d);
3089 emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
3090 dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
3091 }
3092
3093
vst1(NeonSize size,const NeonListOperand & src,const NeonMemOperand & dst)3094 void Assembler::vst1(NeonSize size,
3095 const NeonListOperand& src,
3096 const NeonMemOperand& dst) {
3097 // Instruction details available in ARM DDI 0406C.b, A8.8.404.
3098 // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
3099 // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
3100 DCHECK(CpuFeatures::IsSupported(NEON));
3101 int vd, d;
3102 src.base().split_code(&vd, &d);
3103 emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
3104 size*B6 | dst.align()*B4 | dst.rm().code());
3105 }
3106
3107
vmovl(NeonDataType dt,QwNeonRegister dst,DwVfpRegister src)3108 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
3109 // Instruction details available in ARM DDI 0406C.b, A8.8.346.
3110 // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
3111 // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
3112 DCHECK(CpuFeatures::IsSupported(NEON));
3113 int vd, d;
3114 dst.split_code(&vd, &d);
3115 int vm, m;
3116 src.split_code(&vm, &m);
3117 emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
3118 (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
3119 }
3120
3121
3122 // Pseudo instructions.
nop(int type)3123 void Assembler::nop(int type) {
3124 // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
3125 // some of the CPU's pipeline and has to issue. Older ARM chips simply used
3126 // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
3127 // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
3128 // a type.
3129 DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop.
3130 emit(al | 13*B21 | type*B12 | type);
3131 }
3132
3133
IsMovT(Instr instr)3134 bool Assembler::IsMovT(Instr instr) {
3135 instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
3136 ((kNumRegisters-1)*B12) | // mask out register
3137 EncodeMovwImmediate(0xFFFF)); // mask out immediate value
3138 return instr == kMovtPattern;
3139 }
3140
3141
IsMovW(Instr instr)3142 bool Assembler::IsMovW(Instr instr) {
3143 instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions
3144 ((kNumRegisters-1)*B12) | // mask out destination
3145 EncodeMovwImmediate(0xFFFF)); // mask out immediate value
3146 return instr == kMovwPattern;
3147 }
3148
3149
GetMovTPattern()3150 Instr Assembler::GetMovTPattern() { return kMovtPattern; }
3151
3152
GetMovWPattern()3153 Instr Assembler::GetMovWPattern() { return kMovwPattern; }
3154
3155
EncodeMovwImmediate(uint32_t immediate)3156 Instr Assembler::EncodeMovwImmediate(uint32_t immediate) {
3157 DCHECK(immediate < 0x10000);
3158 return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
3159 }
3160
3161
PatchMovwImmediate(Instr instruction,uint32_t immediate)3162 Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) {
3163 instruction &= ~EncodeMovwImmediate(0xffff);
3164 return instruction | EncodeMovwImmediate(immediate);
3165 }
3166
3167
DecodeShiftImm(Instr instr)3168 int Assembler::DecodeShiftImm(Instr instr) {
3169 int rotate = Instruction::RotateValue(instr) * 2;
3170 int immed8 = Instruction::Immed8Value(instr);
3171 return (immed8 >> rotate) | (immed8 << (32 - rotate));
3172 }
3173
3174
PatchShiftImm(Instr instr,int immed)3175 Instr Assembler::PatchShiftImm(Instr instr, int immed) {
3176 uint32_t rotate_imm = 0;
3177 uint32_t immed_8 = 0;
3178 bool immed_fits = fits_shifter(immed, &rotate_imm, &immed_8, NULL);
3179 DCHECK(immed_fits);
3180 USE(immed_fits);
3181 return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8;
3182 }
3183
3184
IsNop(Instr instr,int type)3185 bool Assembler::IsNop(Instr instr, int type) {
3186 DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop.
3187 // Check for mov rx, rx where x = type.
3188 return instr == (al | 13*B21 | type*B12 | type);
3189 }
3190
3191
IsMovImmed(Instr instr)3192 bool Assembler::IsMovImmed(Instr instr) {
3193 return (instr & kMovImmedMask) == kMovImmedPattern;
3194 }
3195
3196
IsOrrImmed(Instr instr)3197 bool Assembler::IsOrrImmed(Instr instr) {
3198 return (instr & kOrrImmedMask) == kOrrImmedPattern;
3199 }
3200
3201
3202 // static
ImmediateFitsAddrMode1Instruction(int32_t imm32)3203 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
3204 uint32_t dummy1;
3205 uint32_t dummy2;
3206 return fits_shifter(imm32, &dummy1, &dummy2, NULL);
3207 }
3208
3209
ImmediateFitsAddrMode2Instruction(int32_t imm32)3210 bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) {
3211 return is_uint12(abs(imm32));
3212 }
3213
3214
3215 // Debugging.
RecordJSReturn()3216 void Assembler::RecordJSReturn() {
3217 positions_recorder()->WriteRecordedPositions();
3218 CheckBuffer();
3219 RecordRelocInfo(RelocInfo::JS_RETURN);
3220 }
3221
3222
RecordDebugBreakSlot()3223 void Assembler::RecordDebugBreakSlot() {
3224 positions_recorder()->WriteRecordedPositions();
3225 CheckBuffer();
3226 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
3227 }
3228
3229
RecordComment(const char * msg)3230 void Assembler::RecordComment(const char* msg) {
3231 if (FLAG_code_comments) {
3232 CheckBuffer();
3233 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
3234 }
3235 }
3236
3237
RecordConstPool(int size)3238 void Assembler::RecordConstPool(int size) {
3239 // We only need this for debugger support, to correctly compute offsets in the
3240 // code.
3241 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3242 }
3243
3244
GrowBuffer()3245 void Assembler::GrowBuffer() {
3246 if (!own_buffer_) FATAL("external code buffer is too small");
3247
3248 // Compute new buffer size.
3249 CodeDesc desc; // the new buffer
3250 if (buffer_size_ < 1 * MB) {
3251 desc.buffer_size = 2*buffer_size_;
3252 } else {
3253 desc.buffer_size = buffer_size_ + 1*MB;
3254 }
3255 CHECK_GT(desc.buffer_size, 0); // no overflow
3256
3257 // Set up new buffer.
3258 desc.buffer = NewArray<byte>(desc.buffer_size);
3259
3260 desc.instr_size = pc_offset();
3261 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
3262
3263 // Copy the data.
3264 int pc_delta = desc.buffer - buffer_;
3265 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
3266 MemMove(desc.buffer, buffer_, desc.instr_size);
3267 MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3268 desc.reloc_size);
3269
3270 // Switch buffers.
3271 DeleteArray(buffer_);
3272 buffer_ = desc.buffer;
3273 buffer_size_ = desc.buffer_size;
3274 pc_ += pc_delta;
3275 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3276 reloc_info_writer.last_pc() + pc_delta);
3277
3278 // None of our relocation types are pc relative pointing outside the code
3279 // buffer nor pc absolute pointing inside the code buffer, so there is no need
3280 // to relocate any emitted relocation entries.
3281
3282 // Relocate pending relocation entries.
3283 for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
3284 RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
3285 DCHECK(rinfo.rmode() != RelocInfo::COMMENT &&
3286 rinfo.rmode() != RelocInfo::POSITION);
3287 if (rinfo.rmode() != RelocInfo::JS_RETURN) {
3288 rinfo.set_pc(rinfo.pc() + pc_delta);
3289 }
3290 }
3291 for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
3292 RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
3293 DCHECK(rinfo.rmode() == RelocInfo::NONE64);
3294 rinfo.set_pc(rinfo.pc() + pc_delta);
3295 }
3296 constant_pool_builder_.Relocate(pc_delta);
3297 }
3298
3299
db(uint8_t data)3300 void Assembler::db(uint8_t data) {
3301 // No relocation info should be pending while using db. db is used
3302 // to write pure data with no pointers and the constant pool should
3303 // be emitted before using db.
3304 DCHECK(num_pending_32_bit_reloc_info_ == 0);
3305 DCHECK(num_pending_64_bit_reloc_info_ == 0);
3306 CheckBuffer();
3307 *reinterpret_cast<uint8_t*>(pc_) = data;
3308 pc_ += sizeof(uint8_t);
3309 }
3310
3311
dd(uint32_t data)3312 void Assembler::dd(uint32_t data) {
3313 // No relocation info should be pending while using dd. dd is used
3314 // to write pure data with no pointers and the constant pool should
3315 // be emitted before using dd.
3316 DCHECK(num_pending_32_bit_reloc_info_ == 0);
3317 DCHECK(num_pending_64_bit_reloc_info_ == 0);
3318 CheckBuffer();
3319 *reinterpret_cast<uint32_t*>(pc_) = data;
3320 pc_ += sizeof(uint32_t);
3321 }
3322
3323
emit_code_stub_address(Code * stub)3324 void Assembler::emit_code_stub_address(Code* stub) {
3325 CheckBuffer();
3326 *reinterpret_cast<uint32_t*>(pc_) =
3327 reinterpret_cast<uint32_t>(stub->instruction_start());
3328 pc_ += sizeof(uint32_t);
3329 }
3330
3331
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3332 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3333 RelocInfo rinfo(pc_, rmode, data, NULL);
3334 RecordRelocInfo(rinfo);
3335 }
3336
3337
RecordRelocInfo(const RelocInfo & rinfo)3338 void Assembler::RecordRelocInfo(const RelocInfo& rinfo) {
3339 if (!RelocInfo::IsNone(rinfo.rmode())) {
3340 // Don't record external references unless the heap will be serialized.
3341 if (rinfo.rmode() == RelocInfo::EXTERNAL_REFERENCE &&
3342 !serializer_enabled() && !emit_debug_code()) {
3343 return;
3344 }
3345 DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
3346 if (rinfo.rmode() == RelocInfo::CODE_TARGET_WITH_ID) {
3347 RelocInfo reloc_info_with_ast_id(rinfo.pc(),
3348 rinfo.rmode(),
3349 RecordedAstId().ToInt(),
3350 NULL);
3351 ClearRecordedAstId();
3352 reloc_info_writer.Write(&reloc_info_with_ast_id);
3353 } else {
3354 reloc_info_writer.Write(&rinfo);
3355 }
3356 }
3357 }
3358
3359
ConstantPoolAddEntry(const RelocInfo & rinfo)3360 ConstantPoolArray::LayoutSection Assembler::ConstantPoolAddEntry(
3361 const RelocInfo& rinfo) {
3362 if (FLAG_enable_ool_constant_pool) {
3363 return constant_pool_builder_.AddEntry(this, rinfo);
3364 } else {
3365 if (rinfo.rmode() == RelocInfo::NONE64) {
3366 DCHECK(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
3367 if (num_pending_64_bit_reloc_info_ == 0) {
3368 first_const_pool_64_use_ = pc_offset();
3369 }
3370 pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
3371 } else {
3372 DCHECK(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo);
3373 if (num_pending_32_bit_reloc_info_ == 0) {
3374 first_const_pool_32_use_ = pc_offset();
3375 }
3376 pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo;
3377 }
3378 // Make sure the constant pool is not emitted in place of the next
3379 // instruction for which we just recorded relocation info.
3380 BlockConstPoolFor(1);
3381 return ConstantPoolArray::SMALL_SECTION;
3382 }
3383 }
3384
3385
BlockConstPoolFor(int instructions)3386 void Assembler::BlockConstPoolFor(int instructions) {
3387 if (FLAG_enable_ool_constant_pool) {
3388 // Should be a no-op if using an out-of-line constant pool.
3389 DCHECK(num_pending_32_bit_reloc_info_ == 0);
3390 DCHECK(num_pending_64_bit_reloc_info_ == 0);
3391 return;
3392 }
3393
3394 int pc_limit = pc_offset() + instructions * kInstrSize;
3395 if (no_const_pool_before_ < pc_limit) {
3396 // Max pool start (if we need a jump and an alignment).
3397 #ifdef DEBUG
3398 int start = pc_limit + kInstrSize + 2 * kPointerSize;
3399 DCHECK((num_pending_32_bit_reloc_info_ == 0) ||
3400 (start - first_const_pool_32_use_ +
3401 num_pending_64_bit_reloc_info_ * kDoubleSize < kMaxDistToIntPool));
3402 DCHECK((num_pending_64_bit_reloc_info_ == 0) ||
3403 (start - first_const_pool_64_use_ < kMaxDistToFPPool));
3404 #endif
3405 no_const_pool_before_ = pc_limit;
3406 }
3407
3408 if (next_buffer_check_ < no_const_pool_before_) {
3409 next_buffer_check_ = no_const_pool_before_;
3410 }
3411 }
3412
3413
CheckConstPool(bool force_emit,bool require_jump)3414 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
3415 if (FLAG_enable_ool_constant_pool) {
3416 // Should be a no-op if using an out-of-line constant pool.
3417 DCHECK(num_pending_32_bit_reloc_info_ == 0);
3418 DCHECK(num_pending_64_bit_reloc_info_ == 0);
3419 return;
3420 }
3421
3422 // Some short sequence of instruction mustn't be broken up by constant pool
3423 // emission, such sequences are protected by calls to BlockConstPoolFor and
3424 // BlockConstPoolScope.
3425 if (is_const_pool_blocked()) {
3426 // Something is wrong if emission is forced and blocked at the same time.
3427 DCHECK(!force_emit);
3428 return;
3429 }
3430
3431 // There is nothing to do if there are no pending constant pool entries.
3432 if ((num_pending_32_bit_reloc_info_ == 0) &&
3433 (num_pending_64_bit_reloc_info_ == 0)) {
3434 // Calculate the offset of the next check.
3435 next_buffer_check_ = pc_offset() + kCheckPoolInterval;
3436 return;
3437 }
3438
3439 // Check that the code buffer is large enough before emitting the constant
3440 // pool (include the jump over the pool and the constant pool marker and
3441 // the gap to the relocation information).
3442 int jump_instr = require_jump ? kInstrSize : 0;
3443 int size_up_to_marker = jump_instr + kInstrSize;
3444 int size_after_marker = num_pending_32_bit_reloc_info_ * kPointerSize;
3445 bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0);
3446 bool require_64_bit_align = false;
3447 if (has_fp_values) {
3448 require_64_bit_align = (((uintptr_t)pc_ + size_up_to_marker) & 0x7);
3449 if (require_64_bit_align) {
3450 size_after_marker += kInstrSize;
3451 }
3452 size_after_marker += num_pending_64_bit_reloc_info_ * kDoubleSize;
3453 }
3454
3455 int size = size_up_to_marker + size_after_marker;
3456
3457 // We emit a constant pool when:
3458 // * requested to do so by parameter force_emit (e.g. after each function).
3459 // * the distance from the first instruction accessing the constant pool to
3460 // any of the constant pool entries will exceed its limit the next
3461 // time the pool is checked. This is overly restrictive, but we don't emit
3462 // constant pool entries in-order so it's conservatively correct.
3463 // * the instruction doesn't require a jump after itself to jump over the
3464 // constant pool, and we're getting close to running out of range.
3465 if (!force_emit) {
3466 DCHECK((first_const_pool_32_use_ >= 0) || (first_const_pool_64_use_ >= 0));
3467 bool need_emit = false;
3468 if (has_fp_values) {
3469 int dist64 = pc_offset() +
3470 size -
3471 num_pending_32_bit_reloc_info_ * kPointerSize -
3472 first_const_pool_64_use_;
3473 if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
3474 (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
3475 need_emit = true;
3476 }
3477 }
3478 int dist32 =
3479 pc_offset() + size - first_const_pool_32_use_;
3480 if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
3481 (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
3482 need_emit = true;
3483 }
3484 if (!need_emit) return;
3485 }
3486
3487 int needed_space = size + kGap;
3488 while (buffer_space() <= needed_space) GrowBuffer();
3489
3490 {
3491 // Block recursive calls to CheckConstPool.
3492 BlockConstPoolScope block_const_pool(this);
3493 RecordComment("[ Constant Pool");
3494 RecordConstPool(size);
3495
3496 // Emit jump over constant pool if necessary.
3497 Label after_pool;
3498 if (require_jump) {
3499 b(&after_pool);
3500 }
3501
3502 // Put down constant pool marker "Undefined instruction".
3503 // The data size helps disassembly know what to print.
3504 emit(kConstantPoolMarker |
3505 EncodeConstantPoolLength(size_after_marker / kPointerSize));
3506
3507 if (require_64_bit_align) {
3508 emit(kConstantPoolMarker);
3509 }
3510
3511 // Emit 64-bit constant pool entries first: their range is smaller than
3512 // 32-bit entries.
3513 for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
3514 RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
3515
3516 DCHECK(!((uintptr_t)pc_ & 0x7)); // Check 64-bit alignment.
3517
3518 Instr instr = instr_at(rinfo.pc());
3519 // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
3520 DCHECK((IsVldrDPcImmediateOffset(instr) &&
3521 GetVldrDRegisterImmediateOffset(instr) == 0));
3522
3523 int delta = pc_ - rinfo.pc() - kPcLoadDelta;
3524 DCHECK(is_uint10(delta));
3525
3526 bool found = false;
3527 uint64_t value = rinfo.raw_data64();
3528 for (int j = 0; j < i; j++) {
3529 RelocInfo& rinfo2 = pending_64_bit_reloc_info_[j];
3530 if (value == rinfo2.raw_data64()) {
3531 found = true;
3532 DCHECK(rinfo2.rmode() == RelocInfo::NONE64);
3533 Instr instr2 = instr_at(rinfo2.pc());
3534 DCHECK(IsVldrDPcImmediateOffset(instr2));
3535 delta = GetVldrDRegisterImmediateOffset(instr2);
3536 delta += rinfo2.pc() - rinfo.pc();
3537 break;
3538 }
3539 }
3540
3541 instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta));
3542
3543 if (!found) {
3544 uint64_t uint_data = rinfo.raw_data64();
3545 emit(uint_data & 0xFFFFFFFF);
3546 emit(uint_data >> 32);
3547 }
3548 }
3549
3550 // Emit 32-bit constant pool entries.
3551 for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
3552 RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
3553 DCHECK(rinfo.rmode() != RelocInfo::COMMENT &&
3554 rinfo.rmode() != RelocInfo::POSITION &&
3555 rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
3556 rinfo.rmode() != RelocInfo::CONST_POOL &&
3557 rinfo.rmode() != RelocInfo::NONE64);
3558
3559 Instr instr = instr_at(rinfo.pc());
3560
3561 // 64-bit loads shouldn't get here.
3562 DCHECK(!IsVldrDPcImmediateOffset(instr));
3563
3564 if (IsLdrPcImmediateOffset(instr) &&
3565 GetLdrRegisterImmediateOffset(instr) == 0) {
3566 int delta = pc_ - rinfo.pc() - kPcLoadDelta;
3567 DCHECK(is_uint12(delta));
3568 // 0 is the smallest delta:
3569 // ldr rd, [pc, #0]
3570 // constant pool marker
3571 // data
3572
3573 bool found = false;
3574 if (!serializer_enabled() && rinfo.rmode() >= RelocInfo::CELL) {
3575 for (int j = 0; j < i; j++) {
3576 RelocInfo& rinfo2 = pending_32_bit_reloc_info_[j];
3577
3578 if ((rinfo2.data() == rinfo.data()) &&
3579 (rinfo2.rmode() == rinfo.rmode())) {
3580 Instr instr2 = instr_at(rinfo2.pc());
3581 if (IsLdrPcImmediateOffset(instr2)) {
3582 delta = GetLdrRegisterImmediateOffset(instr2);
3583 delta += rinfo2.pc() - rinfo.pc();
3584 found = true;
3585 break;
3586 }
3587 }
3588 }
3589 }
3590
3591 instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
3592
3593 if (!found) {
3594 emit(rinfo.data());
3595 }
3596 } else {
3597 DCHECK(IsMovW(instr));
3598 }
3599 }
3600
3601 num_pending_32_bit_reloc_info_ = 0;
3602 num_pending_64_bit_reloc_info_ = 0;
3603 first_const_pool_32_use_ = -1;
3604 first_const_pool_64_use_ = -1;
3605
3606 RecordComment("]");
3607
3608 if (after_pool.is_linked()) {
3609 bind(&after_pool);
3610 }
3611 }
3612
3613 // Since a constant pool was just emitted, move the check offset forward by
3614 // the standard interval.
3615 next_buffer_check_ = pc_offset() + kCheckPoolInterval;
3616 }
3617
3618
NewConstantPool(Isolate * isolate)3619 Handle<ConstantPoolArray> Assembler::NewConstantPool(Isolate* isolate) {
3620 if (!FLAG_enable_ool_constant_pool) {
3621 return isolate->factory()->empty_constant_pool_array();
3622 }
3623 return constant_pool_builder_.New(isolate);
3624 }
3625
3626
PopulateConstantPool(ConstantPoolArray * constant_pool)3627 void Assembler::PopulateConstantPool(ConstantPoolArray* constant_pool) {
3628 constant_pool_builder_.Populate(this, constant_pool);
3629 }
3630
3631
ConstantPoolBuilder()3632 ConstantPoolBuilder::ConstantPoolBuilder()
3633 : entries_(), current_section_(ConstantPoolArray::SMALL_SECTION) {}
3634
3635
IsEmpty()3636 bool ConstantPoolBuilder::IsEmpty() {
3637 return entries_.size() == 0;
3638 }
3639
3640
GetConstantPoolType(RelocInfo::Mode rmode)3641 ConstantPoolArray::Type ConstantPoolBuilder::GetConstantPoolType(
3642 RelocInfo::Mode rmode) {
3643 if (rmode == RelocInfo::NONE64) {
3644 return ConstantPoolArray::INT64;
3645 } else if (!RelocInfo::IsGCRelocMode(rmode)) {
3646 return ConstantPoolArray::INT32;
3647 } else if (RelocInfo::IsCodeTarget(rmode)) {
3648 return ConstantPoolArray::CODE_PTR;
3649 } else {
3650 DCHECK(RelocInfo::IsGCRelocMode(rmode) && !RelocInfo::IsCodeTarget(rmode));
3651 return ConstantPoolArray::HEAP_PTR;
3652 }
3653 }
3654
3655
AddEntry(Assembler * assm,const RelocInfo & rinfo)3656 ConstantPoolArray::LayoutSection ConstantPoolBuilder::AddEntry(
3657 Assembler* assm, const RelocInfo& rinfo) {
3658 RelocInfo::Mode rmode = rinfo.rmode();
3659 DCHECK(rmode != RelocInfo::COMMENT &&
3660 rmode != RelocInfo::POSITION &&
3661 rmode != RelocInfo::STATEMENT_POSITION &&
3662 rmode != RelocInfo::CONST_POOL);
3663
3664 // Try to merge entries which won't be patched.
3665 int merged_index = -1;
3666 ConstantPoolArray::LayoutSection entry_section = current_section_;
3667 if (RelocInfo::IsNone(rmode) ||
3668 (!assm->serializer_enabled() && (rmode >= RelocInfo::CELL))) {
3669 size_t i;
3670 std::vector<ConstantPoolEntry>::const_iterator it;
3671 for (it = entries_.begin(), i = 0; it != entries_.end(); it++, i++) {
3672 if (RelocInfo::IsEqual(rinfo, it->rinfo_)) {
3673 // Merge with found entry.
3674 merged_index = i;
3675 entry_section = entries_[i].section_;
3676 break;
3677 }
3678 }
3679 }
3680 DCHECK(entry_section <= current_section_);
3681 entries_.push_back(ConstantPoolEntry(rinfo, entry_section, merged_index));
3682
3683 if (merged_index == -1) {
3684 // Not merged, so update the appropriate count.
3685 number_of_entries_[entry_section].increment(GetConstantPoolType(rmode));
3686 }
3687
3688 // Check if we still have room for another entry in the small section
3689 // given Arm's ldr and vldr immediate offset range.
3690 if (current_section_ == ConstantPoolArray::SMALL_SECTION &&
3691 !(is_uint12(ConstantPoolArray::SizeFor(*small_entries())) &&
3692 is_uint10(ConstantPoolArray::MaxInt64Offset(
3693 small_entries()->count_of(ConstantPoolArray::INT64))))) {
3694 current_section_ = ConstantPoolArray::EXTENDED_SECTION;
3695 }
3696 return entry_section;
3697 }
3698
3699
Relocate(int pc_delta)3700 void ConstantPoolBuilder::Relocate(int pc_delta) {
3701 for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
3702 entry != entries_.end(); entry++) {
3703 DCHECK(entry->rinfo_.rmode() != RelocInfo::JS_RETURN);
3704 entry->rinfo_.set_pc(entry->rinfo_.pc() + pc_delta);
3705 }
3706 }
3707
3708
New(Isolate * isolate)3709 Handle<ConstantPoolArray> ConstantPoolBuilder::New(Isolate* isolate) {
3710 if (IsEmpty()) {
3711 return isolate->factory()->empty_constant_pool_array();
3712 } else if (extended_entries()->is_empty()) {
3713 return isolate->factory()->NewConstantPoolArray(*small_entries());
3714 } else {
3715 DCHECK(current_section_ == ConstantPoolArray::EXTENDED_SECTION);
3716 return isolate->factory()->NewExtendedConstantPoolArray(
3717 *small_entries(), *extended_entries());
3718 }
3719 }
3720
3721
Populate(Assembler * assm,ConstantPoolArray * constant_pool)3722 void ConstantPoolBuilder::Populate(Assembler* assm,
3723 ConstantPoolArray* constant_pool) {
3724 DCHECK_EQ(extended_entries()->is_empty(),
3725 !constant_pool->is_extended_layout());
3726 DCHECK(small_entries()->equals(ConstantPoolArray::NumberOfEntries(
3727 constant_pool, ConstantPoolArray::SMALL_SECTION)));
3728 if (constant_pool->is_extended_layout()) {
3729 DCHECK(extended_entries()->equals(ConstantPoolArray::NumberOfEntries(
3730 constant_pool, ConstantPoolArray::EXTENDED_SECTION)));
3731 }
3732
3733 // Set up initial offsets.
3734 int offsets[ConstantPoolArray::NUMBER_OF_LAYOUT_SECTIONS]
3735 [ConstantPoolArray::NUMBER_OF_TYPES];
3736 for (int section = 0; section <= constant_pool->final_section(); section++) {
3737 int section_start = (section == ConstantPoolArray::EXTENDED_SECTION)
3738 ? small_entries()->total_count()
3739 : 0;
3740 for (int i = 0; i < ConstantPoolArray::NUMBER_OF_TYPES; i++) {
3741 ConstantPoolArray::Type type = static_cast<ConstantPoolArray::Type>(i);
3742 if (number_of_entries_[section].count_of(type) != 0) {
3743 offsets[section][type] = constant_pool->OffsetOfElementAt(
3744 number_of_entries_[section].base_of(type) + section_start);
3745 }
3746 }
3747 }
3748
3749 for (std::vector<ConstantPoolEntry>::iterator entry = entries_.begin();
3750 entry != entries_.end(); entry++) {
3751 RelocInfo rinfo = entry->rinfo_;
3752 RelocInfo::Mode rmode = entry->rinfo_.rmode();
3753 ConstantPoolArray::Type type = GetConstantPoolType(rmode);
3754
3755 // Update constant pool if necessary and get the entry's offset.
3756 int offset;
3757 if (entry->merged_index_ == -1) {
3758 offset = offsets[entry->section_][type];
3759 offsets[entry->section_][type] += ConstantPoolArray::entry_size(type);
3760 if (type == ConstantPoolArray::INT64) {
3761 constant_pool->set_at_offset(offset, rinfo.data64());
3762 } else if (type == ConstantPoolArray::INT32) {
3763 constant_pool->set_at_offset(offset,
3764 static_cast<int32_t>(rinfo.data()));
3765 } else if (type == ConstantPoolArray::CODE_PTR) {
3766 constant_pool->set_at_offset(offset,
3767 reinterpret_cast<Address>(rinfo.data()));
3768 } else {
3769 DCHECK(type == ConstantPoolArray::HEAP_PTR);
3770 constant_pool->set_at_offset(offset,
3771 reinterpret_cast<Object*>(rinfo.data()));
3772 }
3773 offset -= kHeapObjectTag;
3774 entry->merged_index_ = offset; // Stash offset for merged entries.
3775 } else {
3776 DCHECK(entry->merged_index_ < (entry - entries_.begin()));
3777 offset = entries_[entry->merged_index_].merged_index_;
3778 }
3779
3780 // Patch vldr/ldr instruction with correct offset.
3781 Instr instr = assm->instr_at(rinfo.pc());
3782 if (entry->section_ == ConstantPoolArray::EXTENDED_SECTION) {
3783 if (CpuFeatures::IsSupported(ARMv7)) {
3784 // Instructions to patch must be 'movw rd, [#0]' and 'movt rd, [#0].
3785 Instr next_instr = assm->instr_at(rinfo.pc() + Assembler::kInstrSize);
3786 DCHECK((Assembler::IsMovW(instr) &&
3787 Instruction::ImmedMovwMovtValue(instr) == 0));
3788 DCHECK((Assembler::IsMovT(next_instr) &&
3789 Instruction::ImmedMovwMovtValue(next_instr) == 0));
3790 assm->instr_at_put(
3791 rinfo.pc(), Assembler::PatchMovwImmediate(instr, offset & 0xffff));
3792 assm->instr_at_put(
3793 rinfo.pc() + Assembler::kInstrSize,
3794 Assembler::PatchMovwImmediate(next_instr, offset >> 16));
3795 } else {
3796 // Instructions to patch must be 'mov rd, [#0]' and 'orr rd, rd, [#0].
3797 Instr instr_2 = assm->instr_at(rinfo.pc() + Assembler::kInstrSize);
3798 Instr instr_3 = assm->instr_at(rinfo.pc() + 2 * Assembler::kInstrSize);
3799 Instr instr_4 = assm->instr_at(rinfo.pc() + 3 * Assembler::kInstrSize);
3800 DCHECK((Assembler::IsMovImmed(instr) &&
3801 Instruction::Immed8Value(instr) == 0));
3802 DCHECK((Assembler::IsOrrImmed(instr_2) &&
3803 Instruction::Immed8Value(instr_2) == 0) &&
3804 Assembler::GetRn(instr_2).is(Assembler::GetRd(instr_2)));
3805 DCHECK((Assembler::IsOrrImmed(instr_3) &&
3806 Instruction::Immed8Value(instr_3) == 0) &&
3807 Assembler::GetRn(instr_3).is(Assembler::GetRd(instr_3)));
3808 DCHECK((Assembler::IsOrrImmed(instr_4) &&
3809 Instruction::Immed8Value(instr_4) == 0) &&
3810 Assembler::GetRn(instr_4).is(Assembler::GetRd(instr_4)));
3811 assm->instr_at_put(
3812 rinfo.pc(), Assembler::PatchShiftImm(instr, (offset & kImm8Mask)));
3813 assm->instr_at_put(
3814 rinfo.pc() + Assembler::kInstrSize,
3815 Assembler::PatchShiftImm(instr_2, (offset & (kImm8Mask << 8))));
3816 assm->instr_at_put(
3817 rinfo.pc() + 2 * Assembler::kInstrSize,
3818 Assembler::PatchShiftImm(instr_3, (offset & (kImm8Mask << 16))));
3819 assm->instr_at_put(
3820 rinfo.pc() + 3 * Assembler::kInstrSize,
3821 Assembler::PatchShiftImm(instr_4, (offset & (kImm8Mask << 24))));
3822 }
3823 } else if (type == ConstantPoolArray::INT64) {
3824 // Instruction to patch must be 'vldr rd, [pp, #0]'.
3825 DCHECK((Assembler::IsVldrDPpImmediateOffset(instr) &&
3826 Assembler::GetVldrDRegisterImmediateOffset(instr) == 0));
3827 DCHECK(is_uint10(offset));
3828 assm->instr_at_put(rinfo.pc(), Assembler::SetVldrDRegisterImmediateOffset(
3829 instr, offset));
3830 } else {
3831 // Instruction to patch must be 'ldr rd, [pp, #0]'.
3832 DCHECK((Assembler::IsLdrPpImmediateOffset(instr) &&
3833 Assembler::GetLdrRegisterImmediateOffset(instr) == 0));
3834 DCHECK(is_uint12(offset));
3835 assm->instr_at_put(
3836 rinfo.pc(), Assembler::SetLdrRegisterImmediateOffset(instr, offset));
3837 }
3838 }
3839 }
3840
3841
3842 } } // namespace v8::internal
3843
3844 #endif // V8_TARGET_ARCH_ARM
3845