1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37
38 #include "src/v8.h"
39
40 #include "src/allocation.h"
41 #include "src/builtins.h"
42 #include "src/gdb-jit.h"
43 #include "src/isolate.h"
44 #include "src/runtime.h"
45 #include "src/token.h"
46
47 namespace v8 {
48
49 class ApiFunction;
50
51 namespace internal {
52
53 class StatsCounter;
54 // -----------------------------------------------------------------------------
55 // Platform independent assembler base class.
56
57 class AssemblerBase: public Malloced {
58 public:
59 AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
60 virtual ~AssemblerBase();
61
isolate()62 Isolate* isolate() const { return isolate_; }
jit_cookie()63 int jit_cookie() const { return jit_cookie_; }
64
emit_debug_code()65 bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)66 void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
67
serializer_enabled()68 bool serializer_enabled() const { return serializer_enabled_; }
enable_serializer()69 void enable_serializer() { serializer_enabled_ = true; }
70
predictable_code_size()71 bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)72 void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
73
enabled_cpu_features()74 uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)75 void set_enabled_cpu_features(uint64_t features) {
76 enabled_cpu_features_ = features;
77 }
IsEnabled(CpuFeature f)78 bool IsEnabled(CpuFeature f) {
79 return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
80 }
81
82 // Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for
83 // cross-snapshotting.
QuietNaN(HeapObject * nan)84 static void QuietNaN(HeapObject* nan) { }
85
pc_offset()86 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
87
88 // This function is called when code generation is aborted, so that
89 // the assembler could clean up internal data structures.
AbortedCodeGeneration()90 virtual void AbortedCodeGeneration() { }
91
92 static const int kMinimalBufferSize = 4*KB;
93
94 protected:
95 // The buffer into which code and relocation info are generated. It could
96 // either be owned by the assembler or be provided externally.
97 byte* buffer_;
98 int buffer_size_;
99 bool own_buffer_;
100
101 // The program counter, which points into the buffer above and moves forward.
102 byte* pc_;
103
104 private:
105 Isolate* isolate_;
106 int jit_cookie_;
107 uint64_t enabled_cpu_features_;
108 bool emit_debug_code_;
109 bool predictable_code_size_;
110 bool serializer_enabled_;
111 };
112
113
114 // Avoids emitting debug code during the lifetime of this scope object.
115 class DontEmitDebugCodeScope BASE_EMBEDDED {
116 public:
DontEmitDebugCodeScope(AssemblerBase * assembler)117 explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
118 : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
119 assembler_->set_emit_debug_code(false);
120 }
~DontEmitDebugCodeScope()121 ~DontEmitDebugCodeScope() {
122 assembler_->set_emit_debug_code(old_value_);
123 }
124 private:
125 AssemblerBase* assembler_;
126 bool old_value_;
127 };
128
129
130 // Avoids using instructions that vary in size in unpredictable ways between the
131 // snapshot and the running VM.
132 class PredictableCodeSizeScope {
133 public:
134 PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
135 ~PredictableCodeSizeScope();
136
137 private:
138 AssemblerBase* assembler_;
139 int expected_size_;
140 int start_offset_;
141 bool old_value_;
142 };
143
144
145 // Enable a specified feature within a scope.
146 class CpuFeatureScope BASE_EMBEDDED {
147 public:
148 #ifdef DEBUG
149 CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
150 ~CpuFeatureScope();
151
152 private:
153 AssemblerBase* assembler_;
154 uint64_t old_enabled_;
155 #else
156 CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
157 #endif
158 };
159
160
161 // CpuFeatures keeps track of which features are supported by the target CPU.
162 // Supported features must be enabled by a CpuFeatureScope before use.
163 // Example:
164 // if (assembler->IsSupported(SSE3)) {
165 // CpuFeatureScope fscope(assembler, SSE3);
166 // // Generate code containing SSE3 instructions.
167 // } else {
168 // // Generate alternative code.
169 // }
170 class CpuFeatures : public AllStatic {
171 public:
Probe(bool cross_compile)172 static void Probe(bool cross_compile) {
173 STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
174 if (initialized_) return;
175 initialized_ = true;
176 ProbeImpl(cross_compile);
177 }
178
SupportedFeatures()179 static unsigned SupportedFeatures() {
180 Probe(false);
181 return supported_;
182 }
183
IsSupported(CpuFeature f)184 static bool IsSupported(CpuFeature f) {
185 return (supported_ & (1u << f)) != 0;
186 }
187
188 static inline bool SupportsCrankshaft();
189
cache_line_size()190 static inline unsigned cache_line_size() {
191 DCHECK(cache_line_size_ != 0);
192 return cache_line_size_;
193 }
194
195 static void PrintTarget();
196 static void PrintFeatures();
197
198 // Flush instruction cache.
199 static void FlushICache(void* start, size_t size);
200
201 private:
202 // Platform-dependent implementation.
203 static void ProbeImpl(bool cross_compile);
204
205 static unsigned supported_;
206 static unsigned cache_line_size_;
207 static bool initialized_;
208 friend class ExternalReference;
209 DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
210 };
211
212
213 // -----------------------------------------------------------------------------
214 // Labels represent pc locations; they are typically jump or call targets.
215 // After declaration, a label can be freely used to denote known or (yet)
216 // unknown pc location. Assembler::bind() is used to bind a label to the
217 // current pc. A label can be bound only once.
218
219 class Label BASE_EMBEDDED {
220 public:
221 enum Distance {
222 kNear, kFar
223 };
224
INLINE(Label ())225 INLINE(Label()) {
226 Unuse();
227 UnuseNear();
228 }
229
INLINE(~Label ())230 INLINE(~Label()) {
231 DCHECK(!is_linked());
232 DCHECK(!is_near_linked());
233 }
234
INLINE(void Unuse ())235 INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())236 INLINE(void UnuseNear()) { near_link_pos_ = 0; }
237
INLINE(bool is_bound ()const)238 INLINE(bool is_bound() const) { return pos_ < 0; }
INLINE(bool is_unused ()const)239 INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)240 INLINE(bool is_linked() const) { return pos_ > 0; }
INLINE(bool is_near_linked ()const)241 INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
242
243 // Returns the position of bound or linked labels. Cannot be used
244 // for unused labels.
245 int pos() const;
near_link_pos()246 int near_link_pos() const { return near_link_pos_ - 1; }
247
248 private:
249 // pos_ encodes both the binding state (via its sign)
250 // and the binding position (via its value) of a label.
251 //
252 // pos_ < 0 bound label, pos() returns the jump target position
253 // pos_ == 0 unused label
254 // pos_ > 0 linked label, pos() returns the last reference position
255 int pos_;
256
257 // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
258 int near_link_pos_;
259
bind_to(int pos)260 void bind_to(int pos) {
261 pos_ = -pos - 1;
262 DCHECK(is_bound());
263 }
264 void link_to(int pos, Distance distance = kFar) {
265 if (distance == kNear) {
266 near_link_pos_ = pos + 1;
267 DCHECK(is_near_linked());
268 } else {
269 pos_ = pos + 1;
270 DCHECK(is_linked());
271 }
272 }
273
274 friend class Assembler;
275 friend class Displacement;
276 friend class RegExpMacroAssemblerIrregexp;
277
278 #if V8_TARGET_ARCH_ARM64
279 // On ARM64, the Assembler keeps track of pointers to Labels to resolve
280 // branches to distant targets. Copying labels would confuse the Assembler.
281 DISALLOW_COPY_AND_ASSIGN(Label); // NOLINT
282 #endif
283 };
284
285
286 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
287
288 // Specifies whether to perform icache flush operations on RelocInfo updates.
289 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
290 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
291 // skipped (only use this if you will flush the icache manually before it is
292 // executed).
293 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
294
295 // -----------------------------------------------------------------------------
296 // Relocation information
297
298
299 // Relocation information consists of the address (pc) of the datum
300 // to which the relocation information applies, the relocation mode
301 // (rmode), and an optional data field. The relocation mode may be
302 // "descriptive" and not indicate a need for relocation, but simply
303 // describe a property of the datum. Such rmodes are useful for GC
304 // and nice disassembly output.
305
306 class RelocInfo {
307 public:
308 // The constant kNoPosition is used with the collecting of source positions
309 // in the relocation information. Two types of source positions are collected
310 // "position" (RelocMode position) and "statement position" (RelocMode
311 // statement_position). The "position" is collected at places in the source
312 // code which are of interest when making stack traces to pin-point the source
313 // location of a stack frame as close as possible. The "statement position" is
314 // collected at the beginning at each statement, and is used to indicate
315 // possible break locations. kNoPosition is used to indicate an
316 // invalid/uninitialized position value.
317 static const int kNoPosition = -1;
318
319 // This string is used to add padding comments to the reloc info in cases
320 // where we are not sure to have enough space for patching in during
321 // lazy deoptimization. This is the case if we have indirect calls for which
322 // we do not normally record relocation info.
323 static const char* const kFillerCommentString;
324
325 // The minimum size of a comment is equal to three bytes for the extra tagged
326 // pc + the tag for the data, and kPointerSize for the actual pointer to the
327 // comment.
328 static const int kMinRelocCommentSize = 3 + kPointerSize;
329
330 // The maximum size for a call instruction including pc-jump.
331 static const int kMaxCallSize = 6;
332
333 // The maximum pc delta that will use the short encoding.
334 static const int kMaxSmallPCDelta;
335
336 enum Mode {
337 // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
338 CODE_TARGET, // Code target which is not any of the above.
339 CODE_TARGET_WITH_ID,
340 CONSTRUCT_CALL, // code target that is a call to a JavaScript constructor.
341 DEBUG_BREAK, // Code target for the debugger statement.
342 EMBEDDED_OBJECT,
343 CELL,
344
345 // Everything after runtime_entry (inclusive) is not GC'ed.
346 RUNTIME_ENTRY,
347 JS_RETURN, // Marks start of the ExitJSFrame code.
348 COMMENT,
349 POSITION, // See comment for kNoPosition above.
350 STATEMENT_POSITION, // See comment for kNoPosition above.
351 DEBUG_BREAK_SLOT, // Additional code inserted for debug break slot.
352 EXTERNAL_REFERENCE, // The address of an external C++ function.
353 INTERNAL_REFERENCE, // An address inside the same function.
354
355 // Marks constant and veneer pools. Only used on ARM and ARM64.
356 // They use a custom noncompact encoding.
357 CONST_POOL,
358 VENEER_POOL,
359
360 // add more as needed
361 // Pseudo-types
362 NUMBER_OF_MODES, // There are at most 15 modes with noncompact encoding.
363 NONE32, // never recorded 32-bit value
364 NONE64, // never recorded 64-bit value
365 CODE_AGE_SEQUENCE, // Not stored in RelocInfo array, used explictly by
366 // code aging.
367 FIRST_REAL_RELOC_MODE = CODE_TARGET,
368 LAST_REAL_RELOC_MODE = VENEER_POOL,
369 FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
370 LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
371 LAST_CODE_ENUM = DEBUG_BREAK,
372 LAST_GCED_ENUM = CELL,
373 // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
374 LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
375 LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
376 };
377
RelocInfo()378 RelocInfo() {}
379
RelocInfo(byte * pc,Mode rmode,intptr_t data,Code * host)380 RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
381 : pc_(pc), rmode_(rmode), data_(data), host_(host) {
382 }
RelocInfo(byte * pc,double data64)383 RelocInfo(byte* pc, double data64)
384 : pc_(pc), rmode_(NONE64), data64_(data64), host_(NULL) {
385 }
386
IsRealRelocMode(Mode mode)387 static inline bool IsRealRelocMode(Mode mode) {
388 return mode >= FIRST_REAL_RELOC_MODE &&
389 mode <= LAST_REAL_RELOC_MODE;
390 }
IsPseudoRelocMode(Mode mode)391 static inline bool IsPseudoRelocMode(Mode mode) {
392 DCHECK(!IsRealRelocMode(mode));
393 return mode >= FIRST_PSEUDO_RELOC_MODE &&
394 mode <= LAST_PSEUDO_RELOC_MODE;
395 }
IsConstructCall(Mode mode)396 static inline bool IsConstructCall(Mode mode) {
397 return mode == CONSTRUCT_CALL;
398 }
IsCodeTarget(Mode mode)399 static inline bool IsCodeTarget(Mode mode) {
400 return mode <= LAST_CODE_ENUM;
401 }
IsEmbeddedObject(Mode mode)402 static inline bool IsEmbeddedObject(Mode mode) {
403 return mode == EMBEDDED_OBJECT;
404 }
IsRuntimeEntry(Mode mode)405 static inline bool IsRuntimeEntry(Mode mode) {
406 return mode == RUNTIME_ENTRY;
407 }
408 // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)409 static inline bool IsGCRelocMode(Mode mode) {
410 return mode <= LAST_GCED_ENUM;
411 }
IsJSReturn(Mode mode)412 static inline bool IsJSReturn(Mode mode) {
413 return mode == JS_RETURN;
414 }
IsComment(Mode mode)415 static inline bool IsComment(Mode mode) {
416 return mode == COMMENT;
417 }
IsConstPool(Mode mode)418 static inline bool IsConstPool(Mode mode) {
419 return mode == CONST_POOL;
420 }
IsVeneerPool(Mode mode)421 static inline bool IsVeneerPool(Mode mode) {
422 return mode == VENEER_POOL;
423 }
IsPosition(Mode mode)424 static inline bool IsPosition(Mode mode) {
425 return mode == POSITION || mode == STATEMENT_POSITION;
426 }
IsStatementPosition(Mode mode)427 static inline bool IsStatementPosition(Mode mode) {
428 return mode == STATEMENT_POSITION;
429 }
IsExternalReference(Mode mode)430 static inline bool IsExternalReference(Mode mode) {
431 return mode == EXTERNAL_REFERENCE;
432 }
IsInternalReference(Mode mode)433 static inline bool IsInternalReference(Mode mode) {
434 return mode == INTERNAL_REFERENCE;
435 }
IsDebugBreakSlot(Mode mode)436 static inline bool IsDebugBreakSlot(Mode mode) {
437 return mode == DEBUG_BREAK_SLOT;
438 }
IsNone(Mode mode)439 static inline bool IsNone(Mode mode) {
440 return mode == NONE32 || mode == NONE64;
441 }
IsCodeAgeSequence(Mode mode)442 static inline bool IsCodeAgeSequence(Mode mode) {
443 return mode == CODE_AGE_SEQUENCE;
444 }
ModeMask(Mode mode)445 static inline int ModeMask(Mode mode) { return 1 << mode; }
446
447 // Returns true if the first RelocInfo has the same mode and raw data as the
448 // second one.
IsEqual(RelocInfo first,RelocInfo second)449 static inline bool IsEqual(RelocInfo first, RelocInfo second) {
450 return first.rmode() == second.rmode() &&
451 (first.rmode() == RelocInfo::NONE64 ?
452 first.raw_data64() == second.raw_data64() :
453 first.data() == second.data());
454 }
455
456 // Accessors
pc()457 byte* pc() const { return pc_; }
set_pc(byte * pc)458 void set_pc(byte* pc) { pc_ = pc; }
rmode()459 Mode rmode() const { return rmode_; }
data()460 intptr_t data() const { return data_; }
data64()461 double data64() const { return data64_; }
raw_data64()462 uint64_t raw_data64() { return bit_cast<uint64_t>(data64_); }
host()463 Code* host() const { return host_; }
set_host(Code * host)464 void set_host(Code* host) { host_ = host; }
465
466 // Apply a relocation by delta bytes
467 INLINE(void apply(intptr_t delta,
468 ICacheFlushMode icache_flush_mode =
469 FLUSH_ICACHE_IF_NEEDED));
470
471 // Is the pointer this relocation info refers to coded like a plain pointer
472 // or is it strange in some way (e.g. relative or patched into a series of
473 // instructions).
474 bool IsCodedSpecially();
475
476 // If true, the pointer this relocation info refers to is an entry in the
477 // constant pool, otherwise the pointer is embedded in the instruction stream.
478 bool IsInConstantPool();
479
480 // Read/modify the code target in the branch/call instruction
481 // this relocation applies to;
482 // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
483 INLINE(Address target_address());
484 INLINE(void set_target_address(Address target,
485 WriteBarrierMode write_barrier_mode =
486 UPDATE_WRITE_BARRIER,
487 ICacheFlushMode icache_flush_mode =
488 FLUSH_ICACHE_IF_NEEDED));
489 INLINE(Object* target_object());
490 INLINE(Handle<Object> target_object_handle(Assembler* origin));
491 INLINE(void set_target_object(Object* target,
492 WriteBarrierMode write_barrier_mode =
493 UPDATE_WRITE_BARRIER,
494 ICacheFlushMode icache_flush_mode =
495 FLUSH_ICACHE_IF_NEEDED));
496 INLINE(Address target_runtime_entry(Assembler* origin));
497 INLINE(void set_target_runtime_entry(Address target,
498 WriteBarrierMode write_barrier_mode =
499 UPDATE_WRITE_BARRIER,
500 ICacheFlushMode icache_flush_mode =
501 FLUSH_ICACHE_IF_NEEDED));
502 INLINE(Cell* target_cell());
503 INLINE(Handle<Cell> target_cell_handle());
504 INLINE(void set_target_cell(Cell* cell,
505 WriteBarrierMode write_barrier_mode =
506 UPDATE_WRITE_BARRIER,
507 ICacheFlushMode icache_flush_mode =
508 FLUSH_ICACHE_IF_NEEDED));
509 INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
510 INLINE(Code* code_age_stub());
511 INLINE(void set_code_age_stub(Code* stub,
512 ICacheFlushMode icache_flush_mode =
513 FLUSH_ICACHE_IF_NEEDED));
514
515 // Returns the address of the constant pool entry where the target address
516 // is held. This should only be called if IsInConstantPool returns true.
517 INLINE(Address constant_pool_entry_address());
518
519 // Read the address of the word containing the target_address in an
520 // instruction stream. What this means exactly is architecture-independent.
521 // The only architecture-independent user of this function is the serializer.
522 // The serializer uses it to find out how many raw bytes of instruction to
523 // output before the next target. Architecture-independent code shouldn't
524 // dereference the pointer it gets back from this.
525 INLINE(Address target_address_address());
526
527 // This indicates how much space a target takes up when deserializing a code
528 // stream. For most architectures this is just the size of a pointer. For
529 // an instruction like movw/movt where the target bits are mixed into the
530 // instruction bits the size of the target will be zero, indicating that the
531 // serializer should not step forwards in memory after a target is resolved
532 // and written. In this case the target_address_address function above
533 // should return the end of the instructions to be patched, allowing the
534 // deserializer to deserialize the instructions as raw bytes and put them in
535 // place, ready to be patched with the target.
536 INLINE(int target_address_size());
537
538 // Read/modify the reference in the instruction this relocation
539 // applies to; can only be called if rmode_ is external_reference
540 INLINE(Address target_reference());
541
542 // Read/modify the address of a call instruction. This is used to relocate
543 // the break points where straight-line code is patched with a call
544 // instruction.
545 INLINE(Address call_address());
546 INLINE(void set_call_address(Address target));
547 INLINE(Object* call_object());
548 INLINE(void set_call_object(Object* target));
549 INLINE(Object** call_object_address());
550
551 // Wipe out a relocation to a fixed value, used for making snapshots
552 // reproducible.
553 INLINE(void WipeOut());
554
555 template<typename StaticVisitor> inline void Visit(Heap* heap);
556 inline void Visit(Isolate* isolate, ObjectVisitor* v);
557
558 // Patch the code with some other code.
559 void PatchCode(byte* instructions, int instruction_count);
560
561 // Patch the code with a call.
562 void PatchCodeWithCall(Address target, int guard_bytes);
563
564 // Check whether this return sequence has been patched
565 // with a call to the debugger.
566 INLINE(bool IsPatchedReturnSequence());
567
568 // Check whether this debug break slot has been patched with a call to the
569 // debugger.
570 INLINE(bool IsPatchedDebugBreakSlotSequence());
571
572 #ifdef DEBUG
573 // Check whether the given code contains relocation information that
574 // either is position-relative or movable by the garbage collector.
575 static bool RequiresRelocation(const CodeDesc& desc);
576 #endif
577
578 #ifdef ENABLE_DISASSEMBLER
579 // Printing
580 static const char* RelocModeName(Mode rmode);
581 void Print(Isolate* isolate, OStream& os); // NOLINT
582 #endif // ENABLE_DISASSEMBLER
583 #ifdef VERIFY_HEAP
584 void Verify(Isolate* isolate);
585 #endif
586
587 static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
588 static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
589 static const int kDataMask =
590 (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
591 static const int kApplyMask; // Modes affected by apply. Depends on arch.
592
593 private:
594 // On ARM, note that pc_ is the address of the constant pool entry
595 // to be relocated and not the address of the instruction
596 // referencing the constant pool entry (except when rmode_ ==
597 // comment).
598 byte* pc_;
599 Mode rmode_;
600 union {
601 intptr_t data_;
602 double data64_;
603 };
604 Code* host_;
605 // External-reference pointers are also split across instruction-pairs
606 // on some platforms, but are accessed via indirect pointers. This location
607 // provides a place for that pointer to exist naturally. Its address
608 // is returned by RelocInfo::target_reference_address().
609 Address reconstructed_adr_ptr_;
610 friend class RelocIterator;
611 };
612
613
614 // RelocInfoWriter serializes a stream of relocation info. It writes towards
615 // lower addresses.
616 class RelocInfoWriter BASE_EMBEDDED {
617 public:
RelocInfoWriter()618 RelocInfoWriter() : pos_(NULL),
619 last_pc_(NULL),
620 last_id_(0),
621 last_position_(0) {}
RelocInfoWriter(byte * pos,byte * pc)622 RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
623 last_pc_(pc),
624 last_id_(0),
625 last_position_(0) {}
626
pos()627 byte* pos() const { return pos_; }
last_pc()628 byte* last_pc() const { return last_pc_; }
629
630 void Write(const RelocInfo* rinfo);
631
632 // Update the state of the stream after reloc info buffer
633 // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)634 void Reposition(byte* pos, byte* pc) {
635 pos_ = pos;
636 last_pc_ = pc;
637 }
638
639 // Max size (bytes) of a written RelocInfo. Longest encoding is
640 // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
641 // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
642 // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
643 // Here we use the maximum of the two.
644 static const int kMaxSize = 16;
645
646 private:
647 inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
648 inline void WriteTaggedPC(uint32_t pc_delta, int tag);
649 inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
650 inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
651 inline void WriteExtraTaggedPoolData(int data, int pool_type);
652 inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
653 inline void WriteTaggedData(intptr_t data_delta, int tag);
654 inline void WriteExtraTag(int extra_tag, int top_tag);
655
656 byte* pos_;
657 byte* last_pc_;
658 int last_id_;
659 int last_position_;
660 DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
661 };
662
663
664 // A RelocIterator iterates over relocation information.
665 // Typical use:
666 //
667 // for (RelocIterator it(code); !it.done(); it.next()) {
668 // // do something with it.rinfo() here
669 // }
670 //
671 // A mask can be specified to skip unwanted modes.
672 class RelocIterator: public Malloced {
673 public:
674 // Create a new iterator positioned at
675 // the beginning of the reloc info.
676 // Relocation information with mode k is included in the
677 // iteration iff bit k of mode_mask is set.
678 explicit RelocIterator(Code* code, int mode_mask = -1);
679 explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
680
681 // Iteration
done()682 bool done() const { return done_; }
683 void next();
684
685 // Return pointer valid until next next().
rinfo()686 RelocInfo* rinfo() {
687 DCHECK(!done());
688 return &rinfo_;
689 }
690
691 private:
692 // Advance* moves the position before/after reading.
693 // *Read* reads from current byte(s) into rinfo_.
694 // *Get* just reads and returns info on current byte.
695 void Advance(int bytes = 1) { pos_ -= bytes; }
696 int AdvanceGetTag();
697 int GetExtraTag();
698 int GetTopTag();
699 void ReadTaggedPC();
700 void AdvanceReadPC();
701 void AdvanceReadId();
702 void AdvanceReadPoolData();
703 void AdvanceReadPosition();
704 void AdvanceReadData();
705 void AdvanceReadVariableLengthPCJump();
706 int GetLocatableTypeTag();
707 void ReadTaggedId();
708 void ReadTaggedPosition();
709
710 // If the given mode is wanted, set it in rinfo_ and return true.
711 // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)712 bool SetMode(RelocInfo::Mode mode) {
713 return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
714 }
715
716 byte* pos_;
717 byte* end_;
718 byte* code_age_sequence_;
719 RelocInfo rinfo_;
720 bool done_;
721 int mode_mask_;
722 int last_id_;
723 int last_position_;
724 DISALLOW_COPY_AND_ASSIGN(RelocIterator);
725 };
726
727
728 //------------------------------------------------------------------------------
729 // External function
730
731 //----------------------------------------------------------------------------
732 class IC_Utility;
733 class SCTableReference;
734 class Debug_Address;
735
736
737 // An ExternalReference represents a C++ address used in the generated
738 // code. All references to C++ functions and variables must be encapsulated in
739 // an ExternalReference instance. This is done in order to track the origin of
740 // all external references in the code so that they can be bound to the correct
741 // addresses when deserializing a heap.
742 class ExternalReference BASE_EMBEDDED {
743 public:
744 // Used in the simulator to support different native api calls.
745 enum Type {
746 // Builtin call.
747 // Object* f(v8::internal::Arguments).
748 BUILTIN_CALL, // default
749
750 // Builtin that takes float arguments and returns an int.
751 // int f(double, double).
752 BUILTIN_COMPARE_CALL,
753
754 // Builtin call that returns floating point.
755 // double f(double, double).
756 BUILTIN_FP_FP_CALL,
757
758 // Builtin call that returns floating point.
759 // double f(double).
760 BUILTIN_FP_CALL,
761
762 // Builtin call that returns floating point.
763 // double f(double, int).
764 BUILTIN_FP_INT_CALL,
765
766 // Direct call to API function callback.
767 // void f(v8::FunctionCallbackInfo&)
768 DIRECT_API_CALL,
769
770 // Call to function callback via InvokeFunctionCallback.
771 // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
772 PROFILING_API_CALL,
773
774 // Direct call to accessor getter callback.
775 // void f(Local<Name> property, PropertyCallbackInfo& info)
776 DIRECT_GETTER_CALL,
777
778 // Call to accessor getter callback via InvokeAccessorGetterCallback.
779 // void f(Local<Name> property, PropertyCallbackInfo& info,
780 // AccessorNameGetterCallback callback)
781 PROFILING_GETTER_CALL
782 };
783
784 static void SetUp();
785 static void InitializeMathExpData();
786 static void TearDownMathExpData();
787
788 typedef void* ExternalReferenceRedirector(void* original, Type type);
789
ExternalReference()790 ExternalReference() : address_(NULL) {}
791
792 ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
793
794 ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
795
796 ExternalReference(Builtins::Name name, Isolate* isolate);
797
798 ExternalReference(Runtime::FunctionId id, Isolate* isolate);
799
800 ExternalReference(const Runtime::Function* f, Isolate* isolate);
801
802 ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
803
804 explicit ExternalReference(StatsCounter* counter);
805
806 ExternalReference(Isolate::AddressId id, Isolate* isolate);
807
808 explicit ExternalReference(const SCTableReference& table_ref);
809
810 // Isolate as an external reference.
811 static ExternalReference isolate_address(Isolate* isolate);
812
813 // One-of-a-kind references. These references are not part of a general
814 // pattern. This means that they have to be added to the
815 // ExternalReferenceTable in serialize.cc manually.
816
817 static ExternalReference incremental_marking_record_write_function(
818 Isolate* isolate);
819 static ExternalReference store_buffer_overflow_function(
820 Isolate* isolate);
821 static ExternalReference flush_icache_function(Isolate* isolate);
822 static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
823
824 static ExternalReference get_date_field_function(Isolate* isolate);
825 static ExternalReference date_cache_stamp(Isolate* isolate);
826
827 static ExternalReference get_make_code_young_function(Isolate* isolate);
828 static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
829
830 // Deoptimization support.
831 static ExternalReference new_deoptimizer_function(Isolate* isolate);
832 static ExternalReference compute_output_frames_function(Isolate* isolate);
833
834 // Log support.
835 static ExternalReference log_enter_external_function(Isolate* isolate);
836 static ExternalReference log_leave_external_function(Isolate* isolate);
837
838 // Static data in the keyed lookup cache.
839 static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
840 static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
841
842 // Static variable Heap::roots_array_start()
843 static ExternalReference roots_array_start(Isolate* isolate);
844
845 // Static variable Heap::allocation_sites_list_address()
846 static ExternalReference allocation_sites_list_address(Isolate* isolate);
847
848 // Static variable StackGuard::address_of_jslimit()
849 static ExternalReference address_of_stack_limit(Isolate* isolate);
850
851 // Static variable StackGuard::address_of_real_jslimit()
852 static ExternalReference address_of_real_stack_limit(Isolate* isolate);
853
854 // Static variable RegExpStack::limit_address()
855 static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
856
857 // Static variables for RegExp.
858 static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
859 static ExternalReference address_of_regexp_stack_memory_address(
860 Isolate* isolate);
861 static ExternalReference address_of_regexp_stack_memory_size(
862 Isolate* isolate);
863
864 // Static variable Heap::NewSpaceStart()
865 static ExternalReference new_space_start(Isolate* isolate);
866 static ExternalReference new_space_mask(Isolate* isolate);
867
868 // Write barrier.
869 static ExternalReference store_buffer_top(Isolate* isolate);
870
871 // Used for fast allocation in generated code.
872 static ExternalReference new_space_allocation_top_address(Isolate* isolate);
873 static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
874 static ExternalReference old_pointer_space_allocation_top_address(
875 Isolate* isolate);
876 static ExternalReference old_pointer_space_allocation_limit_address(
877 Isolate* isolate);
878 static ExternalReference old_data_space_allocation_top_address(
879 Isolate* isolate);
880 static ExternalReference old_data_space_allocation_limit_address(
881 Isolate* isolate);
882
883 static ExternalReference mod_two_doubles_operation(Isolate* isolate);
884 static ExternalReference power_double_double_function(Isolate* isolate);
885 static ExternalReference power_double_int_function(Isolate* isolate);
886
887 static ExternalReference handle_scope_next_address(Isolate* isolate);
888 static ExternalReference handle_scope_limit_address(Isolate* isolate);
889 static ExternalReference handle_scope_level_address(Isolate* isolate);
890
891 static ExternalReference scheduled_exception_address(Isolate* isolate);
892 static ExternalReference address_of_pending_message_obj(Isolate* isolate);
893 static ExternalReference address_of_has_pending_message(Isolate* isolate);
894 static ExternalReference address_of_pending_message_script(Isolate* isolate);
895
896 // Static variables containing common double constants.
897 static ExternalReference address_of_min_int();
898 static ExternalReference address_of_one_half();
899 static ExternalReference address_of_minus_one_half();
900 static ExternalReference address_of_negative_infinity();
901 static ExternalReference address_of_canonical_non_hole_nan();
902 static ExternalReference address_of_the_hole_nan();
903 static ExternalReference address_of_uint32_bias();
904
905 static ExternalReference math_log_double_function(Isolate* isolate);
906
907 static ExternalReference math_exp_constants(int constant_index);
908 static ExternalReference math_exp_log_table();
909
910 static ExternalReference page_flags(Page* page);
911
912 static ExternalReference ForDeoptEntry(Address entry);
913
914 static ExternalReference cpu_features();
915
916 static ExternalReference debug_is_active_address(Isolate* isolate);
917 static ExternalReference debug_after_break_target_address(Isolate* isolate);
918 static ExternalReference debug_restarter_frame_function_pointer_address(
919 Isolate* isolate);
920
921 static ExternalReference is_profiling_address(Isolate* isolate);
922 static ExternalReference invoke_function_callback(Isolate* isolate);
923 static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
924
address()925 Address address() const { return reinterpret_cast<Address>(address_); }
926
927 // Function Debug::Break()
928 static ExternalReference debug_break(Isolate* isolate);
929
930 // Used to check if single stepping is enabled in generated code.
931 static ExternalReference debug_step_in_fp_address(Isolate* isolate);
932
933 #ifndef V8_INTERPRETED_REGEXP
934 // C functions called from RegExp generated code.
935
936 // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
937 static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
938
939 // Function RegExpMacroAssembler*::CheckStackGuardState()
940 static ExternalReference re_check_stack_guard_state(Isolate* isolate);
941
942 // Function NativeRegExpMacroAssembler::GrowStack()
943 static ExternalReference re_grow_stack(Isolate* isolate);
944
945 // byte NativeRegExpMacroAssembler::word_character_bitmap
946 static ExternalReference re_word_character_map();
947
948 #endif
949
950 // This lets you register a function that rewrites all external references.
951 // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)952 static void set_redirector(Isolate* isolate,
953 ExternalReferenceRedirector* redirector) {
954 // We can't stack them.
955 DCHECK(isolate->external_reference_redirector() == NULL);
956 isolate->set_external_reference_redirector(
957 reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
958 }
959
960 static ExternalReference stress_deopt_count(Isolate* isolate);
961
962 bool operator==(const ExternalReference& other) const {
963 return address_ == other.address_;
964 }
965
966 bool operator!=(const ExternalReference& other) const {
967 return !(*this == other);
968 }
969
970 private:
ExternalReference(void * address)971 explicit ExternalReference(void* address)
972 : address_(address) {}
973
974 static void* Redirect(Isolate* isolate,
975 Address address_arg,
976 Type type = ExternalReference::BUILTIN_CALL) {
977 ExternalReferenceRedirector* redirector =
978 reinterpret_cast<ExternalReferenceRedirector*>(
979 isolate->external_reference_redirector());
980 void* address = reinterpret_cast<void*>(address_arg);
981 void* answer = (redirector == NULL) ?
982 address :
983 (*redirector)(address, type);
984 return answer;
985 }
986
987 void* address_;
988 };
989
990
991 // -----------------------------------------------------------------------------
992 // Position recording support
993
994 struct PositionState {
PositionStatePositionState995 PositionState() : current_position(RelocInfo::kNoPosition),
996 written_position(RelocInfo::kNoPosition),
997 current_statement_position(RelocInfo::kNoPosition),
998 written_statement_position(RelocInfo::kNoPosition) {}
999
1000 int current_position;
1001 int written_position;
1002
1003 int current_statement_position;
1004 int written_statement_position;
1005 };
1006
1007
1008 class PositionsRecorder BASE_EMBEDDED {
1009 public:
PositionsRecorder(Assembler * assembler)1010 explicit PositionsRecorder(Assembler* assembler)
1011 : assembler_(assembler) {
1012 jit_handler_data_ = NULL;
1013 }
1014
AttachJITHandlerData(void * user_data)1015 void AttachJITHandlerData(void* user_data) {
1016 jit_handler_data_ = user_data;
1017 }
1018
DetachJITHandlerData()1019 void* DetachJITHandlerData() {
1020 void* old_data = jit_handler_data_;
1021 jit_handler_data_ = NULL;
1022 return old_data;
1023 }
1024 // Set current position to pos.
1025 void RecordPosition(int pos);
1026
1027 // Set current statement position to pos.
1028 void RecordStatementPosition(int pos);
1029
1030 // Write recorded positions to relocation information.
1031 bool WriteRecordedPositions();
1032
current_position()1033 int current_position() const { return state_.current_position; }
1034
current_statement_position()1035 int current_statement_position() const {
1036 return state_.current_statement_position;
1037 }
1038
1039 private:
1040 Assembler* assembler_;
1041 PositionState state_;
1042
1043 // Currently jit_handler_data_ is used to store JITHandler-specific data
1044 // over the lifetime of a PositionsRecorder
1045 void* jit_handler_data_;
1046 friend class PreservePositionScope;
1047
1048 DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
1049 };
1050
1051
1052 class PreservePositionScope BASE_EMBEDDED {
1053 public:
PreservePositionScope(PositionsRecorder * positions_recorder)1054 explicit PreservePositionScope(PositionsRecorder* positions_recorder)
1055 : positions_recorder_(positions_recorder),
1056 saved_state_(positions_recorder->state_) {}
1057
~PreservePositionScope()1058 ~PreservePositionScope() {
1059 positions_recorder_->state_ = saved_state_;
1060 }
1061
1062 private:
1063 PositionsRecorder* positions_recorder_;
1064 const PositionState saved_state_;
1065
1066 DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
1067 };
1068
1069
1070 // -----------------------------------------------------------------------------
1071 // Utility functions
1072
NumberOfBitsSet(uint32_t x)1073 inline int NumberOfBitsSet(uint32_t x) {
1074 unsigned int num_bits_set;
1075 for (num_bits_set = 0; x; x >>= 1) {
1076 num_bits_set += x & 1;
1077 }
1078 return num_bits_set;
1079 }
1080
1081 bool EvalComparison(Token::Value op, double op1, double op2);
1082
1083 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1084 double power_helper(double x, double y);
1085 double power_double_int(double x, int y);
1086 double power_double_double(double x, double y);
1087
1088 // Helper class for generating code or data associated with the code
1089 // right after a call instruction. As an example this can be used to
1090 // generate safepoint data after calls for crankshaft.
1091 class CallWrapper {
1092 public:
CallWrapper()1093 CallWrapper() { }
~CallWrapper()1094 virtual ~CallWrapper() { }
1095 // Called just before emitting a call. Argument is the size of the generated
1096 // call code.
1097 virtual void BeforeCall(int call_size) const = 0;
1098 // Called just after emitting a call, i.e., at the return site for the call.
1099 virtual void AfterCall() const = 0;
1100 };
1101
1102 class NullCallWrapper : public CallWrapper {
1103 public:
NullCallWrapper()1104 NullCallWrapper() { }
~NullCallWrapper()1105 virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1106 virtual void BeforeCall(int call_size) const { }
AfterCall()1107 virtual void AfterCall() const { }
1108 };
1109
1110
1111 } } // namespace v8::internal
1112
1113 #endif // V8_ASSEMBLER_H_
1114