1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37 
38 #include "src/v8.h"
39 
40 #include "src/allocation.h"
41 #include "src/builtins.h"
42 #include "src/gdb-jit.h"
43 #include "src/isolate.h"
44 #include "src/runtime.h"
45 #include "src/token.h"
46 
47 namespace v8 {
48 
49 class ApiFunction;
50 
51 namespace internal {
52 
53 class StatsCounter;
54 // -----------------------------------------------------------------------------
55 // Platform independent assembler base class.
56 
57 class AssemblerBase: public Malloced {
58  public:
59   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
60   virtual ~AssemblerBase();
61 
isolate()62   Isolate* isolate() const { return isolate_; }
jit_cookie()63   int jit_cookie() const { return jit_cookie_; }
64 
emit_debug_code()65   bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)66   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
67 
serializer_enabled()68   bool serializer_enabled() const { return serializer_enabled_; }
enable_serializer()69   void enable_serializer() { serializer_enabled_ = true; }
70 
predictable_code_size()71   bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)72   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
73 
enabled_cpu_features()74   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)75   void set_enabled_cpu_features(uint64_t features) {
76     enabled_cpu_features_ = features;
77   }
IsEnabled(CpuFeature f)78   bool IsEnabled(CpuFeature f) {
79     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
80   }
81 
82   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
83   // cross-snapshotting.
QuietNaN(HeapObject * nan)84   static void QuietNaN(HeapObject* nan) { }
85 
pc_offset()86   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
87 
88   // This function is called when code generation is aborted, so that
89   // the assembler could clean up internal data structures.
AbortedCodeGeneration()90   virtual void AbortedCodeGeneration() { }
91 
92   static const int kMinimalBufferSize = 4*KB;
93 
94  protected:
95   // The buffer into which code and relocation info are generated. It could
96   // either be owned by the assembler or be provided externally.
97   byte* buffer_;
98   int buffer_size_;
99   bool own_buffer_;
100 
101   // The program counter, which points into the buffer above and moves forward.
102   byte* pc_;
103 
104  private:
105   Isolate* isolate_;
106   int jit_cookie_;
107   uint64_t enabled_cpu_features_;
108   bool emit_debug_code_;
109   bool predictable_code_size_;
110   bool serializer_enabled_;
111 };
112 
113 
114 // Avoids emitting debug code during the lifetime of this scope object.
115 class DontEmitDebugCodeScope BASE_EMBEDDED {
116  public:
DontEmitDebugCodeScope(AssemblerBase * assembler)117   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
118       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
119     assembler_->set_emit_debug_code(false);
120   }
~DontEmitDebugCodeScope()121   ~DontEmitDebugCodeScope() {
122     assembler_->set_emit_debug_code(old_value_);
123   }
124  private:
125   AssemblerBase* assembler_;
126   bool old_value_;
127 };
128 
129 
130 // Avoids using instructions that vary in size in unpredictable ways between the
131 // snapshot and the running VM.
132 class PredictableCodeSizeScope {
133  public:
134   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
135   ~PredictableCodeSizeScope();
136 
137  private:
138   AssemblerBase* assembler_;
139   int expected_size_;
140   int start_offset_;
141   bool old_value_;
142 };
143 
144 
145 // Enable a specified feature within a scope.
146 class CpuFeatureScope BASE_EMBEDDED {
147  public:
148 #ifdef DEBUG
149   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
150   ~CpuFeatureScope();
151 
152  private:
153   AssemblerBase* assembler_;
154   uint64_t old_enabled_;
155 #else
156   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
157 #endif
158 };
159 
160 
161 // CpuFeatures keeps track of which features are supported by the target CPU.
162 // Supported features must be enabled by a CpuFeatureScope before use.
163 // Example:
164 //   if (assembler->IsSupported(SSE3)) {
165 //     CpuFeatureScope fscope(assembler, SSE3);
166 //     // Generate code containing SSE3 instructions.
167 //   } else {
168 //     // Generate alternative code.
169 //   }
170 class CpuFeatures : public AllStatic {
171  public:
Probe(bool cross_compile)172   static void Probe(bool cross_compile) {
173     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
174     if (initialized_) return;
175     initialized_ = true;
176     ProbeImpl(cross_compile);
177   }
178 
SupportedFeatures()179   static unsigned SupportedFeatures() {
180     Probe(false);
181     return supported_;
182   }
183 
IsSupported(CpuFeature f)184   static bool IsSupported(CpuFeature f) {
185     return (supported_ & (1u << f)) != 0;
186   }
187 
188   static inline bool SupportsCrankshaft();
189 
cache_line_size()190   static inline unsigned cache_line_size() {
191     DCHECK(cache_line_size_ != 0);
192     return cache_line_size_;
193   }
194 
195   static void PrintTarget();
196   static void PrintFeatures();
197 
198   // Flush instruction cache.
199   static void FlushICache(void* start, size_t size);
200 
201  private:
202   // Platform-dependent implementation.
203   static void ProbeImpl(bool cross_compile);
204 
205   static unsigned supported_;
206   static unsigned cache_line_size_;
207   static bool initialized_;
208   friend class ExternalReference;
209   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
210 };
211 
212 
213 // -----------------------------------------------------------------------------
214 // Labels represent pc locations; they are typically jump or call targets.
215 // After declaration, a label can be freely used to denote known or (yet)
216 // unknown pc location. Assembler::bind() is used to bind a label to the
217 // current pc. A label can be bound only once.
218 
219 class Label BASE_EMBEDDED {
220  public:
221   enum Distance {
222     kNear, kFar
223   };
224 
INLINE(Label ())225   INLINE(Label()) {
226     Unuse();
227     UnuseNear();
228   }
229 
INLINE(~Label ())230   INLINE(~Label()) {
231     DCHECK(!is_linked());
232     DCHECK(!is_near_linked());
233   }
234 
INLINE(void Unuse ())235   INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())236   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
237 
INLINE(bool is_bound ()const)238   INLINE(bool is_bound() const) { return pos_ <  0; }
INLINE(bool is_unused ()const)239   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)240   INLINE(bool is_linked() const) { return pos_ >  0; }
INLINE(bool is_near_linked ()const)241   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
242 
243   // Returns the position of bound or linked labels. Cannot be used
244   // for unused labels.
245   int pos() const;
near_link_pos()246   int near_link_pos() const { return near_link_pos_ - 1; }
247 
248  private:
249   // pos_ encodes both the binding state (via its sign)
250   // and the binding position (via its value) of a label.
251   //
252   // pos_ <  0  bound label, pos() returns the jump target position
253   // pos_ == 0  unused label
254   // pos_ >  0  linked label, pos() returns the last reference position
255   int pos_;
256 
257   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
258   int near_link_pos_;
259 
bind_to(int pos)260   void bind_to(int pos)  {
261     pos_ = -pos - 1;
262     DCHECK(is_bound());
263   }
264   void link_to(int pos, Distance distance = kFar) {
265     if (distance == kNear) {
266       near_link_pos_ = pos + 1;
267       DCHECK(is_near_linked());
268     } else {
269       pos_ = pos + 1;
270       DCHECK(is_linked());
271     }
272   }
273 
274   friend class Assembler;
275   friend class Displacement;
276   friend class RegExpMacroAssemblerIrregexp;
277 
278 #if V8_TARGET_ARCH_ARM64
279   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
280   // branches to distant targets. Copying labels would confuse the Assembler.
281   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
282 #endif
283 };
284 
285 
286 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
287 
288 // Specifies whether to perform icache flush operations on RelocInfo updates.
289 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
290 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
291 // skipped (only use this if you will flush the icache manually before it is
292 // executed).
293 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
294 
295 // -----------------------------------------------------------------------------
296 // Relocation information
297 
298 
299 // Relocation information consists of the address (pc) of the datum
300 // to which the relocation information applies, the relocation mode
301 // (rmode), and an optional data field. The relocation mode may be
302 // "descriptive" and not indicate a need for relocation, but simply
303 // describe a property of the datum. Such rmodes are useful for GC
304 // and nice disassembly output.
305 
306 class RelocInfo {
307  public:
308   // The constant kNoPosition is used with the collecting of source positions
309   // in the relocation information. Two types of source positions are collected
310   // "position" (RelocMode position) and "statement position" (RelocMode
311   // statement_position). The "position" is collected at places in the source
312   // code which are of interest when making stack traces to pin-point the source
313   // location of a stack frame as close as possible. The "statement position" is
314   // collected at the beginning at each statement, and is used to indicate
315   // possible break locations. kNoPosition is used to indicate an
316   // invalid/uninitialized position value.
317   static const int kNoPosition = -1;
318 
319   // This string is used to add padding comments to the reloc info in cases
320   // where we are not sure to have enough space for patching in during
321   // lazy deoptimization. This is the case if we have indirect calls for which
322   // we do not normally record relocation info.
323   static const char* const kFillerCommentString;
324 
325   // The minimum size of a comment is equal to three bytes for the extra tagged
326   // pc + the tag for the data, and kPointerSize for the actual pointer to the
327   // comment.
328   static const int kMinRelocCommentSize = 3 + kPointerSize;
329 
330   // The maximum size for a call instruction including pc-jump.
331   static const int kMaxCallSize = 6;
332 
333   // The maximum pc delta that will use the short encoding.
334   static const int kMaxSmallPCDelta;
335 
336   enum Mode {
337     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
338     CODE_TARGET,  // Code target which is not any of the above.
339     CODE_TARGET_WITH_ID,
340     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
341     DEBUG_BREAK,  // Code target for the debugger statement.
342     EMBEDDED_OBJECT,
343     CELL,
344 
345     // Everything after runtime_entry (inclusive) is not GC'ed.
346     RUNTIME_ENTRY,
347     JS_RETURN,  // Marks start of the ExitJSFrame code.
348     COMMENT,
349     POSITION,  // See comment for kNoPosition above.
350     STATEMENT_POSITION,  // See comment for kNoPosition above.
351     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
352     EXTERNAL_REFERENCE,  // The address of an external C++ function.
353     INTERNAL_REFERENCE,  // An address inside the same function.
354 
355     // Marks constant and veneer pools. Only used on ARM and ARM64.
356     // They use a custom noncompact encoding.
357     CONST_POOL,
358     VENEER_POOL,
359 
360     // add more as needed
361     // Pseudo-types
362     NUMBER_OF_MODES,  // There are at most 15 modes with noncompact encoding.
363     NONE32,  // never recorded 32-bit value
364     NONE64,  // never recorded 64-bit value
365     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
366                         // code aging.
367     FIRST_REAL_RELOC_MODE = CODE_TARGET,
368     LAST_REAL_RELOC_MODE = VENEER_POOL,
369     FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
370     LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
371     LAST_CODE_ENUM = DEBUG_BREAK,
372     LAST_GCED_ENUM = CELL,
373     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
374     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
375     LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
376   };
377 
RelocInfo()378   RelocInfo() {}
379 
RelocInfo(byte * pc,Mode rmode,intptr_t data,Code * host)380   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
381       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
382   }
RelocInfo(byte * pc,double data64)383   RelocInfo(byte* pc, double data64)
384       : pc_(pc), rmode_(NONE64), data64_(data64), host_(NULL) {
385   }
386 
IsRealRelocMode(Mode mode)387   static inline bool IsRealRelocMode(Mode mode) {
388     return mode >= FIRST_REAL_RELOC_MODE &&
389         mode <= LAST_REAL_RELOC_MODE;
390   }
IsPseudoRelocMode(Mode mode)391   static inline bool IsPseudoRelocMode(Mode mode) {
392     DCHECK(!IsRealRelocMode(mode));
393     return mode >= FIRST_PSEUDO_RELOC_MODE &&
394         mode <= LAST_PSEUDO_RELOC_MODE;
395   }
IsConstructCall(Mode mode)396   static inline bool IsConstructCall(Mode mode) {
397     return mode == CONSTRUCT_CALL;
398   }
IsCodeTarget(Mode mode)399   static inline bool IsCodeTarget(Mode mode) {
400     return mode <= LAST_CODE_ENUM;
401   }
IsEmbeddedObject(Mode mode)402   static inline bool IsEmbeddedObject(Mode mode) {
403     return mode == EMBEDDED_OBJECT;
404   }
IsRuntimeEntry(Mode mode)405   static inline bool IsRuntimeEntry(Mode mode) {
406     return mode == RUNTIME_ENTRY;
407   }
408   // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)409   static inline bool IsGCRelocMode(Mode mode) {
410     return mode <= LAST_GCED_ENUM;
411   }
IsJSReturn(Mode mode)412   static inline bool IsJSReturn(Mode mode) {
413     return mode == JS_RETURN;
414   }
IsComment(Mode mode)415   static inline bool IsComment(Mode mode) {
416     return mode == COMMENT;
417   }
IsConstPool(Mode mode)418   static inline bool IsConstPool(Mode mode) {
419     return mode == CONST_POOL;
420   }
IsVeneerPool(Mode mode)421   static inline bool IsVeneerPool(Mode mode) {
422     return mode == VENEER_POOL;
423   }
IsPosition(Mode mode)424   static inline bool IsPosition(Mode mode) {
425     return mode == POSITION || mode == STATEMENT_POSITION;
426   }
IsStatementPosition(Mode mode)427   static inline bool IsStatementPosition(Mode mode) {
428     return mode == STATEMENT_POSITION;
429   }
IsExternalReference(Mode mode)430   static inline bool IsExternalReference(Mode mode) {
431     return mode == EXTERNAL_REFERENCE;
432   }
IsInternalReference(Mode mode)433   static inline bool IsInternalReference(Mode mode) {
434     return mode == INTERNAL_REFERENCE;
435   }
IsDebugBreakSlot(Mode mode)436   static inline bool IsDebugBreakSlot(Mode mode) {
437     return mode == DEBUG_BREAK_SLOT;
438   }
IsNone(Mode mode)439   static inline bool IsNone(Mode mode) {
440     return mode == NONE32 || mode == NONE64;
441   }
IsCodeAgeSequence(Mode mode)442   static inline bool IsCodeAgeSequence(Mode mode) {
443     return mode == CODE_AGE_SEQUENCE;
444   }
ModeMask(Mode mode)445   static inline int ModeMask(Mode mode) { return 1 << mode; }
446 
447   // Returns true if the first RelocInfo has the same mode and raw data as the
448   // second one.
IsEqual(RelocInfo first,RelocInfo second)449   static inline bool IsEqual(RelocInfo first, RelocInfo second) {
450     return first.rmode() == second.rmode() &&
451            (first.rmode() == RelocInfo::NONE64 ?
452               first.raw_data64() == second.raw_data64() :
453               first.data() == second.data());
454   }
455 
456   // Accessors
pc()457   byte* pc() const { return pc_; }
set_pc(byte * pc)458   void set_pc(byte* pc) { pc_ = pc; }
rmode()459   Mode rmode() const {  return rmode_; }
data()460   intptr_t data() const { return data_; }
data64()461   double data64() const { return data64_; }
raw_data64()462   uint64_t raw_data64() { return bit_cast<uint64_t>(data64_); }
host()463   Code* host() const { return host_; }
set_host(Code * host)464   void set_host(Code* host) { host_ = host; }
465 
466   // Apply a relocation by delta bytes
467   INLINE(void apply(intptr_t delta,
468                     ICacheFlushMode icache_flush_mode =
469                         FLUSH_ICACHE_IF_NEEDED));
470 
471   // Is the pointer this relocation info refers to coded like a plain pointer
472   // or is it strange in some way (e.g. relative or patched into a series of
473   // instructions).
474   bool IsCodedSpecially();
475 
476   // If true, the pointer this relocation info refers to is an entry in the
477   // constant pool, otherwise the pointer is embedded in the instruction stream.
478   bool IsInConstantPool();
479 
480   // Read/modify the code target in the branch/call instruction
481   // this relocation applies to;
482   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
483   INLINE(Address target_address());
484   INLINE(void set_target_address(Address target,
485                                  WriteBarrierMode write_barrier_mode =
486                                      UPDATE_WRITE_BARRIER,
487                                  ICacheFlushMode icache_flush_mode =
488                                      FLUSH_ICACHE_IF_NEEDED));
489   INLINE(Object* target_object());
490   INLINE(Handle<Object> target_object_handle(Assembler* origin));
491   INLINE(void set_target_object(Object* target,
492                                 WriteBarrierMode write_barrier_mode =
493                                     UPDATE_WRITE_BARRIER,
494                                 ICacheFlushMode icache_flush_mode =
495                                     FLUSH_ICACHE_IF_NEEDED));
496   INLINE(Address target_runtime_entry(Assembler* origin));
497   INLINE(void set_target_runtime_entry(Address target,
498                                        WriteBarrierMode write_barrier_mode =
499                                            UPDATE_WRITE_BARRIER,
500                                        ICacheFlushMode icache_flush_mode =
501                                            FLUSH_ICACHE_IF_NEEDED));
502   INLINE(Cell* target_cell());
503   INLINE(Handle<Cell> target_cell_handle());
504   INLINE(void set_target_cell(Cell* cell,
505                               WriteBarrierMode write_barrier_mode =
506                                   UPDATE_WRITE_BARRIER,
507                               ICacheFlushMode icache_flush_mode =
508                                   FLUSH_ICACHE_IF_NEEDED));
509   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
510   INLINE(Code* code_age_stub());
511   INLINE(void set_code_age_stub(Code* stub,
512                                 ICacheFlushMode icache_flush_mode =
513                                     FLUSH_ICACHE_IF_NEEDED));
514 
515   // Returns the address of the constant pool entry where the target address
516   // is held.  This should only be called if IsInConstantPool returns true.
517   INLINE(Address constant_pool_entry_address());
518 
519   // Read the address of the word containing the target_address in an
520   // instruction stream.  What this means exactly is architecture-independent.
521   // The only architecture-independent user of this function is the serializer.
522   // The serializer uses it to find out how many raw bytes of instruction to
523   // output before the next target.  Architecture-independent code shouldn't
524   // dereference the pointer it gets back from this.
525   INLINE(Address target_address_address());
526 
527   // This indicates how much space a target takes up when deserializing a code
528   // stream.  For most architectures this is just the size of a pointer.  For
529   // an instruction like movw/movt where the target bits are mixed into the
530   // instruction bits the size of the target will be zero, indicating that the
531   // serializer should not step forwards in memory after a target is resolved
532   // and written.  In this case the target_address_address function above
533   // should return the end of the instructions to be patched, allowing the
534   // deserializer to deserialize the instructions as raw bytes and put them in
535   // place, ready to be patched with the target.
536   INLINE(int target_address_size());
537 
538   // Read/modify the reference in the instruction this relocation
539   // applies to; can only be called if rmode_ is external_reference
540   INLINE(Address target_reference());
541 
542   // Read/modify the address of a call instruction. This is used to relocate
543   // the break points where straight-line code is patched with a call
544   // instruction.
545   INLINE(Address call_address());
546   INLINE(void set_call_address(Address target));
547   INLINE(Object* call_object());
548   INLINE(void set_call_object(Object* target));
549   INLINE(Object** call_object_address());
550 
551   // Wipe out a relocation to a fixed value, used for making snapshots
552   // reproducible.
553   INLINE(void WipeOut());
554 
555   template<typename StaticVisitor> inline void Visit(Heap* heap);
556   inline void Visit(Isolate* isolate, ObjectVisitor* v);
557 
558   // Patch the code with some other code.
559   void PatchCode(byte* instructions, int instruction_count);
560 
561   // Patch the code with a call.
562   void PatchCodeWithCall(Address target, int guard_bytes);
563 
564   // Check whether this return sequence has been patched
565   // with a call to the debugger.
566   INLINE(bool IsPatchedReturnSequence());
567 
568   // Check whether this debug break slot has been patched with a call to the
569   // debugger.
570   INLINE(bool IsPatchedDebugBreakSlotSequence());
571 
572 #ifdef DEBUG
573   // Check whether the given code contains relocation information that
574   // either is position-relative or movable by the garbage collector.
575   static bool RequiresRelocation(const CodeDesc& desc);
576 #endif
577 
578 #ifdef ENABLE_DISASSEMBLER
579   // Printing
580   static const char* RelocModeName(Mode rmode);
581   void Print(Isolate* isolate, OStream& os);  // NOLINT
582 #endif  // ENABLE_DISASSEMBLER
583 #ifdef VERIFY_HEAP
584   void Verify(Isolate* isolate);
585 #endif
586 
587   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
588   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
589   static const int kDataMask =
590       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
591   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
592 
593  private:
594   // On ARM, note that pc_ is the address of the constant pool entry
595   // to be relocated and not the address of the instruction
596   // referencing the constant pool entry (except when rmode_ ==
597   // comment).
598   byte* pc_;
599   Mode rmode_;
600   union {
601     intptr_t data_;
602     double data64_;
603   };
604   Code* host_;
605   // External-reference pointers are also split across instruction-pairs
606   // on some platforms, but are accessed via indirect pointers. This location
607   // provides a place for that pointer to exist naturally. Its address
608   // is returned by RelocInfo::target_reference_address().
609   Address reconstructed_adr_ptr_;
610   friend class RelocIterator;
611 };
612 
613 
614 // RelocInfoWriter serializes a stream of relocation info. It writes towards
615 // lower addresses.
616 class RelocInfoWriter BASE_EMBEDDED {
617  public:
RelocInfoWriter()618   RelocInfoWriter() : pos_(NULL),
619                       last_pc_(NULL),
620                       last_id_(0),
621                       last_position_(0) {}
RelocInfoWriter(byte * pos,byte * pc)622   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
623                                          last_pc_(pc),
624                                          last_id_(0),
625                                          last_position_(0) {}
626 
pos()627   byte* pos() const { return pos_; }
last_pc()628   byte* last_pc() const { return last_pc_; }
629 
630   void Write(const RelocInfo* rinfo);
631 
632   // Update the state of the stream after reloc info buffer
633   // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)634   void Reposition(byte* pos, byte* pc) {
635     pos_ = pos;
636     last_pc_ = pc;
637   }
638 
639   // Max size (bytes) of a written RelocInfo. Longest encoding is
640   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
641   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
642   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
643   // Here we use the maximum of the two.
644   static const int kMaxSize = 16;
645 
646  private:
647   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
648   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
649   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
650   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
651   inline void WriteExtraTaggedPoolData(int data, int pool_type);
652   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
653   inline void WriteTaggedData(intptr_t data_delta, int tag);
654   inline void WriteExtraTag(int extra_tag, int top_tag);
655 
656   byte* pos_;
657   byte* last_pc_;
658   int last_id_;
659   int last_position_;
660   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
661 };
662 
663 
664 // A RelocIterator iterates over relocation information.
665 // Typical use:
666 //
667 //   for (RelocIterator it(code); !it.done(); it.next()) {
668 //     // do something with it.rinfo() here
669 //   }
670 //
671 // A mask can be specified to skip unwanted modes.
672 class RelocIterator: public Malloced {
673  public:
674   // Create a new iterator positioned at
675   // the beginning of the reloc info.
676   // Relocation information with mode k is included in the
677   // iteration iff bit k of mode_mask is set.
678   explicit RelocIterator(Code* code, int mode_mask = -1);
679   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
680 
681   // Iteration
done()682   bool done() const { return done_; }
683   void next();
684 
685   // Return pointer valid until next next().
rinfo()686   RelocInfo* rinfo() {
687     DCHECK(!done());
688     return &rinfo_;
689   }
690 
691  private:
692   // Advance* moves the position before/after reading.
693   // *Read* reads from current byte(s) into rinfo_.
694   // *Get* just reads and returns info on current byte.
695   void Advance(int bytes = 1) { pos_ -= bytes; }
696   int AdvanceGetTag();
697   int GetExtraTag();
698   int GetTopTag();
699   void ReadTaggedPC();
700   void AdvanceReadPC();
701   void AdvanceReadId();
702   void AdvanceReadPoolData();
703   void AdvanceReadPosition();
704   void AdvanceReadData();
705   void AdvanceReadVariableLengthPCJump();
706   int GetLocatableTypeTag();
707   void ReadTaggedId();
708   void ReadTaggedPosition();
709 
710   // If the given mode is wanted, set it in rinfo_ and return true.
711   // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)712   bool SetMode(RelocInfo::Mode mode) {
713     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
714   }
715 
716   byte* pos_;
717   byte* end_;
718   byte* code_age_sequence_;
719   RelocInfo rinfo_;
720   bool done_;
721   int mode_mask_;
722   int last_id_;
723   int last_position_;
724   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
725 };
726 
727 
728 //------------------------------------------------------------------------------
729 // External function
730 
731 //----------------------------------------------------------------------------
732 class IC_Utility;
733 class SCTableReference;
734 class Debug_Address;
735 
736 
737 // An ExternalReference represents a C++ address used in the generated
738 // code. All references to C++ functions and variables must be encapsulated in
739 // an ExternalReference instance. This is done in order to track the origin of
740 // all external references in the code so that they can be bound to the correct
741 // addresses when deserializing a heap.
742 class ExternalReference BASE_EMBEDDED {
743  public:
744   // Used in the simulator to support different native api calls.
745   enum Type {
746     // Builtin call.
747     // Object* f(v8::internal::Arguments).
748     BUILTIN_CALL,  // default
749 
750     // Builtin that takes float arguments and returns an int.
751     // int f(double, double).
752     BUILTIN_COMPARE_CALL,
753 
754     // Builtin call that returns floating point.
755     // double f(double, double).
756     BUILTIN_FP_FP_CALL,
757 
758     // Builtin call that returns floating point.
759     // double f(double).
760     BUILTIN_FP_CALL,
761 
762     // Builtin call that returns floating point.
763     // double f(double, int).
764     BUILTIN_FP_INT_CALL,
765 
766     // Direct call to API function callback.
767     // void f(v8::FunctionCallbackInfo&)
768     DIRECT_API_CALL,
769 
770     // Call to function callback via InvokeFunctionCallback.
771     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
772     PROFILING_API_CALL,
773 
774     // Direct call to accessor getter callback.
775     // void f(Local<Name> property, PropertyCallbackInfo& info)
776     DIRECT_GETTER_CALL,
777 
778     // Call to accessor getter callback via InvokeAccessorGetterCallback.
779     // void f(Local<Name> property, PropertyCallbackInfo& info,
780     //     AccessorNameGetterCallback callback)
781     PROFILING_GETTER_CALL
782   };
783 
784   static void SetUp();
785   static void InitializeMathExpData();
786   static void TearDownMathExpData();
787 
788   typedef void* ExternalReferenceRedirector(void* original, Type type);
789 
ExternalReference()790   ExternalReference() : address_(NULL) {}
791 
792   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
793 
794   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
795 
796   ExternalReference(Builtins::Name name, Isolate* isolate);
797 
798   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
799 
800   ExternalReference(const Runtime::Function* f, Isolate* isolate);
801 
802   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
803 
804   explicit ExternalReference(StatsCounter* counter);
805 
806   ExternalReference(Isolate::AddressId id, Isolate* isolate);
807 
808   explicit ExternalReference(const SCTableReference& table_ref);
809 
810   // Isolate as an external reference.
811   static ExternalReference isolate_address(Isolate* isolate);
812 
813   // One-of-a-kind references. These references are not part of a general
814   // pattern. This means that they have to be added to the
815   // ExternalReferenceTable in serialize.cc manually.
816 
817   static ExternalReference incremental_marking_record_write_function(
818       Isolate* isolate);
819   static ExternalReference store_buffer_overflow_function(
820       Isolate* isolate);
821   static ExternalReference flush_icache_function(Isolate* isolate);
822   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
823 
824   static ExternalReference get_date_field_function(Isolate* isolate);
825   static ExternalReference date_cache_stamp(Isolate* isolate);
826 
827   static ExternalReference get_make_code_young_function(Isolate* isolate);
828   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
829 
830   // Deoptimization support.
831   static ExternalReference new_deoptimizer_function(Isolate* isolate);
832   static ExternalReference compute_output_frames_function(Isolate* isolate);
833 
834   // Log support.
835   static ExternalReference log_enter_external_function(Isolate* isolate);
836   static ExternalReference log_leave_external_function(Isolate* isolate);
837 
838   // Static data in the keyed lookup cache.
839   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
840   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
841 
842   // Static variable Heap::roots_array_start()
843   static ExternalReference roots_array_start(Isolate* isolate);
844 
845   // Static variable Heap::allocation_sites_list_address()
846   static ExternalReference allocation_sites_list_address(Isolate* isolate);
847 
848   // Static variable StackGuard::address_of_jslimit()
849   static ExternalReference address_of_stack_limit(Isolate* isolate);
850 
851   // Static variable StackGuard::address_of_real_jslimit()
852   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
853 
854   // Static variable RegExpStack::limit_address()
855   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
856 
857   // Static variables for RegExp.
858   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
859   static ExternalReference address_of_regexp_stack_memory_address(
860       Isolate* isolate);
861   static ExternalReference address_of_regexp_stack_memory_size(
862       Isolate* isolate);
863 
864   // Static variable Heap::NewSpaceStart()
865   static ExternalReference new_space_start(Isolate* isolate);
866   static ExternalReference new_space_mask(Isolate* isolate);
867 
868   // Write barrier.
869   static ExternalReference store_buffer_top(Isolate* isolate);
870 
871   // Used for fast allocation in generated code.
872   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
873   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
874   static ExternalReference old_pointer_space_allocation_top_address(
875       Isolate* isolate);
876   static ExternalReference old_pointer_space_allocation_limit_address(
877       Isolate* isolate);
878   static ExternalReference old_data_space_allocation_top_address(
879       Isolate* isolate);
880   static ExternalReference old_data_space_allocation_limit_address(
881       Isolate* isolate);
882 
883   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
884   static ExternalReference power_double_double_function(Isolate* isolate);
885   static ExternalReference power_double_int_function(Isolate* isolate);
886 
887   static ExternalReference handle_scope_next_address(Isolate* isolate);
888   static ExternalReference handle_scope_limit_address(Isolate* isolate);
889   static ExternalReference handle_scope_level_address(Isolate* isolate);
890 
891   static ExternalReference scheduled_exception_address(Isolate* isolate);
892   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
893   static ExternalReference address_of_has_pending_message(Isolate* isolate);
894   static ExternalReference address_of_pending_message_script(Isolate* isolate);
895 
896   // Static variables containing common double constants.
897   static ExternalReference address_of_min_int();
898   static ExternalReference address_of_one_half();
899   static ExternalReference address_of_minus_one_half();
900   static ExternalReference address_of_negative_infinity();
901   static ExternalReference address_of_canonical_non_hole_nan();
902   static ExternalReference address_of_the_hole_nan();
903   static ExternalReference address_of_uint32_bias();
904 
905   static ExternalReference math_log_double_function(Isolate* isolate);
906 
907   static ExternalReference math_exp_constants(int constant_index);
908   static ExternalReference math_exp_log_table();
909 
910   static ExternalReference page_flags(Page* page);
911 
912   static ExternalReference ForDeoptEntry(Address entry);
913 
914   static ExternalReference cpu_features();
915 
916   static ExternalReference debug_is_active_address(Isolate* isolate);
917   static ExternalReference debug_after_break_target_address(Isolate* isolate);
918   static ExternalReference debug_restarter_frame_function_pointer_address(
919       Isolate* isolate);
920 
921   static ExternalReference is_profiling_address(Isolate* isolate);
922   static ExternalReference invoke_function_callback(Isolate* isolate);
923   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
924 
address()925   Address address() const { return reinterpret_cast<Address>(address_); }
926 
927   // Function Debug::Break()
928   static ExternalReference debug_break(Isolate* isolate);
929 
930   // Used to check if single stepping is enabled in generated code.
931   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
932 
933 #ifndef V8_INTERPRETED_REGEXP
934   // C functions called from RegExp generated code.
935 
936   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
937   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
938 
939   // Function RegExpMacroAssembler*::CheckStackGuardState()
940   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
941 
942   // Function NativeRegExpMacroAssembler::GrowStack()
943   static ExternalReference re_grow_stack(Isolate* isolate);
944 
945   // byte NativeRegExpMacroAssembler::word_character_bitmap
946   static ExternalReference re_word_character_map();
947 
948 #endif
949 
950   // This lets you register a function that rewrites all external references.
951   // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)952   static void set_redirector(Isolate* isolate,
953                              ExternalReferenceRedirector* redirector) {
954     // We can't stack them.
955     DCHECK(isolate->external_reference_redirector() == NULL);
956     isolate->set_external_reference_redirector(
957         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
958   }
959 
960   static ExternalReference stress_deopt_count(Isolate* isolate);
961 
962   bool operator==(const ExternalReference& other) const {
963     return address_ == other.address_;
964   }
965 
966   bool operator!=(const ExternalReference& other) const {
967     return !(*this == other);
968   }
969 
970  private:
ExternalReference(void * address)971   explicit ExternalReference(void* address)
972       : address_(address) {}
973 
974   static void* Redirect(Isolate* isolate,
975                         Address address_arg,
976                         Type type = ExternalReference::BUILTIN_CALL) {
977     ExternalReferenceRedirector* redirector =
978         reinterpret_cast<ExternalReferenceRedirector*>(
979             isolate->external_reference_redirector());
980     void* address = reinterpret_cast<void*>(address_arg);
981     void* answer = (redirector == NULL) ?
982                    address :
983                    (*redirector)(address, type);
984     return answer;
985   }
986 
987   void* address_;
988 };
989 
990 
991 // -----------------------------------------------------------------------------
992 // Position recording support
993 
994 struct PositionState {
PositionStatePositionState995   PositionState() : current_position(RelocInfo::kNoPosition),
996                     written_position(RelocInfo::kNoPosition),
997                     current_statement_position(RelocInfo::kNoPosition),
998                     written_statement_position(RelocInfo::kNoPosition) {}
999 
1000   int current_position;
1001   int written_position;
1002 
1003   int current_statement_position;
1004   int written_statement_position;
1005 };
1006 
1007 
1008 class PositionsRecorder BASE_EMBEDDED {
1009  public:
PositionsRecorder(Assembler * assembler)1010   explicit PositionsRecorder(Assembler* assembler)
1011       : assembler_(assembler) {
1012     jit_handler_data_ = NULL;
1013   }
1014 
AttachJITHandlerData(void * user_data)1015   void AttachJITHandlerData(void* user_data) {
1016     jit_handler_data_ = user_data;
1017   }
1018 
DetachJITHandlerData()1019   void* DetachJITHandlerData() {
1020     void* old_data = jit_handler_data_;
1021     jit_handler_data_ = NULL;
1022     return old_data;
1023   }
1024   // Set current position to pos.
1025   void RecordPosition(int pos);
1026 
1027   // Set current statement position to pos.
1028   void RecordStatementPosition(int pos);
1029 
1030   // Write recorded positions to relocation information.
1031   bool WriteRecordedPositions();
1032 
current_position()1033   int current_position() const { return state_.current_position; }
1034 
current_statement_position()1035   int current_statement_position() const {
1036     return state_.current_statement_position;
1037   }
1038 
1039  private:
1040   Assembler* assembler_;
1041   PositionState state_;
1042 
1043   // Currently jit_handler_data_ is used to store JITHandler-specific data
1044   // over the lifetime of a PositionsRecorder
1045   void* jit_handler_data_;
1046   friend class PreservePositionScope;
1047 
1048   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
1049 };
1050 
1051 
1052 class PreservePositionScope BASE_EMBEDDED {
1053  public:
PreservePositionScope(PositionsRecorder * positions_recorder)1054   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
1055       : positions_recorder_(positions_recorder),
1056         saved_state_(positions_recorder->state_) {}
1057 
~PreservePositionScope()1058   ~PreservePositionScope() {
1059     positions_recorder_->state_ = saved_state_;
1060   }
1061 
1062  private:
1063   PositionsRecorder* positions_recorder_;
1064   const PositionState saved_state_;
1065 
1066   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
1067 };
1068 
1069 
1070 // -----------------------------------------------------------------------------
1071 // Utility functions
1072 
NumberOfBitsSet(uint32_t x)1073 inline int NumberOfBitsSet(uint32_t x) {
1074   unsigned int num_bits_set;
1075   for (num_bits_set = 0; x; x >>= 1) {
1076     num_bits_set += x & 1;
1077   }
1078   return num_bits_set;
1079 }
1080 
1081 bool EvalComparison(Token::Value op, double op1, double op2);
1082 
1083 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1084 double power_helper(double x, double y);
1085 double power_double_int(double x, int y);
1086 double power_double_double(double x, double y);
1087 
1088 // Helper class for generating code or data associated with the code
1089 // right after a call instruction. As an example this can be used to
1090 // generate safepoint data after calls for crankshaft.
1091 class CallWrapper {
1092  public:
CallWrapper()1093   CallWrapper() { }
~CallWrapper()1094   virtual ~CallWrapper() { }
1095   // Called just before emitting a call. Argument is the size of the generated
1096   // call code.
1097   virtual void BeforeCall(int call_size) const = 0;
1098   // Called just after emitting a call, i.e., at the return site for the call.
1099   virtual void AfterCall() const = 0;
1100 };
1101 
1102 class NullCallWrapper : public CallWrapper {
1103  public:
NullCallWrapper()1104   NullCallWrapper() { }
~NullCallWrapper()1105   virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1106   virtual void BeforeCall(int call_size) const { }
AfterCall()1107   virtual void AfterCall() const { }
1108 };
1109 
1110 
1111 } }  // namespace v8::internal
1112 
1113 #endif  // V8_ASSEMBLER_H_
1114