• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright 2011 the V8 project authors. All rights reserved.
2  // Use of this source code is governed by a BSD-style license that can be
3  // found in the LICENSE file.
4  
5  #include "src/v8.h"
6  
7  #include "src/bignum.h"
8  #include "src/utils.h"
9  
10  namespace v8 {
11  namespace internal {
12  
Bignum()13  Bignum::Bignum()
14      : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
15    for (int i = 0; i < kBigitCapacity; ++i) {
16      bigits_[i] = 0;
17    }
18  }
19  
20  
21  template<typename S>
BitSize(S value)22  static int BitSize(S value) {
23    return 8 * sizeof(value);
24  }
25  
26  
27  // Guaranteed to lie in one Bigit.
AssignUInt16(uint16_t value)28  void Bignum::AssignUInt16(uint16_t value) {
29    DCHECK(kBigitSize >= BitSize(value));
30    Zero();
31    if (value == 0) return;
32  
33    EnsureCapacity(1);
34    bigits_[0] = value;
35    used_digits_ = 1;
36  }
37  
38  
AssignUInt64(uint64_t value)39  void Bignum::AssignUInt64(uint64_t value) {
40    const int kUInt64Size = 64;
41  
42    Zero();
43    if (value == 0) return;
44  
45    int needed_bigits = kUInt64Size / kBigitSize + 1;
46    EnsureCapacity(needed_bigits);
47    for (int i = 0; i < needed_bigits; ++i) {
48      bigits_[i] = static_cast<Chunk>(value & kBigitMask);
49      value = value >> kBigitSize;
50    }
51    used_digits_ = needed_bigits;
52    Clamp();
53  }
54  
55  
AssignBignum(const Bignum & other)56  void Bignum::AssignBignum(const Bignum& other) {
57    exponent_ = other.exponent_;
58    for (int i = 0; i < other.used_digits_; ++i) {
59      bigits_[i] = other.bigits_[i];
60    }
61    // Clear the excess digits (if there were any).
62    for (int i = other.used_digits_; i < used_digits_; ++i) {
63      bigits_[i] = 0;
64    }
65    used_digits_ = other.used_digits_;
66  }
67  
68  
ReadUInt64(Vector<const char> buffer,int from,int digits_to_read)69  static uint64_t ReadUInt64(Vector<const char> buffer,
70                             int from,
71                             int digits_to_read) {
72    uint64_t result = 0;
73    for (int i = from; i < from + digits_to_read; ++i) {
74      int digit = buffer[i] - '0';
75      DCHECK(0 <= digit && digit <= 9);
76      result = result * 10 + digit;
77    }
78    return result;
79  }
80  
81  
AssignDecimalString(Vector<const char> value)82  void Bignum::AssignDecimalString(Vector<const char> value) {
83    // 2^64 = 18446744073709551616 > 10^19
84    const int kMaxUint64DecimalDigits = 19;
85    Zero();
86    int length = value.length();
87    int pos = 0;
88    // Let's just say that each digit needs 4 bits.
89    while (length >= kMaxUint64DecimalDigits) {
90      uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
91      pos += kMaxUint64DecimalDigits;
92      length -= kMaxUint64DecimalDigits;
93      MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
94      AddUInt64(digits);
95    }
96    uint64_t digits = ReadUInt64(value, pos, length);
97    MultiplyByPowerOfTen(length);
98    AddUInt64(digits);
99    Clamp();
100  }
101  
102  
HexCharValue(char c)103  static int HexCharValue(char c) {
104    if ('0' <= c && c <= '9') return c - '0';
105    if ('a' <= c && c <= 'f') return 10 + c - 'a';
106    if ('A' <= c && c <= 'F') return 10 + c - 'A';
107    UNREACHABLE();
108    return 0;  // To make compiler happy.
109  }
110  
111  
AssignHexString(Vector<const char> value)112  void Bignum::AssignHexString(Vector<const char> value) {
113    Zero();
114    int length = value.length();
115  
116    int needed_bigits = length * 4 / kBigitSize + 1;
117    EnsureCapacity(needed_bigits);
118    int string_index = length - 1;
119    for (int i = 0; i < needed_bigits - 1; ++i) {
120      // These bigits are guaranteed to be "full".
121      Chunk current_bigit = 0;
122      for (int j = 0; j < kBigitSize / 4; j++) {
123        current_bigit += HexCharValue(value[string_index--]) << (j * 4);
124      }
125      bigits_[i] = current_bigit;
126    }
127    used_digits_ = needed_bigits - 1;
128  
129    Chunk most_significant_bigit = 0;  // Could be = 0;
130    for (int j = 0; j <= string_index; ++j) {
131      most_significant_bigit <<= 4;
132      most_significant_bigit += HexCharValue(value[j]);
133    }
134    if (most_significant_bigit != 0) {
135      bigits_[used_digits_] = most_significant_bigit;
136      used_digits_++;
137    }
138    Clamp();
139  }
140  
141  
AddUInt64(uint64_t operand)142  void Bignum::AddUInt64(uint64_t operand) {
143    if (operand == 0) return;
144    Bignum other;
145    other.AssignUInt64(operand);
146    AddBignum(other);
147  }
148  
149  
AddBignum(const Bignum & other)150  void Bignum::AddBignum(const Bignum& other) {
151    DCHECK(IsClamped());
152    DCHECK(other.IsClamped());
153  
154    // If this has a greater exponent than other append zero-bigits to this.
155    // After this call exponent_ <= other.exponent_.
156    Align(other);
157  
158    // There are two possibilities:
159    //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
160    //     bbbbb 00000000
161    //   ----------------
162    //   ccccccccccc 0000
163    // or
164    //    aaaaaaaaaa 0000
165    //  bbbbbbbbb 0000000
166    //  -----------------
167    //  cccccccccccc 0000
168    // In both cases we might need a carry bigit.
169  
170    EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
171    Chunk carry = 0;
172    int bigit_pos = other.exponent_ - exponent_;
173    DCHECK(bigit_pos >= 0);
174    for (int i = 0; i < other.used_digits_; ++i) {
175      Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
176      bigits_[bigit_pos] = sum & kBigitMask;
177      carry = sum >> kBigitSize;
178      bigit_pos++;
179    }
180  
181    while (carry != 0) {
182      Chunk sum = bigits_[bigit_pos] + carry;
183      bigits_[bigit_pos] = sum & kBigitMask;
184      carry = sum >> kBigitSize;
185      bigit_pos++;
186    }
187    used_digits_ = Max(bigit_pos, used_digits_);
188    DCHECK(IsClamped());
189  }
190  
191  
SubtractBignum(const Bignum & other)192  void Bignum::SubtractBignum(const Bignum& other) {
193    DCHECK(IsClamped());
194    DCHECK(other.IsClamped());
195    // We require this to be bigger than other.
196    DCHECK(LessEqual(other, *this));
197  
198    Align(other);
199  
200    int offset = other.exponent_ - exponent_;
201    Chunk borrow = 0;
202    int i;
203    for (i = 0; i < other.used_digits_; ++i) {
204      DCHECK((borrow == 0) || (borrow == 1));
205      Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
206      bigits_[i + offset] = difference & kBigitMask;
207      borrow = difference >> (kChunkSize - 1);
208    }
209    while (borrow != 0) {
210      Chunk difference = bigits_[i + offset] - borrow;
211      bigits_[i + offset] = difference & kBigitMask;
212      borrow = difference >> (kChunkSize - 1);
213      ++i;
214    }
215    Clamp();
216  }
217  
218  
ShiftLeft(int shift_amount)219  void Bignum::ShiftLeft(int shift_amount) {
220    if (used_digits_ == 0) return;
221    exponent_ += shift_amount / kBigitSize;
222    int local_shift = shift_amount % kBigitSize;
223    EnsureCapacity(used_digits_ + 1);
224    BigitsShiftLeft(local_shift);
225  }
226  
227  
MultiplyByUInt32(uint32_t factor)228  void Bignum::MultiplyByUInt32(uint32_t factor) {
229    if (factor == 1) return;
230    if (factor == 0) {
231      Zero();
232      return;
233    }
234    if (used_digits_ == 0) return;
235  
236    // The product of a bigit with the factor is of size kBigitSize + 32.
237    // Assert that this number + 1 (for the carry) fits into double chunk.
238    DCHECK(kDoubleChunkSize >= kBigitSize + 32 + 1);
239    DoubleChunk carry = 0;
240    for (int i = 0; i < used_digits_; ++i) {
241      DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
242      bigits_[i] = static_cast<Chunk>(product & kBigitMask);
243      carry = (product >> kBigitSize);
244    }
245    while (carry != 0) {
246      EnsureCapacity(used_digits_ + 1);
247      bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
248      used_digits_++;
249      carry >>= kBigitSize;
250    }
251  }
252  
253  
MultiplyByUInt64(uint64_t factor)254  void Bignum::MultiplyByUInt64(uint64_t factor) {
255    if (factor == 1) return;
256    if (factor == 0) {
257      Zero();
258      return;
259    }
260    DCHECK(kBigitSize < 32);
261    uint64_t carry = 0;
262    uint64_t low = factor & 0xFFFFFFFF;
263    uint64_t high = factor >> 32;
264    for (int i = 0; i < used_digits_; ++i) {
265      uint64_t product_low = low * bigits_[i];
266      uint64_t product_high = high * bigits_[i];
267      uint64_t tmp = (carry & kBigitMask) + product_low;
268      bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
269      carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
270          (product_high << (32 - kBigitSize));
271    }
272    while (carry != 0) {
273      EnsureCapacity(used_digits_ + 1);
274      bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
275      used_digits_++;
276      carry >>= kBigitSize;
277    }
278  }
279  
280  
MultiplyByPowerOfTen(int exponent)281  void Bignum::MultiplyByPowerOfTen(int exponent) {
282    const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
283    const uint16_t kFive1 = 5;
284    const uint16_t kFive2 = kFive1 * 5;
285    const uint16_t kFive3 = kFive2 * 5;
286    const uint16_t kFive4 = kFive3 * 5;
287    const uint16_t kFive5 = kFive4 * 5;
288    const uint16_t kFive6 = kFive5 * 5;
289    const uint32_t kFive7 = kFive6 * 5;
290    const uint32_t kFive8 = kFive7 * 5;
291    const uint32_t kFive9 = kFive8 * 5;
292    const uint32_t kFive10 = kFive9 * 5;
293    const uint32_t kFive11 = kFive10 * 5;
294    const uint32_t kFive12 = kFive11 * 5;
295    const uint32_t kFive13 = kFive12 * 5;
296    const uint32_t kFive1_to_12[] =
297        { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
298          kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
299  
300    DCHECK(exponent >= 0);
301    if (exponent == 0) return;
302    if (used_digits_ == 0) return;
303  
304    // We shift by exponent at the end just before returning.
305    int remaining_exponent = exponent;
306    while (remaining_exponent >= 27) {
307      MultiplyByUInt64(kFive27);
308      remaining_exponent -= 27;
309    }
310    while (remaining_exponent >= 13) {
311      MultiplyByUInt32(kFive13);
312      remaining_exponent -= 13;
313    }
314    if (remaining_exponent > 0) {
315      MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
316    }
317    ShiftLeft(exponent);
318  }
319  
320  
Square()321  void Bignum::Square() {
322    DCHECK(IsClamped());
323    int product_length = 2 * used_digits_;
324    EnsureCapacity(product_length);
325  
326    // Comba multiplication: compute each column separately.
327    // Example: r = a2a1a0 * b2b1b0.
328    //    r =  1    * a0b0 +
329    //        10    * (a1b0 + a0b1) +
330    //        100   * (a2b0 + a1b1 + a0b2) +
331    //        1000  * (a2b1 + a1b2) +
332    //        10000 * a2b2
333    //
334    // In the worst case we have to accumulate nb-digits products of digit*digit.
335    //
336    // Assert that the additional number of bits in a DoubleChunk are enough to
337    // sum up used_digits of Bigit*Bigit.
338    if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
339      UNIMPLEMENTED();
340    }
341    DoubleChunk accumulator = 0;
342    // First shift the digits so we don't overwrite them.
343    int copy_offset = used_digits_;
344    for (int i = 0; i < used_digits_; ++i) {
345      bigits_[copy_offset + i] = bigits_[i];
346    }
347    // We have two loops to avoid some 'if's in the loop.
348    for (int i = 0; i < used_digits_; ++i) {
349      // Process temporary digit i with power i.
350      // The sum of the two indices must be equal to i.
351      int bigit_index1 = i;
352      int bigit_index2 = 0;
353      // Sum all of the sub-products.
354      while (bigit_index1 >= 0) {
355        Chunk chunk1 = bigits_[copy_offset + bigit_index1];
356        Chunk chunk2 = bigits_[copy_offset + bigit_index2];
357        accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
358        bigit_index1--;
359        bigit_index2++;
360      }
361      bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
362      accumulator >>= kBigitSize;
363    }
364    for (int i = used_digits_; i < product_length; ++i) {
365      int bigit_index1 = used_digits_ - 1;
366      int bigit_index2 = i - bigit_index1;
367      // Invariant: sum of both indices is again equal to i.
368      // Inner loop runs 0 times on last iteration, emptying accumulator.
369      while (bigit_index2 < used_digits_) {
370        Chunk chunk1 = bigits_[copy_offset + bigit_index1];
371        Chunk chunk2 = bigits_[copy_offset + bigit_index2];
372        accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
373        bigit_index1--;
374        bigit_index2++;
375      }
376      // The overwritten bigits_[i] will never be read in further loop iterations,
377      // because bigit_index1 and bigit_index2 are always greater
378      // than i - used_digits_.
379      bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
380      accumulator >>= kBigitSize;
381    }
382    // Since the result was guaranteed to lie inside the number the
383    // accumulator must be 0 now.
384    DCHECK(accumulator == 0);
385  
386    // Don't forget to update the used_digits and the exponent.
387    used_digits_ = product_length;
388    exponent_ *= 2;
389    Clamp();
390  }
391  
392  
AssignPowerUInt16(uint16_t base,int power_exponent)393  void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
394    DCHECK(base != 0);
395    DCHECK(power_exponent >= 0);
396    if (power_exponent == 0) {
397      AssignUInt16(1);
398      return;
399    }
400    Zero();
401    int shifts = 0;
402    // We expect base to be in range 2-32, and most often to be 10.
403    // It does not make much sense to implement different algorithms for counting
404    // the bits.
405    while ((base & 1) == 0) {
406      base >>= 1;
407      shifts++;
408    }
409    int bit_size = 0;
410    int tmp_base = base;
411    while (tmp_base != 0) {
412      tmp_base >>= 1;
413      bit_size++;
414    }
415    int final_size = bit_size * power_exponent;
416    // 1 extra bigit for the shifting, and one for rounded final_size.
417    EnsureCapacity(final_size / kBigitSize + 2);
418  
419    // Left to Right exponentiation.
420    int mask = 1;
421    while (power_exponent >= mask) mask <<= 1;
422  
423    // The mask is now pointing to the bit above the most significant 1-bit of
424    // power_exponent.
425    // Get rid of first 1-bit;
426    mask >>= 2;
427    uint64_t this_value = base;
428  
429    bool delayed_multipliciation = false;
430    const uint64_t max_32bits = 0xFFFFFFFF;
431    while (mask != 0 && this_value <= max_32bits) {
432      this_value = this_value * this_value;
433      // Verify that there is enough space in this_value to perform the
434      // multiplication.  The first bit_size bits must be 0.
435      if ((power_exponent & mask) != 0) {
436        uint64_t base_bits_mask =
437            ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
438        bool high_bits_zero = (this_value & base_bits_mask) == 0;
439        if (high_bits_zero) {
440          this_value *= base;
441        } else {
442          delayed_multipliciation = true;
443        }
444      }
445      mask >>= 1;
446    }
447    AssignUInt64(this_value);
448    if (delayed_multipliciation) {
449      MultiplyByUInt32(base);
450    }
451  
452    // Now do the same thing as a bignum.
453    while (mask != 0) {
454      Square();
455      if ((power_exponent & mask) != 0) {
456        MultiplyByUInt32(base);
457      }
458      mask >>= 1;
459    }
460  
461    // And finally add the saved shifts.
462    ShiftLeft(shifts * power_exponent);
463  }
464  
465  
466  // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)467  uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
468    DCHECK(IsClamped());
469    DCHECK(other.IsClamped());
470    DCHECK(other.used_digits_ > 0);
471  
472    // Easy case: if we have less digits than the divisor than the result is 0.
473    // Note: this handles the case where this == 0, too.
474    if (BigitLength() < other.BigitLength()) {
475      return 0;
476    }
477  
478    Align(other);
479  
480    uint16_t result = 0;
481  
482    // Start by removing multiples of 'other' until both numbers have the same
483    // number of digits.
484    while (BigitLength() > other.BigitLength()) {
485      // This naive approach is extremely inefficient if the this divided other
486      // might be big. This function is implemented for doubleToString where
487      // the result should be small (less than 10).
488      DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
489      // Remove the multiples of the first digit.
490      // Example this = 23 and other equals 9. -> Remove 2 multiples.
491      result += bigits_[used_digits_ - 1];
492      SubtractTimes(other, bigits_[used_digits_ - 1]);
493    }
494  
495    DCHECK(BigitLength() == other.BigitLength());
496  
497    // Both bignums are at the same length now.
498    // Since other has more than 0 digits we know that the access to
499    // bigits_[used_digits_ - 1] is safe.
500    Chunk this_bigit = bigits_[used_digits_ - 1];
501    Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
502  
503    if (other.used_digits_ == 1) {
504      // Shortcut for easy (and common) case.
505      int quotient = this_bigit / other_bigit;
506      bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
507      result += quotient;
508      Clamp();
509      return result;
510    }
511  
512    int division_estimate = this_bigit / (other_bigit + 1);
513    result += division_estimate;
514    SubtractTimes(other, division_estimate);
515  
516    if (other_bigit * (division_estimate + 1) > this_bigit) {
517      // No need to even try to subtract. Even if other's remaining digits were 0
518      // another subtraction would be too much.
519      return result;
520    }
521  
522    while (LessEqual(other, *this)) {
523      SubtractBignum(other);
524      result++;
525    }
526    return result;
527  }
528  
529  
530  template<typename S>
SizeInHexChars(S number)531  static int SizeInHexChars(S number) {
532    DCHECK(number > 0);
533    int result = 0;
534    while (number != 0) {
535      number >>= 4;
536      result++;
537    }
538    return result;
539  }
540  
541  
HexCharOfValue(int value)542  static char HexCharOfValue(int value) {
543    DCHECK(0 <= value && value <= 16);
544    if (value < 10) return value + '0';
545    return value - 10 + 'A';
546  }
547  
548  
ToHexString(char * buffer,int buffer_size) const549  bool Bignum::ToHexString(char* buffer, int buffer_size) const {
550    DCHECK(IsClamped());
551    // Each bigit must be printable as separate hex-character.
552    DCHECK(kBigitSize % 4 == 0);
553    const int kHexCharsPerBigit = kBigitSize / 4;
554  
555    if (used_digits_ == 0) {
556      if (buffer_size < 2) return false;
557      buffer[0] = '0';
558      buffer[1] = '\0';
559      return true;
560    }
561    // We add 1 for the terminating '\0' character.
562    int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
563        SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
564    if (needed_chars > buffer_size) return false;
565    int string_index = needed_chars - 1;
566    buffer[string_index--] = '\0';
567    for (int i = 0; i < exponent_; ++i) {
568      for (int j = 0; j < kHexCharsPerBigit; ++j) {
569        buffer[string_index--] = '0';
570      }
571    }
572    for (int i = 0; i < used_digits_ - 1; ++i) {
573      Chunk current_bigit = bigits_[i];
574      for (int j = 0; j < kHexCharsPerBigit; ++j) {
575        buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
576        current_bigit >>= 4;
577      }
578    }
579    // And finally the last bigit.
580    Chunk most_significant_bigit = bigits_[used_digits_ - 1];
581    while (most_significant_bigit != 0) {
582      buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
583      most_significant_bigit >>= 4;
584    }
585    return true;
586  }
587  
588  
BigitAt(int index) const589  Bignum::Chunk Bignum::BigitAt(int index) const {
590    if (index >= BigitLength()) return 0;
591    if (index < exponent_) return 0;
592    return bigits_[index - exponent_];
593  }
594  
595  
Compare(const Bignum & a,const Bignum & b)596  int Bignum::Compare(const Bignum& a, const Bignum& b) {
597    DCHECK(a.IsClamped());
598    DCHECK(b.IsClamped());
599    int bigit_length_a = a.BigitLength();
600    int bigit_length_b = b.BigitLength();
601    if (bigit_length_a < bigit_length_b) return -1;
602    if (bigit_length_a > bigit_length_b) return +1;
603    for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
604      Chunk bigit_a = a.BigitAt(i);
605      Chunk bigit_b = b.BigitAt(i);
606      if (bigit_a < bigit_b) return -1;
607      if (bigit_a > bigit_b) return +1;
608      // Otherwise they are equal up to this digit. Try the next digit.
609    }
610    return 0;
611  }
612  
613  
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)614  int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
615    DCHECK(a.IsClamped());
616    DCHECK(b.IsClamped());
617    DCHECK(c.IsClamped());
618    if (a.BigitLength() < b.BigitLength()) {
619      return PlusCompare(b, a, c);
620    }
621    if (a.BigitLength() + 1 < c.BigitLength()) return -1;
622    if (a.BigitLength() > c.BigitLength()) return +1;
623    // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
624    // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
625    // of 'a'.
626    if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
627      return -1;
628    }
629  
630    Chunk borrow = 0;
631    // Starting at min_exponent all digits are == 0. So no need to compare them.
632    int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
633    for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
634      Chunk chunk_a = a.BigitAt(i);
635      Chunk chunk_b = b.BigitAt(i);
636      Chunk chunk_c = c.BigitAt(i);
637      Chunk sum = chunk_a + chunk_b;
638      if (sum > chunk_c + borrow) {
639        return +1;
640      } else {
641        borrow = chunk_c + borrow - sum;
642        if (borrow > 1) return -1;
643        borrow <<= kBigitSize;
644      }
645    }
646    if (borrow == 0) return 0;
647    return -1;
648  }
649  
650  
Clamp()651  void Bignum::Clamp() {
652    while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
653      used_digits_--;
654    }
655    if (used_digits_ == 0) {
656      // Zero.
657      exponent_ = 0;
658    }
659  }
660  
661  
IsClamped() const662  bool Bignum::IsClamped() const {
663    return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
664  }
665  
666  
Zero()667  void Bignum::Zero() {
668    for (int i = 0; i < used_digits_; ++i) {
669      bigits_[i] = 0;
670    }
671    used_digits_ = 0;
672    exponent_ = 0;
673  }
674  
675  
Align(const Bignum & other)676  void Bignum::Align(const Bignum& other) {
677    if (exponent_ > other.exponent_) {
678      // If "X" represents a "hidden" digit (by the exponent) then we are in the
679      // following case (a == this, b == other):
680      // a:  aaaaaaXXXX   or a:   aaaaaXXX
681      // b:     bbbbbbX      b: bbbbbbbbXX
682      // We replace some of the hidden digits (X) of a with 0 digits.
683      // a:  aaaaaa000X   or a:   aaaaa0XX
684      int zero_digits = exponent_ - other.exponent_;
685      EnsureCapacity(used_digits_ + zero_digits);
686      for (int i = used_digits_ - 1; i >= 0; --i) {
687        bigits_[i + zero_digits] = bigits_[i];
688      }
689      for (int i = 0; i < zero_digits; ++i) {
690        bigits_[i] = 0;
691      }
692      used_digits_ += zero_digits;
693      exponent_ -= zero_digits;
694      DCHECK(used_digits_ >= 0);
695      DCHECK(exponent_ >= 0);
696    }
697  }
698  
699  
BigitsShiftLeft(int shift_amount)700  void Bignum::BigitsShiftLeft(int shift_amount) {
701    DCHECK(shift_amount < kBigitSize);
702    DCHECK(shift_amount >= 0);
703    Chunk carry = 0;
704    for (int i = 0; i < used_digits_; ++i) {
705      Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
706      bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
707      carry = new_carry;
708    }
709    if (carry != 0) {
710      bigits_[used_digits_] = carry;
711      used_digits_++;
712    }
713  }
714  
715  
SubtractTimes(const Bignum & other,int factor)716  void Bignum::SubtractTimes(const Bignum& other, int factor) {
717  #ifdef DEBUG
718    Bignum a, b;
719    a.AssignBignum(*this);
720    b.AssignBignum(other);
721    b.MultiplyByUInt32(factor);
722    a.SubtractBignum(b);
723  #endif
724    DCHECK(exponent_ <= other.exponent_);
725    if (factor < 3) {
726      for (int i = 0; i < factor; ++i) {
727        SubtractBignum(other);
728      }
729      return;
730    }
731    Chunk borrow = 0;
732    int exponent_diff = other.exponent_ - exponent_;
733    for (int i = 0; i < other.used_digits_; ++i) {
734      DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
735      DoubleChunk remove = borrow + product;
736      Chunk difference =
737          bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
738      bigits_[i + exponent_diff] = difference & kBigitMask;
739      borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
740                                  (remove >> kBigitSize));
741    }
742    for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
743      if (borrow == 0) return;
744      Chunk difference = bigits_[i] - borrow;
745      bigits_[i] = difference & kBigitMask;
746      borrow = difference >> (kChunkSize - 1);
747    }
748    Clamp();
749    DCHECK(Bignum::Equal(a, *this));
750  }
751  
752  
753  } }  // namespace v8::internal
754