1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM
8
9 #include "src/ic/call-optimization.h"
10 #include "src/ic/handler-compiler.h"
11 #include "src/ic/ic.h"
12
13 namespace v8 {
14 namespace internal {
15
16 #define __ ACCESS_MASM(masm)
17
18
GenerateLoadViaGetter(MacroAssembler * masm,Handle<HeapType> type,Register receiver,Handle<JSFunction> getter)19 void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
20 MacroAssembler* masm, Handle<HeapType> type, Register receiver,
21 Handle<JSFunction> getter) {
22 // ----------- S t a t e -------------
23 // -- r0 : receiver
24 // -- r2 : name
25 // -- lr : return address
26 // -----------------------------------
27 {
28 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
29
30 if (!getter.is_null()) {
31 // Call the JavaScript getter with the receiver on the stack.
32 if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
33 // Swap in the global receiver.
34 __ ldr(receiver,
35 FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
36 }
37 __ push(receiver);
38 ParameterCount actual(0);
39 ParameterCount expected(getter);
40 __ InvokeFunction(getter, expected, actual, CALL_FUNCTION,
41 NullCallWrapper());
42 } else {
43 // If we generate a global code snippet for deoptimization only, remember
44 // the place to continue after deoptimization.
45 masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
46 }
47
48 // Restore context register.
49 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
50 }
51 __ Ret();
52 }
53
54
GenerateStoreViaSetter(MacroAssembler * masm,Handle<HeapType> type,Register receiver,Handle<JSFunction> setter)55 void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
56 MacroAssembler* masm, Handle<HeapType> type, Register receiver,
57 Handle<JSFunction> setter) {
58 // ----------- S t a t e -------------
59 // -- lr : return address
60 // -----------------------------------
61 {
62 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
63
64 // Save value register, so we can restore it later.
65 __ push(value());
66
67 if (!setter.is_null()) {
68 // Call the JavaScript setter with receiver and value on the stack.
69 if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
70 // Swap in the global receiver.
71 __ ldr(receiver,
72 FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
73 }
74 __ Push(receiver, value());
75 ParameterCount actual(1);
76 ParameterCount expected(setter);
77 __ InvokeFunction(setter, expected, actual, CALL_FUNCTION,
78 NullCallWrapper());
79 } else {
80 // If we generate a global code snippet for deoptimization only, remember
81 // the place to continue after deoptimization.
82 masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
83 }
84
85 // We have to return the passed value, not the return value of the setter.
86 __ pop(r0);
87
88 // Restore context register.
89 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
90 }
91 __ Ret();
92 }
93
94
GenerateDictionaryNegativeLookup(MacroAssembler * masm,Label * miss_label,Register receiver,Handle<Name> name,Register scratch0,Register scratch1)95 void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
96 MacroAssembler* masm, Label* miss_label, Register receiver,
97 Handle<Name> name, Register scratch0, Register scratch1) {
98 DCHECK(name->IsUniqueName());
99 DCHECK(!receiver.is(scratch0));
100 Counters* counters = masm->isolate()->counters();
101 __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
102 __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
103
104 Label done;
105
106 const int kInterceptorOrAccessCheckNeededMask =
107 (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
108
109 // Bail out if the receiver has a named interceptor or requires access checks.
110 Register map = scratch1;
111 __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
112 __ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
113 __ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
114 __ b(ne, miss_label);
115
116 // Check that receiver is a JSObject.
117 __ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
118 __ cmp(scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
119 __ b(lt, miss_label);
120
121 // Load properties array.
122 Register properties = scratch0;
123 __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
124 // Check that the properties array is a dictionary.
125 __ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset));
126 Register tmp = properties;
127 __ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
128 __ cmp(map, tmp);
129 __ b(ne, miss_label);
130
131 // Restore the temporarily used register.
132 __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
133
134
135 NameDictionaryLookupStub::GenerateNegativeLookup(
136 masm, miss_label, &done, receiver, properties, name, scratch1);
137 __ bind(&done);
138 __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
139 }
140
141
GenerateDirectLoadGlobalFunctionPrototype(MacroAssembler * masm,int index,Register prototype,Label * miss)142 void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
143 MacroAssembler* masm, int index, Register prototype, Label* miss) {
144 Isolate* isolate = masm->isolate();
145 // Get the global function with the given index.
146 Handle<JSFunction> function(
147 JSFunction::cast(isolate->native_context()->get(index)));
148
149 // Check we're still in the same context.
150 Register scratch = prototype;
151 const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
152 __ ldr(scratch, MemOperand(cp, offset));
153 __ ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
154 __ ldr(scratch, MemOperand(scratch, Context::SlotOffset(index)));
155 __ Move(ip, function);
156 __ cmp(ip, scratch);
157 __ b(ne, miss);
158
159 // Load its initial map. The global functions all have initial maps.
160 __ Move(prototype, Handle<Map>(function->initial_map()));
161 // Load the prototype from the initial map.
162 __ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
163 }
164
165
GenerateLoadFunctionPrototype(MacroAssembler * masm,Register receiver,Register scratch1,Register scratch2,Label * miss_label)166 void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
167 MacroAssembler* masm, Register receiver, Register scratch1,
168 Register scratch2, Label* miss_label) {
169 __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
170 __ mov(r0, scratch1);
171 __ Ret();
172 }
173
174
175 // Generate code to check that a global property cell is empty. Create
176 // the property cell at compilation time if no cell exists for the
177 // property.
GenerateCheckPropertyCell(MacroAssembler * masm,Handle<JSGlobalObject> global,Handle<Name> name,Register scratch,Label * miss)178 void PropertyHandlerCompiler::GenerateCheckPropertyCell(
179 MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
180 Register scratch, Label* miss) {
181 Handle<Cell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
182 DCHECK(cell->value()->IsTheHole());
183 __ mov(scratch, Operand(cell));
184 __ ldr(scratch, FieldMemOperand(scratch, Cell::kValueOffset));
185 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
186 __ cmp(scratch, ip);
187 __ b(ne, miss);
188 }
189
190
PushInterceptorArguments(MacroAssembler * masm,Register receiver,Register holder,Register name,Handle<JSObject> holder_obj)191 static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
192 Register holder, Register name,
193 Handle<JSObject> holder_obj) {
194 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
195 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1);
196 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2);
197 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3);
198 STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4);
199 __ push(name);
200 Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
201 DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor));
202 Register scratch = name;
203 __ mov(scratch, Operand(interceptor));
204 __ push(scratch);
205 __ push(receiver);
206 __ push(holder);
207 }
208
209
CompileCallLoadPropertyWithInterceptor(MacroAssembler * masm,Register receiver,Register holder,Register name,Handle<JSObject> holder_obj,IC::UtilityId id)210 static void CompileCallLoadPropertyWithInterceptor(
211 MacroAssembler* masm, Register receiver, Register holder, Register name,
212 Handle<JSObject> holder_obj, IC::UtilityId id) {
213 PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
214 __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
215 NamedLoadHandlerCompiler::kInterceptorArgsLength);
216 }
217
218
219 // Generate call to api function.
GenerateFastApiCall(MacroAssembler * masm,const CallOptimization & optimization,Handle<Map> receiver_map,Register receiver,Register scratch_in,bool is_store,int argc,Register * values)220 void PropertyHandlerCompiler::GenerateFastApiCall(
221 MacroAssembler* masm, const CallOptimization& optimization,
222 Handle<Map> receiver_map, Register receiver, Register scratch_in,
223 bool is_store, int argc, Register* values) {
224 DCHECK(!receiver.is(scratch_in));
225 __ push(receiver);
226 // Write the arguments to stack frame.
227 for (int i = 0; i < argc; i++) {
228 Register arg = values[argc - 1 - i];
229 DCHECK(!receiver.is(arg));
230 DCHECK(!scratch_in.is(arg));
231 __ push(arg);
232 }
233 DCHECK(optimization.is_simple_api_call());
234
235 // Abi for CallApiFunctionStub.
236 Register callee = r0;
237 Register call_data = r4;
238 Register holder = r2;
239 Register api_function_address = r1;
240
241 // Put holder in place.
242 CallOptimization::HolderLookup holder_lookup;
243 Handle<JSObject> api_holder =
244 optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup);
245 switch (holder_lookup) {
246 case CallOptimization::kHolderIsReceiver:
247 __ Move(holder, receiver);
248 break;
249 case CallOptimization::kHolderFound:
250 __ Move(holder, api_holder);
251 break;
252 case CallOptimization::kHolderNotFound:
253 UNREACHABLE();
254 break;
255 }
256
257 Isolate* isolate = masm->isolate();
258 Handle<JSFunction> function = optimization.constant_function();
259 Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
260 Handle<Object> call_data_obj(api_call_info->data(), isolate);
261
262 // Put callee in place.
263 __ Move(callee, function);
264
265 bool call_data_undefined = false;
266 // Put call_data in place.
267 if (isolate->heap()->InNewSpace(*call_data_obj)) {
268 __ Move(call_data, api_call_info);
269 __ ldr(call_data, FieldMemOperand(call_data, CallHandlerInfo::kDataOffset));
270 } else if (call_data_obj->IsUndefined()) {
271 call_data_undefined = true;
272 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
273 } else {
274 __ Move(call_data, call_data_obj);
275 }
276
277 // Put api_function_address in place.
278 Address function_address = v8::ToCData<Address>(api_call_info->callback());
279 ApiFunction fun(function_address);
280 ExternalReference::Type type = ExternalReference::DIRECT_API_CALL;
281 ExternalReference ref = ExternalReference(&fun, type, masm->isolate());
282 __ mov(api_function_address, Operand(ref));
283
284 // Jump to stub.
285 CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
286 __ TailCallStub(&stub);
287 }
288
289
GenerateSlow(MacroAssembler * masm)290 void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
291 // Push receiver, key and value for runtime call.
292 __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
293 StoreDescriptor::ValueRegister());
294
295 // The slow case calls into the runtime to complete the store without causing
296 // an IC miss that would otherwise cause a transition to the generic stub.
297 ExternalReference ref =
298 ExternalReference(IC_Utility(IC::kStoreIC_Slow), masm->isolate());
299 __ TailCallExternalReference(ref, 3, 1);
300 }
301
302
GenerateStoreSlow(MacroAssembler * masm)303 void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
304 // Push receiver, key and value for runtime call.
305 __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
306 StoreDescriptor::ValueRegister());
307
308 // The slow case calls into the runtime to complete the store without causing
309 // an IC miss that would otherwise cause a transition to the generic stub.
310 ExternalReference ref =
311 ExternalReference(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate());
312 __ TailCallExternalReference(ref, 3, 1);
313 }
314
315
316 #undef __
317 #define __ ACCESS_MASM(masm())
318
319
GenerateRestoreName(Label * label,Handle<Name> name)320 void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
321 Handle<Name> name) {
322 if (!label->is_unused()) {
323 __ bind(label);
324 __ mov(this->name(), Operand(name));
325 }
326 }
327
328
329 // Generate StoreTransition code, value is passed in r0 register.
330 // When leaving generated code after success, the receiver_reg and name_reg
331 // may be clobbered. Upon branch to miss_label, the receiver and name
332 // registers have their original values.
GenerateStoreTransition(Handle<Map> transition,Handle<Name> name,Register receiver_reg,Register storage_reg,Register value_reg,Register scratch1,Register scratch2,Register scratch3,Label * miss_label,Label * slow)333 void NamedStoreHandlerCompiler::GenerateStoreTransition(
334 Handle<Map> transition, Handle<Name> name, Register receiver_reg,
335 Register storage_reg, Register value_reg, Register scratch1,
336 Register scratch2, Register scratch3, Label* miss_label, Label* slow) {
337 // r0 : value
338 Label exit;
339
340 int descriptor = transition->LastAdded();
341 DescriptorArray* descriptors = transition->instance_descriptors();
342 PropertyDetails details = descriptors->GetDetails(descriptor);
343 Representation representation = details.representation();
344 DCHECK(!representation.IsNone());
345
346 if (details.type() == CONSTANT) {
347 Handle<Object> constant(descriptors->GetValue(descriptor), isolate());
348 __ Move(scratch1, constant);
349 __ cmp(value_reg, scratch1);
350 __ b(ne, miss_label);
351 } else if (representation.IsSmi()) {
352 __ JumpIfNotSmi(value_reg, miss_label);
353 } else if (representation.IsHeapObject()) {
354 __ JumpIfSmi(value_reg, miss_label);
355 HeapType* field_type = descriptors->GetFieldType(descriptor);
356 HeapType::Iterator<Map> it = field_type->Classes();
357 if (!it.Done()) {
358 __ ldr(scratch1, FieldMemOperand(value_reg, HeapObject::kMapOffset));
359 Label do_store;
360 while (true) {
361 __ CompareMap(scratch1, it.Current(), &do_store);
362 it.Advance();
363 if (it.Done()) {
364 __ b(ne, miss_label);
365 break;
366 }
367 __ b(eq, &do_store);
368 }
369 __ bind(&do_store);
370 }
371 } else if (representation.IsDouble()) {
372 Label do_store, heap_number;
373 __ LoadRoot(scratch3, Heap::kMutableHeapNumberMapRootIndex);
374 __ AllocateHeapNumber(storage_reg, scratch1, scratch2, scratch3, slow,
375 TAG_RESULT, MUTABLE);
376
377 __ JumpIfNotSmi(value_reg, &heap_number);
378 __ SmiUntag(scratch1, value_reg);
379 __ vmov(s0, scratch1);
380 __ vcvt_f64_s32(d0, s0);
381 __ jmp(&do_store);
382
383 __ bind(&heap_number);
384 __ CheckMap(value_reg, scratch1, Heap::kHeapNumberMapRootIndex, miss_label,
385 DONT_DO_SMI_CHECK);
386 __ vldr(d0, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
387
388 __ bind(&do_store);
389 __ vstr(d0, FieldMemOperand(storage_reg, HeapNumber::kValueOffset));
390 }
391
392 // Stub never generated for objects that require access checks.
393 DCHECK(!transition->is_access_check_needed());
394
395 // Perform map transition for the receiver if necessary.
396 if (details.type() == FIELD &&
397 Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) {
398 // The properties must be extended before we can store the value.
399 // We jump to a runtime call that extends the properties array.
400 __ push(receiver_reg);
401 __ mov(r2, Operand(transition));
402 __ Push(r2, r0);
403 __ TailCallExternalReference(
404 ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
405 isolate()),
406 3, 1);
407 return;
408 }
409
410 // Update the map of the object.
411 __ mov(scratch1, Operand(transition));
412 __ str(scratch1, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
413
414 // Update the write barrier for the map field.
415 __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2,
416 kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
417 OMIT_SMI_CHECK);
418
419 if (details.type() == CONSTANT) {
420 DCHECK(value_reg.is(r0));
421 __ Ret();
422 return;
423 }
424
425 int index = transition->instance_descriptors()->GetFieldIndex(
426 transition->LastAdded());
427
428 // Adjust for the number of properties stored in the object. Even in the
429 // face of a transition we can use the old map here because the size of the
430 // object and the number of in-object properties is not going to change.
431 index -= transition->inobject_properties();
432
433 // TODO(verwaest): Share this code as a code stub.
434 SmiCheck smi_check =
435 representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
436 if (index < 0) {
437 // Set the property straight into the object.
438 int offset = transition->instance_size() + (index * kPointerSize);
439 if (representation.IsDouble()) {
440 __ str(storage_reg, FieldMemOperand(receiver_reg, offset));
441 } else {
442 __ str(value_reg, FieldMemOperand(receiver_reg, offset));
443 }
444
445 if (!representation.IsSmi()) {
446 // Update the write barrier for the array address.
447 if (!representation.IsDouble()) {
448 __ mov(storage_reg, value_reg);
449 }
450 __ RecordWriteField(receiver_reg, offset, storage_reg, scratch1,
451 kLRHasNotBeenSaved, kDontSaveFPRegs,
452 EMIT_REMEMBERED_SET, smi_check);
453 }
454 } else {
455 // Write to the properties array.
456 int offset = index * kPointerSize + FixedArray::kHeaderSize;
457 // Get the properties array
458 __ ldr(scratch1,
459 FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset));
460 if (representation.IsDouble()) {
461 __ str(storage_reg, FieldMemOperand(scratch1, offset));
462 } else {
463 __ str(value_reg, FieldMemOperand(scratch1, offset));
464 }
465
466 if (!representation.IsSmi()) {
467 // Update the write barrier for the array address.
468 if (!representation.IsDouble()) {
469 __ mov(storage_reg, value_reg);
470 }
471 __ RecordWriteField(scratch1, offset, storage_reg, receiver_reg,
472 kLRHasNotBeenSaved, kDontSaveFPRegs,
473 EMIT_REMEMBERED_SET, smi_check);
474 }
475 }
476
477 // Return the value (register r0).
478 DCHECK(value_reg.is(r0));
479 __ bind(&exit);
480 __ Ret();
481 }
482
483
GenerateStoreField(LookupIterator * lookup,Register value_reg,Label * miss_label)484 void NamedStoreHandlerCompiler::GenerateStoreField(LookupIterator* lookup,
485 Register value_reg,
486 Label* miss_label) {
487 DCHECK(lookup->representation().IsHeapObject());
488 __ JumpIfSmi(value_reg, miss_label);
489 HeapType::Iterator<Map> it = lookup->GetFieldType()->Classes();
490 __ ldr(scratch1(), FieldMemOperand(value_reg, HeapObject::kMapOffset));
491 Label do_store;
492 while (true) {
493 __ CompareMap(scratch1(), it.Current(), &do_store);
494 it.Advance();
495 if (it.Done()) {
496 __ b(ne, miss_label);
497 break;
498 }
499 __ b(eq, &do_store);
500 }
501 __ bind(&do_store);
502
503 StoreFieldStub stub(isolate(), lookup->GetFieldIndex(),
504 lookup->representation());
505 GenerateTailCall(masm(), stub.GetCode());
506 }
507
508
CheckPrototypes(Register object_reg,Register holder_reg,Register scratch1,Register scratch2,Handle<Name> name,Label * miss,PrototypeCheckType check)509 Register PropertyHandlerCompiler::CheckPrototypes(
510 Register object_reg, Register holder_reg, Register scratch1,
511 Register scratch2, Handle<Name> name, Label* miss,
512 PrototypeCheckType check) {
513 Handle<Map> receiver_map(IC::TypeToMap(*type(), isolate()));
514
515 // Make sure there's no overlap between holder and object registers.
516 DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
517 DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
518 !scratch2.is(scratch1));
519
520 // Keep track of the current object in register reg.
521 Register reg = object_reg;
522 int depth = 0;
523
524 Handle<JSObject> current = Handle<JSObject>::null();
525 if (type()->IsConstant()) {
526 current = Handle<JSObject>::cast(type()->AsConstant()->Value());
527 }
528 Handle<JSObject> prototype = Handle<JSObject>::null();
529 Handle<Map> current_map = receiver_map;
530 Handle<Map> holder_map(holder()->map());
531 // Traverse the prototype chain and check the maps in the prototype chain for
532 // fast and global objects or do negative lookup for normal objects.
533 while (!current_map.is_identical_to(holder_map)) {
534 ++depth;
535
536 // Only global objects and objects that do not require access
537 // checks are allowed in stubs.
538 DCHECK(current_map->IsJSGlobalProxyMap() ||
539 !current_map->is_access_check_needed());
540
541 prototype = handle(JSObject::cast(current_map->prototype()));
542 if (current_map->is_dictionary_map() &&
543 !current_map->IsJSGlobalObjectMap()) {
544 DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast.
545 if (!name->IsUniqueName()) {
546 DCHECK(name->IsString());
547 name = factory()->InternalizeString(Handle<String>::cast(name));
548 }
549 DCHECK(current.is_null() ||
550 current->property_dictionary()->FindEntry(name) ==
551 NameDictionary::kNotFound);
552
553 GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
554 scratch2);
555
556 __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
557 reg = holder_reg; // From now on the object will be in holder_reg.
558 __ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
559 } else {
560 Register map_reg = scratch1;
561 if (depth != 1 || check == CHECK_ALL_MAPS) {
562 // CheckMap implicitly loads the map of |reg| into |map_reg|.
563 __ CheckMap(reg, map_reg, current_map, miss, DONT_DO_SMI_CHECK);
564 } else {
565 __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
566 }
567
568 // Check access rights to the global object. This has to happen after
569 // the map check so that we know that the object is actually a global
570 // object.
571 // This allows us to install generated handlers for accesses to the
572 // global proxy (as opposed to using slow ICs). See corresponding code
573 // in LookupForRead().
574 if (current_map->IsJSGlobalProxyMap()) {
575 __ CheckAccessGlobalProxy(reg, scratch2, miss);
576 } else if (current_map->IsJSGlobalObjectMap()) {
577 GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
578 name, scratch2, miss);
579 }
580
581 reg = holder_reg; // From now on the object will be in holder_reg.
582
583 // Two possible reasons for loading the prototype from the map:
584 // (1) Can't store references to new space in code.
585 // (2) Handler is shared for all receivers with the same prototype
586 // map (but not necessarily the same prototype instance).
587 bool load_prototype_from_map =
588 heap()->InNewSpace(*prototype) || depth == 1;
589 if (load_prototype_from_map) {
590 __ ldr(reg, FieldMemOperand(map_reg, Map::kPrototypeOffset));
591 } else {
592 __ mov(reg, Operand(prototype));
593 }
594 }
595
596 // Go to the next object in the prototype chain.
597 current = prototype;
598 current_map = handle(current->map());
599 }
600
601 // Log the check depth.
602 LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
603
604 if (depth != 0 || check == CHECK_ALL_MAPS) {
605 // Check the holder map.
606 __ CheckMap(reg, scratch1, current_map, miss, DONT_DO_SMI_CHECK);
607 }
608
609 // Perform security check for access to the global object.
610 DCHECK(current_map->IsJSGlobalProxyMap() ||
611 !current_map->is_access_check_needed());
612 if (current_map->IsJSGlobalProxyMap()) {
613 __ CheckAccessGlobalProxy(reg, scratch1, miss);
614 }
615
616 // Return the register containing the holder.
617 return reg;
618 }
619
620
FrontendFooter(Handle<Name> name,Label * miss)621 void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
622 if (!miss->is_unused()) {
623 Label success;
624 __ b(&success);
625 __ bind(miss);
626 TailCallBuiltin(masm(), MissBuiltin(kind()));
627 __ bind(&success);
628 }
629 }
630
631
FrontendFooter(Handle<Name> name,Label * miss)632 void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
633 if (!miss->is_unused()) {
634 Label success;
635 __ b(&success);
636 GenerateRestoreName(miss, name);
637 TailCallBuiltin(masm(), MissBuiltin(kind()));
638 __ bind(&success);
639 }
640 }
641
642
GenerateLoadConstant(Handle<Object> value)643 void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
644 // Return the constant value.
645 __ Move(r0, value);
646 __ Ret();
647 }
648
649
GenerateLoadCallback(Register reg,Handle<ExecutableAccessorInfo> callback)650 void NamedLoadHandlerCompiler::GenerateLoadCallback(
651 Register reg, Handle<ExecutableAccessorInfo> callback) {
652 // Build AccessorInfo::args_ list on the stack and push property name below
653 // the exit frame to make GC aware of them and store pointers to them.
654 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
655 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
656 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
657 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
658 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
659 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
660 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
661 DCHECK(!scratch2().is(reg));
662 DCHECK(!scratch3().is(reg));
663 DCHECK(!scratch4().is(reg));
664 __ push(receiver());
665 if (heap()->InNewSpace(callback->data())) {
666 __ Move(scratch3(), callback);
667 __ ldr(scratch3(),
668 FieldMemOperand(scratch3(), ExecutableAccessorInfo::kDataOffset));
669 } else {
670 __ Move(scratch3(), Handle<Object>(callback->data(), isolate()));
671 }
672 __ push(scratch3());
673 __ LoadRoot(scratch3(), Heap::kUndefinedValueRootIndex);
674 __ mov(scratch4(), scratch3());
675 __ Push(scratch3(), scratch4());
676 __ mov(scratch4(), Operand(ExternalReference::isolate_address(isolate())));
677 __ Push(scratch4(), reg);
678 __ mov(scratch2(), sp); // scratch2 = PropertyAccessorInfo::args_
679 __ push(name());
680
681 // Abi for CallApiGetter
682 Register getter_address_reg = ApiGetterDescriptor::function_address();
683
684 Address getter_address = v8::ToCData<Address>(callback->getter());
685 ApiFunction fun(getter_address);
686 ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL;
687 ExternalReference ref = ExternalReference(&fun, type, isolate());
688 __ mov(getter_address_reg, Operand(ref));
689
690 CallApiGetterStub stub(isolate());
691 __ TailCallStub(&stub);
692 }
693
694
GenerateLoadInterceptorWithFollowup(LookupIterator * it,Register holder_reg)695 void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
696 LookupIterator* it, Register holder_reg) {
697 DCHECK(holder()->HasNamedInterceptor());
698 DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
699
700 // Compile the interceptor call, followed by inline code to load the
701 // property from further up the prototype chain if the call fails.
702 // Check that the maps haven't changed.
703 DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
704
705 // Preserve the receiver register explicitly whenever it is different from the
706 // holder and it is needed should the interceptor return without any result.
707 // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
708 // case might cause a miss during the prototype check.
709 bool must_perform_prototype_check =
710 !holder().is_identical_to(it->GetHolder<JSObject>());
711 bool must_preserve_receiver_reg =
712 !receiver().is(holder_reg) &&
713 (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);
714
715 // Save necessary data before invoking an interceptor.
716 // Requires a frame to make GC aware of pushed pointers.
717 {
718 FrameAndConstantPoolScope frame_scope(masm(), StackFrame::INTERNAL);
719 if (must_preserve_receiver_reg) {
720 __ Push(receiver(), holder_reg, this->name());
721 } else {
722 __ Push(holder_reg, this->name());
723 }
724 // Invoke an interceptor. Note: map checks from receiver to
725 // interceptor's holder has been compiled before (see a caller
726 // of this method.)
727 CompileCallLoadPropertyWithInterceptor(
728 masm(), receiver(), holder_reg, this->name(), holder(),
729 IC::kLoadPropertyWithInterceptorOnly);
730
731 // Check if interceptor provided a value for property. If it's
732 // the case, return immediately.
733 Label interceptor_failed;
734 __ LoadRoot(scratch1(), Heap::kNoInterceptorResultSentinelRootIndex);
735 __ cmp(r0, scratch1());
736 __ b(eq, &interceptor_failed);
737 frame_scope.GenerateLeaveFrame();
738 __ Ret();
739
740 __ bind(&interceptor_failed);
741 __ pop(this->name());
742 __ pop(holder_reg);
743 if (must_preserve_receiver_reg) {
744 __ pop(receiver());
745 }
746 // Leave the internal frame.
747 }
748
749 GenerateLoadPostInterceptor(it, holder_reg);
750 }
751
752
GenerateLoadInterceptor(Register holder_reg)753 void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
754 // Call the runtime system to load the interceptor.
755 DCHECK(holder()->HasNamedInterceptor());
756 DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
757 PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
758 holder());
759
760 ExternalReference ref = ExternalReference(
761 IC_Utility(IC::kLoadPropertyWithInterceptor), isolate());
762 __ TailCallExternalReference(
763 ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
764 }
765
766
CompileStoreCallback(Handle<JSObject> object,Handle<Name> name,Handle<ExecutableAccessorInfo> callback)767 Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
768 Handle<JSObject> object, Handle<Name> name,
769 Handle<ExecutableAccessorInfo> callback) {
770 Register holder_reg = Frontend(receiver(), name);
771
772 __ push(receiver()); // receiver
773 __ push(holder_reg);
774 __ mov(ip, Operand(callback)); // callback info
775 __ push(ip);
776 __ mov(ip, Operand(name));
777 __ Push(ip, value());
778
779 // Do tail-call to the runtime system.
780 ExternalReference store_callback_property =
781 ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
782 __ TailCallExternalReference(store_callback_property, 5, 1);
783
784 // Return the generated code.
785 return GetCode(kind(), Code::FAST, name);
786 }
787
788
CompileStoreInterceptor(Handle<Name> name)789 Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
790 Handle<Name> name) {
791 __ Push(receiver(), this->name(), value());
792
793 // Do tail-call to the runtime system.
794 ExternalReference store_ic_property = ExternalReference(
795 IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
796 __ TailCallExternalReference(store_ic_property, 3, 1);
797
798 // Return the generated code.
799 return GetCode(kind(), Code::FAST, name);
800 }
801
802
value()803 Register NamedStoreHandlerCompiler::value() {
804 return StoreDescriptor::ValueRegister();
805 }
806
807
CompileLoadGlobal(Handle<PropertyCell> cell,Handle<Name> name,bool is_configurable)808 Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
809 Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
810 Label miss;
811 FrontendHeader(receiver(), name, &miss);
812
813 // Get the value from the cell.
814 Register result = StoreDescriptor::ValueRegister();
815 __ mov(result, Operand(cell));
816 __ ldr(result, FieldMemOperand(result, Cell::kValueOffset));
817
818 // Check for deleted property if property can actually be deleted.
819 if (is_configurable) {
820 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
821 __ cmp(result, ip);
822 __ b(eq, &miss);
823 }
824
825 Counters* counters = isolate()->counters();
826 __ IncrementCounter(counters->named_load_global_stub(), 1, r1, r3);
827 __ Ret();
828
829 FrontendFooter(name, &miss);
830
831 // Return the generated code.
832 return GetCode(kind(), Code::NORMAL, name);
833 }
834
835
836 #undef __
837 }
838 } // namespace v8::internal
839
840 #endif // V8_TARGET_ARCH_ARM
841