1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips/assembler-mips.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug.h"
44 
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
52 
53 // -----------------------------------------------------------------------------
54 // Operand and MemOperand.
55 
Operand(int32_t immediate,RelocInfo::Mode rmode)56 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
57   rm_ = no_reg;
58   imm32_ = immediate;
59   rmode_ = rmode;
60 }
61 
62 
Operand(const ExternalReference & f)63 Operand::Operand(const ExternalReference& f)  {
64   rm_ = no_reg;
65   imm32_ = reinterpret_cast<int32_t>(f.address());
66   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67 }
68 
69 
Operand(Smi * value)70 Operand::Operand(Smi* value) {
71   rm_ = no_reg;
72   imm32_ =  reinterpret_cast<intptr_t>(value);
73   rmode_ = RelocInfo::NONE32;
74 }
75 
76 
Operand(Register rm)77 Operand::Operand(Register rm) {
78   rm_ = rm;
79 }
80 
81 
is_reg()82 bool Operand::is_reg() const {
83   return rm_.is_valid();
84 }
85 
86 
NumAllocatableRegisters()87 int Register::NumAllocatableRegisters() {
88     return kMaxNumAllocatableRegisters;
89 }
90 
91 
NumRegisters()92 int DoubleRegister::NumRegisters() {
93     return FPURegister::kMaxNumRegisters;
94 }
95 
96 
NumAllocatableRegisters()97 int DoubleRegister::NumAllocatableRegisters() {
98     return FPURegister::kMaxNumAllocatableRegisters;
99 }
100 
101 
ToAllocationIndex(FPURegister reg)102 int FPURegister::ToAllocationIndex(FPURegister reg) {
103   DCHECK(reg.code() % 2 == 0);
104   DCHECK(reg.code() / 2 < kMaxNumAllocatableRegisters);
105   DCHECK(reg.is_valid());
106   DCHECK(!reg.is(kDoubleRegZero));
107   DCHECK(!reg.is(kLithiumScratchDouble));
108   return (reg.code() / 2);
109 }
110 
111 
112 // -----------------------------------------------------------------------------
113 // RelocInfo.
114 
apply(intptr_t delta,ICacheFlushMode icache_flush_mode)115 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
116   if (IsCodeTarget(rmode_)) {
117     uint32_t scope1 = (uint32_t) target_address() & ~kImm28Mask;
118     uint32_t scope2 = reinterpret_cast<uint32_t>(pc_) & ~kImm28Mask;
119 
120     if (scope1 != scope2) {
121       Assembler::JumpLabelToJumpRegister(pc_);
122     }
123   }
124   if (IsInternalReference(rmode_)) {
125     // Absolute code pointer inside code object moves with the code object.
126     byte* p = reinterpret_cast<byte*>(pc_);
127     int count = Assembler::RelocateInternalReference(p, delta);
128     CpuFeatures::FlushICache(p, count * sizeof(uint32_t));
129   }
130 }
131 
132 
target_address()133 Address RelocInfo::target_address() {
134   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
135   return Assembler::target_address_at(pc_, host_);
136 }
137 
138 
target_address_address()139 Address RelocInfo::target_address_address() {
140   DCHECK(IsCodeTarget(rmode_) ||
141          IsRuntimeEntry(rmode_) ||
142          rmode_ == EMBEDDED_OBJECT ||
143          rmode_ == EXTERNAL_REFERENCE);
144   // Read the address of the word containing the target_address in an
145   // instruction stream.
146   // The only architecture-independent user of this function is the serializer.
147   // The serializer uses it to find out how many raw bytes of instruction to
148   // output before the next target.
149   // For an instruction like LUI/ORI where the target bits are mixed into the
150   // instruction bits, the size of the target will be zero, indicating that the
151   // serializer should not step forward in memory after a target is resolved
152   // and written. In this case the target_address_address function should
153   // return the end of the instructions to be patched, allowing the
154   // deserializer to deserialize the instructions as raw bytes and put them in
155   // place, ready to be patched with the target. After jump optimization,
156   // that is the address of the instruction that follows J/JAL/JR/JALR
157   // instruction.
158   return reinterpret_cast<Address>(
159     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
160 }
161 
162 
constant_pool_entry_address()163 Address RelocInfo::constant_pool_entry_address() {
164   UNREACHABLE();
165   return NULL;
166 }
167 
168 
target_address_size()169 int RelocInfo::target_address_size() {
170   return Assembler::kSpecialTargetSize;
171 }
172 
173 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)174 void RelocInfo::set_target_address(Address target,
175                                    WriteBarrierMode write_barrier_mode,
176                                    ICacheFlushMode icache_flush_mode) {
177   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
178   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
179   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
180       host() != NULL && IsCodeTarget(rmode_)) {
181     Object* target_code = Code::GetCodeFromTargetAddress(target);
182     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
183         host(), this, HeapObject::cast(target_code));
184   }
185 }
186 
187 
target_address_from_return_address(Address pc)188 Address Assembler::target_address_from_return_address(Address pc) {
189   return pc - kCallTargetAddressOffset;
190 }
191 
192 
break_address_from_return_address(Address pc)193 Address Assembler::break_address_from_return_address(Address pc) {
194   return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
195 }
196 
197 
target_object()198 Object* RelocInfo::target_object() {
199   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
200   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
201 }
202 
203 
target_object_handle(Assembler * origin)204 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
205   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
206   return Handle<Object>(reinterpret_cast<Object**>(
207       Assembler::target_address_at(pc_, host_)));
208 }
209 
210 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)211 void RelocInfo::set_target_object(Object* target,
212                                   WriteBarrierMode write_barrier_mode,
213                                   ICacheFlushMode icache_flush_mode) {
214   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
215   Assembler::set_target_address_at(pc_, host_,
216                                    reinterpret_cast<Address>(target),
217                                    icache_flush_mode);
218   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
219       host() != NULL &&
220       target->IsHeapObject()) {
221     host()->GetHeap()->incremental_marking()->RecordWrite(
222         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
223   }
224 }
225 
226 
target_reference()227 Address RelocInfo::target_reference() {
228   DCHECK(rmode_ == EXTERNAL_REFERENCE);
229   return Assembler::target_address_at(pc_, host_);
230 }
231 
232 
target_runtime_entry(Assembler * origin)233 Address RelocInfo::target_runtime_entry(Assembler* origin) {
234   DCHECK(IsRuntimeEntry(rmode_));
235   return target_address();
236 }
237 
238 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)239 void RelocInfo::set_target_runtime_entry(Address target,
240                                          WriteBarrierMode write_barrier_mode,
241                                          ICacheFlushMode icache_flush_mode) {
242   DCHECK(IsRuntimeEntry(rmode_));
243   if (target_address() != target)
244     set_target_address(target, write_barrier_mode, icache_flush_mode);
245 }
246 
247 
target_cell_handle()248 Handle<Cell> RelocInfo::target_cell_handle() {
249   DCHECK(rmode_ == RelocInfo::CELL);
250   Address address = Memory::Address_at(pc_);
251   return Handle<Cell>(reinterpret_cast<Cell**>(address));
252 }
253 
254 
target_cell()255 Cell* RelocInfo::target_cell() {
256   DCHECK(rmode_ == RelocInfo::CELL);
257   return Cell::FromValueAddress(Memory::Address_at(pc_));
258 }
259 
260 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)261 void RelocInfo::set_target_cell(Cell* cell,
262                                 WriteBarrierMode write_barrier_mode,
263                                 ICacheFlushMode icache_flush_mode) {
264   DCHECK(rmode_ == RelocInfo::CELL);
265   Address address = cell->address() + Cell::kValueOffset;
266   Memory::Address_at(pc_) = address;
267   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
268     // TODO(1550) We are passing NULL as a slot because cell can never be on
269     // evacuation candidate.
270     host()->GetHeap()->incremental_marking()->RecordWrite(
271         host(), NULL, cell);
272   }
273 }
274 
275 
276 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
277 
278 
code_age_stub_handle(Assembler * origin)279 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
280   UNREACHABLE();  // This should never be reached on Arm.
281   return Handle<Object>();
282 }
283 
284 
code_age_stub()285 Code* RelocInfo::code_age_stub() {
286   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
287   return Code::GetCodeFromTargetAddress(
288       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
289 }
290 
291 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)292 void RelocInfo::set_code_age_stub(Code* stub,
293                                   ICacheFlushMode icache_flush_mode) {
294   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
295   Assembler::set_target_address_at(pc_ + Assembler::kInstrSize,
296                                    host_,
297                                    stub->instruction_start());
298 }
299 
300 
call_address()301 Address RelocInfo::call_address() {
302   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
303          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
304   // The pc_ offset of 0 assumes mips patched return sequence per
305   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
306   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
307   return Assembler::target_address_at(pc_, host_);
308 }
309 
310 
set_call_address(Address target)311 void RelocInfo::set_call_address(Address target) {
312   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
313          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
314   // The pc_ offset of 0 assumes mips patched return sequence per
315   // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
316   // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
317   Assembler::set_target_address_at(pc_, host_, target);
318   if (host() != NULL) {
319     Object* target_code = Code::GetCodeFromTargetAddress(target);
320     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
321         host(), this, HeapObject::cast(target_code));
322   }
323 }
324 
325 
call_object()326 Object* RelocInfo::call_object() {
327   return *call_object_address();
328 }
329 
330 
call_object_address()331 Object** RelocInfo::call_object_address() {
332   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
333          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
334   return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
335 }
336 
337 
set_call_object(Object * target)338 void RelocInfo::set_call_object(Object* target) {
339   *call_object_address() = target;
340 }
341 
342 
WipeOut()343 void RelocInfo::WipeOut() {
344   DCHECK(IsEmbeddedObject(rmode_) ||
345          IsCodeTarget(rmode_) ||
346          IsRuntimeEntry(rmode_) ||
347          IsExternalReference(rmode_));
348   Assembler::set_target_address_at(pc_, host_, NULL);
349 }
350 
351 
IsPatchedReturnSequence()352 bool RelocInfo::IsPatchedReturnSequence() {
353   Instr instr0 = Assembler::instr_at(pc_);
354   Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
355   Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);
356   bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
357                          (instr1 & kOpcodeMask) == ORI &&
358                          ((instr2 & kOpcodeMask) == JAL ||
359                           ((instr2 & kOpcodeMask) == SPECIAL &&
360                            (instr2 & kFunctionFieldMask) == JALR)));
361   return patched_return;
362 }
363 
364 
IsPatchedDebugBreakSlotSequence()365 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
366   Instr current_instr = Assembler::instr_at(pc_);
367   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
368 }
369 
370 
Visit(Isolate * isolate,ObjectVisitor * visitor)371 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
372   RelocInfo::Mode mode = rmode();
373   if (mode == RelocInfo::EMBEDDED_OBJECT) {
374     visitor->VisitEmbeddedPointer(this);
375   } else if (RelocInfo::IsCodeTarget(mode)) {
376     visitor->VisitCodeTarget(this);
377   } else if (mode == RelocInfo::CELL) {
378     visitor->VisitCell(this);
379   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
380     visitor->VisitExternalReference(this);
381   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
382     visitor->VisitCodeAgeSequence(this);
383   } else if (((RelocInfo::IsJSReturn(mode) &&
384               IsPatchedReturnSequence()) ||
385              (RelocInfo::IsDebugBreakSlot(mode) &&
386              IsPatchedDebugBreakSlotSequence())) &&
387              isolate->debug()->has_break_points()) {
388     visitor->VisitDebugTarget(this);
389   } else if (RelocInfo::IsRuntimeEntry(mode)) {
390     visitor->VisitRuntimeEntry(this);
391   }
392 }
393 
394 
395 template<typename StaticVisitor>
Visit(Heap * heap)396 void RelocInfo::Visit(Heap* heap) {
397   RelocInfo::Mode mode = rmode();
398   if (mode == RelocInfo::EMBEDDED_OBJECT) {
399     StaticVisitor::VisitEmbeddedPointer(heap, this);
400   } else if (RelocInfo::IsCodeTarget(mode)) {
401     StaticVisitor::VisitCodeTarget(heap, this);
402   } else if (mode == RelocInfo::CELL) {
403     StaticVisitor::VisitCell(heap, this);
404   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
405     StaticVisitor::VisitExternalReference(this);
406   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
407     StaticVisitor::VisitCodeAgeSequence(heap, this);
408   } else if (heap->isolate()->debug()->has_break_points() &&
409              ((RelocInfo::IsJSReturn(mode) &&
410               IsPatchedReturnSequence()) ||
411              (RelocInfo::IsDebugBreakSlot(mode) &&
412               IsPatchedDebugBreakSlotSequence()))) {
413     StaticVisitor::VisitDebugTarget(heap, this);
414   } else if (RelocInfo::IsRuntimeEntry(mode)) {
415     StaticVisitor::VisitRuntimeEntry(this);
416   }
417 }
418 
419 
420 // -----------------------------------------------------------------------------
421 // Assembler.
422 
423 
CheckBuffer()424 void Assembler::CheckBuffer() {
425   if (buffer_space() <= kGap) {
426     GrowBuffer();
427   }
428 }
429 
430 
CheckTrampolinePoolQuick()431 void Assembler::CheckTrampolinePoolQuick() {
432   if (pc_offset() >= next_buffer_check_) {
433     CheckTrampolinePool();
434   }
435 }
436 
437 
emit(Instr x)438 void Assembler::emit(Instr x) {
439   if (!is_buffer_growth_blocked()) {
440     CheckBuffer();
441   }
442   *reinterpret_cast<Instr*>(pc_) = x;
443   pc_ += kInstrSize;
444   CheckTrampolinePoolQuick();
445 }
446 
447 
448 } }  // namespace v8::internal
449 
450 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
451