1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_HYDROGEN_UNIQUE_H_ 6 #define V8_HYDROGEN_UNIQUE_H_ 7 8 #include "src/handles-inl.h" // TODO(everyone): Fix our inl.h crap 9 #include "src/objects-inl.h" // TODO(everyone): Fix our inl.h crap 10 #include "src/string-stream.h" 11 #include "src/utils.h" 12 #include "src/zone.h" 13 14 namespace v8 { 15 namespace internal { 16 17 18 template <typename T> 19 class UniqueSet; 20 21 22 // Represents a handle to an object on the heap, but with the additional 23 // ability of checking for equality and hashing without accessing the heap. 24 // 25 // Creating a Unique<T> requires first dereferencing the handle to obtain 26 // the address of the object, which is used as the hashcode and the basis for 27 // comparison. The object can be moved later by the GC, but comparison 28 // and hashing use the old address of the object, without dereferencing it. 29 // 30 // Careful! Comparison of two Uniques is only correct if both were created 31 // in the same "era" of GC or if at least one is a non-movable object. 32 template <typename T> 33 class Unique { 34 public: raw_address_(NULL)35 Unique<T>() : raw_address_(NULL) {} 36 37 // TODO(titzer): make private and introduce a uniqueness scope. Unique(Handle<T> handle)38 explicit Unique(Handle<T> handle) { 39 if (handle.is_null()) { 40 raw_address_ = NULL; 41 } else { 42 // This is a best-effort check to prevent comparing Unique<T>'s created 43 // in different GC eras; we require heap allocation to be disallowed at 44 // creation time. 45 // NOTE: we currently consider maps to be non-movable, so no special 46 // assurance is required for creating a Unique<Map>. 47 // TODO(titzer): other immortable immovable objects are also fine. 48 DCHECK(!AllowHeapAllocation::IsAllowed() || handle->IsMap()); 49 raw_address_ = reinterpret_cast<Address>(*handle); 50 DCHECK_NE(raw_address_, NULL); // Non-null should imply non-zero address. 51 } 52 handle_ = handle; 53 } 54 55 // TODO(titzer): this is a hack to migrate to Unique<T> incrementally. Unique(Address raw_address,Handle<T> handle)56 Unique(Address raw_address, Handle<T> handle) 57 : raw_address_(raw_address), handle_(handle) { } 58 59 // Constructor for handling automatic up casting. 60 // Eg. Unique<JSFunction> can be passed when Unique<Object> is expected. Unique(Unique<S> uniq)61 template <class S> Unique(Unique<S> uniq) { 62 #ifdef DEBUG 63 T* a = NULL; 64 S* b = NULL; 65 a = b; // Fake assignment to enforce type checks. 66 USE(a); 67 #endif 68 raw_address_ = uniq.raw_address_; 69 handle_ = uniq.handle_; 70 } 71 72 template <typename U> 73 inline bool operator==(const Unique<U>& other) const { 74 DCHECK(IsInitialized() && other.IsInitialized()); 75 return raw_address_ == other.raw_address_; 76 } 77 78 template <typename U> 79 inline bool operator!=(const Unique<U>& other) const { 80 DCHECK(IsInitialized() && other.IsInitialized()); 81 return raw_address_ != other.raw_address_; 82 } 83 Hashcode()84 inline intptr_t Hashcode() const { 85 DCHECK(IsInitialized()); 86 return reinterpret_cast<intptr_t>(raw_address_); 87 } 88 IsNull()89 inline bool IsNull() const { 90 DCHECK(IsInitialized()); 91 return raw_address_ == NULL; 92 } 93 IsKnownGlobal(void * global)94 inline bool IsKnownGlobal(void* global) const { 95 DCHECK(IsInitialized()); 96 return raw_address_ == reinterpret_cast<Address>(global); 97 } 98 handle()99 inline Handle<T> handle() const { 100 return handle_; 101 } 102 cast(Unique<S> that)103 template <class S> static Unique<T> cast(Unique<S> that) { 104 return Unique<T>(that.raw_address_, Handle<T>::cast(that.handle_)); 105 } 106 IsInitialized()107 inline bool IsInitialized() const { 108 return raw_address_ != NULL || handle_.is_null(); 109 } 110 111 // TODO(titzer): this is a hack to migrate to Unique<T> incrementally. CreateUninitialized(Handle<T> handle)112 static Unique<T> CreateUninitialized(Handle<T> handle) { 113 return Unique<T>(reinterpret_cast<Address>(NULL), handle); 114 } 115 CreateImmovable(Handle<T> handle)116 static Unique<T> CreateImmovable(Handle<T> handle) { 117 return Unique<T>(reinterpret_cast<Address>(*handle), handle); 118 } 119 120 friend class UniqueSet<T>; // Uses internal details for speed. 121 template <class U> 122 friend class Unique; // For comparing raw_address values. 123 124 protected: 125 Address raw_address_; 126 Handle<T> handle_; 127 128 friend class SideEffectsTracker; 129 }; 130 131 132 template <typename T> 133 class UniqueSet FINAL : public ZoneObject { 134 public: 135 // Constructor. A new set will be empty. UniqueSet()136 UniqueSet() : size_(0), capacity_(0), array_(NULL) { } 137 138 // Capacity constructor. A new set will be empty. UniqueSet(int capacity,Zone * zone)139 UniqueSet(int capacity, Zone* zone) 140 : size_(0), capacity_(capacity), 141 array_(zone->NewArray<Unique<T> >(capacity)) { 142 DCHECK(capacity <= kMaxCapacity); 143 } 144 145 // Singleton constructor. UniqueSet(Unique<T> uniq,Zone * zone)146 UniqueSet(Unique<T> uniq, Zone* zone) 147 : size_(1), capacity_(1), array_(zone->NewArray<Unique<T> >(1)) { 148 array_[0] = uniq; 149 } 150 151 // Add a new element to this unique set. Mutates this set. O(|this|). Add(Unique<T> uniq,Zone * zone)152 void Add(Unique<T> uniq, Zone* zone) { 153 DCHECK(uniq.IsInitialized()); 154 // Keep the set sorted by the {raw_address} of the unique elements. 155 for (int i = 0; i < size_; i++) { 156 if (array_[i] == uniq) return; 157 if (array_[i].raw_address_ > uniq.raw_address_) { 158 // Insert in the middle. 159 Grow(size_ + 1, zone); 160 for (int j = size_ - 1; j >= i; j--) array_[j + 1] = array_[j]; 161 array_[i] = uniq; 162 size_++; 163 return; 164 } 165 } 166 // Append the element to the the end. 167 Grow(size_ + 1, zone); 168 array_[size_++] = uniq; 169 } 170 171 // Remove an element from this set. Mutates this set. O(|this|) Remove(Unique<T> uniq)172 void Remove(Unique<T> uniq) { 173 for (int i = 0; i < size_; i++) { 174 if (array_[i] == uniq) { 175 while (++i < size_) array_[i - 1] = array_[i]; 176 size_--; 177 return; 178 } 179 } 180 } 181 182 // Compare this set against another set. O(|this|). Equals(const UniqueSet<T> * that)183 bool Equals(const UniqueSet<T>* that) const { 184 if (that->size_ != this->size_) return false; 185 for (int i = 0; i < this->size_; i++) { 186 if (this->array_[i] != that->array_[i]) return false; 187 } 188 return true; 189 } 190 191 // Check whether this set contains the given element. O(|this|) 192 // TODO(titzer): use binary search for large sets to make this O(log|this|) 193 template <typename U> Contains(const Unique<U> elem)194 bool Contains(const Unique<U> elem) const { 195 for (int i = 0; i < this->size_; ++i) { 196 Unique<T> cand = this->array_[i]; 197 if (cand.raw_address_ >= elem.raw_address_) { 198 return cand.raw_address_ == elem.raw_address_; 199 } 200 } 201 return false; 202 } 203 204 // Check if this set is a subset of the given set. O(|this| + |that|). IsSubset(const UniqueSet<T> * that)205 bool IsSubset(const UniqueSet<T>* that) const { 206 if (that->size_ < this->size_) return false; 207 int j = 0; 208 for (int i = 0; i < this->size_; i++) { 209 Unique<T> sought = this->array_[i]; 210 while (true) { 211 if (sought == that->array_[j++]) break; 212 // Fail whenever there are more elements in {this} than {that}. 213 if ((this->size_ - i) > (that->size_ - j)) return false; 214 } 215 } 216 return true; 217 } 218 219 // Returns a new set representing the intersection of this set and the other. 220 // O(|this| + |that|). Intersect(const UniqueSet<T> * that,Zone * zone)221 UniqueSet<T>* Intersect(const UniqueSet<T>* that, Zone* zone) const { 222 if (that->size_ == 0 || this->size_ == 0) return new(zone) UniqueSet<T>(); 223 224 UniqueSet<T>* out = new(zone) UniqueSet<T>( 225 Min(this->size_, that->size_), zone); 226 227 int i = 0, j = 0, k = 0; 228 while (i < this->size_ && j < that->size_) { 229 Unique<T> a = this->array_[i]; 230 Unique<T> b = that->array_[j]; 231 if (a == b) { 232 out->array_[k++] = a; 233 i++; 234 j++; 235 } else if (a.raw_address_ < b.raw_address_) { 236 i++; 237 } else { 238 j++; 239 } 240 } 241 242 out->size_ = k; 243 return out; 244 } 245 246 // Returns a new set representing the union of this set and the other. 247 // O(|this| + |that|). Union(const UniqueSet<T> * that,Zone * zone)248 UniqueSet<T>* Union(const UniqueSet<T>* that, Zone* zone) const { 249 if (that->size_ == 0) return this->Copy(zone); 250 if (this->size_ == 0) return that->Copy(zone); 251 252 UniqueSet<T>* out = new(zone) UniqueSet<T>( 253 this->size_ + that->size_, zone); 254 255 int i = 0, j = 0, k = 0; 256 while (i < this->size_ && j < that->size_) { 257 Unique<T> a = this->array_[i]; 258 Unique<T> b = that->array_[j]; 259 if (a == b) { 260 out->array_[k++] = a; 261 i++; 262 j++; 263 } else if (a.raw_address_ < b.raw_address_) { 264 out->array_[k++] = a; 265 i++; 266 } else { 267 out->array_[k++] = b; 268 j++; 269 } 270 } 271 272 while (i < this->size_) out->array_[k++] = this->array_[i++]; 273 while (j < that->size_) out->array_[k++] = that->array_[j++]; 274 275 out->size_ = k; 276 return out; 277 } 278 279 // Returns a new set representing all elements from this set which are not in 280 // that set. O(|this| * |that|). Subtract(const UniqueSet<T> * that,Zone * zone)281 UniqueSet<T>* Subtract(const UniqueSet<T>* that, Zone* zone) const { 282 if (that->size_ == 0) return this->Copy(zone); 283 284 UniqueSet<T>* out = new(zone) UniqueSet<T>(this->size_, zone); 285 286 int i = 0, j = 0; 287 while (i < this->size_) { 288 Unique<T> cand = this->array_[i]; 289 if (!that->Contains(cand)) { 290 out->array_[j++] = cand; 291 } 292 i++; 293 } 294 295 out->size_ = j; 296 return out; 297 } 298 299 // Makes an exact copy of this set. O(|this|). Copy(Zone * zone)300 UniqueSet<T>* Copy(Zone* zone) const { 301 UniqueSet<T>* copy = new(zone) UniqueSet<T>(this->size_, zone); 302 copy->size_ = this->size_; 303 memcpy(copy->array_, this->array_, this->size_ * sizeof(Unique<T>)); 304 return copy; 305 } 306 Clear()307 void Clear() { 308 size_ = 0; 309 } 310 size()311 inline int size() const { 312 return size_; 313 } 314 at(int index)315 inline Unique<T> at(int index) const { 316 DCHECK(index >= 0 && index < size_); 317 return array_[index]; 318 } 319 320 private: 321 // These sets should be small, since operations are implemented with simple 322 // linear algorithms. Enforce a maximum size. 323 static const int kMaxCapacity = 65535; 324 325 uint16_t size_; 326 uint16_t capacity_; 327 Unique<T>* array_; 328 329 // Grow the size of internal storage to be at least {size} elements. Grow(int size,Zone * zone)330 void Grow(int size, Zone* zone) { 331 CHECK(size < kMaxCapacity); // Enforce maximum size. 332 if (capacity_ < size) { 333 int new_capacity = 2 * capacity_ + size; 334 if (new_capacity > kMaxCapacity) new_capacity = kMaxCapacity; 335 Unique<T>* new_array = zone->NewArray<Unique<T> >(new_capacity); 336 if (size_ > 0) { 337 memcpy(new_array, array_, size_ * sizeof(Unique<T>)); 338 } 339 capacity_ = new_capacity; 340 array_ = new_array; 341 } 342 } 343 }; 344 345 } } // namespace v8::internal 346 347 #endif // V8_HYDROGEN_UNIQUE_H_ 348