1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
6 #define V8_X64_ASSEMBLER_X64_INL_H_
7 
8 #include "src/x64/assembler-x64.h"
9 
10 #include "src/base/cpu.h"
11 #include "src/debug.h"
12 #include "src/v8memory.h"
13 
14 namespace v8 {
15 namespace internal {
16 
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18 
19 
20 // -----------------------------------------------------------------------------
21 // Implementation of Assembler
22 
23 
24 static const byte kCallOpcode = 0xE8;
25 // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
26 static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
27 
28 
emitl(uint32_t x)29 void Assembler::emitl(uint32_t x) {
30   Memory::uint32_at(pc_) = x;
31   pc_ += sizeof(uint32_t);
32 }
33 
34 
emitp(void * x,RelocInfo::Mode rmode)35 void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
36   uintptr_t value = reinterpret_cast<uintptr_t>(x);
37   Memory::uintptr_at(pc_) = value;
38   if (!RelocInfo::IsNone(rmode)) {
39     RecordRelocInfo(rmode, value);
40   }
41   pc_ += sizeof(uintptr_t);
42 }
43 
44 
emitq(uint64_t x)45 void Assembler::emitq(uint64_t x) {
46   Memory::uint64_at(pc_) = x;
47   pc_ += sizeof(uint64_t);
48 }
49 
50 
emitw(uint16_t x)51 void Assembler::emitw(uint16_t x) {
52   Memory::uint16_at(pc_) = x;
53   pc_ += sizeof(uint16_t);
54 }
55 
56 
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)57 void Assembler::emit_code_target(Handle<Code> target,
58                                  RelocInfo::Mode rmode,
59                                  TypeFeedbackId ast_id) {
60   DCHECK(RelocInfo::IsCodeTarget(rmode) ||
61       rmode == RelocInfo::CODE_AGE_SEQUENCE);
62   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
63     RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
64   } else {
65     RecordRelocInfo(rmode);
66   }
67   int current = code_targets_.length();
68   if (current > 0 && code_targets_.last().is_identical_to(target)) {
69     // Optimization if we keep jumping to the same code target.
70     emitl(current - 1);
71   } else {
72     code_targets_.Add(target);
73     emitl(current);
74   }
75 }
76 
77 
emit_runtime_entry(Address entry,RelocInfo::Mode rmode)78 void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
79   DCHECK(RelocInfo::IsRuntimeEntry(rmode));
80   RecordRelocInfo(rmode);
81   emitl(static_cast<uint32_t>(entry - isolate()->code_range()->start()));
82 }
83 
84 
emit_rex_64(Register reg,Register rm_reg)85 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
86   emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
87 }
88 
89 
emit_rex_64(XMMRegister reg,Register rm_reg)90 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
91   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
92 }
93 
94 
emit_rex_64(Register reg,XMMRegister rm_reg)95 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
96   emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
97 }
98 
99 
emit_rex_64(Register reg,const Operand & op)100 void Assembler::emit_rex_64(Register reg, const Operand& op) {
101   emit(0x48 | reg.high_bit() << 2 | op.rex_);
102 }
103 
104 
emit_rex_64(XMMRegister reg,const Operand & op)105 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
106   emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
107 }
108 
109 
emit_rex_64(Register rm_reg)110 void Assembler::emit_rex_64(Register rm_reg) {
111   DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
112   emit(0x48 | rm_reg.high_bit());
113 }
114 
115 
emit_rex_64(const Operand & op)116 void Assembler::emit_rex_64(const Operand& op) {
117   emit(0x48 | op.rex_);
118 }
119 
120 
emit_rex_32(Register reg,Register rm_reg)121 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
122   emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
123 }
124 
125 
emit_rex_32(Register reg,const Operand & op)126 void Assembler::emit_rex_32(Register reg, const Operand& op) {
127   emit(0x40 | reg.high_bit() << 2  | op.rex_);
128 }
129 
130 
emit_rex_32(Register rm_reg)131 void Assembler::emit_rex_32(Register rm_reg) {
132   emit(0x40 | rm_reg.high_bit());
133 }
134 
135 
emit_rex_32(const Operand & op)136 void Assembler::emit_rex_32(const Operand& op) {
137   emit(0x40 | op.rex_);
138 }
139 
140 
emit_optional_rex_32(Register reg,Register rm_reg)141 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
142   byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
143   if (rex_bits != 0) emit(0x40 | rex_bits);
144 }
145 
146 
emit_optional_rex_32(Register reg,const Operand & op)147 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
148   byte rex_bits =  reg.high_bit() << 2 | op.rex_;
149   if (rex_bits != 0) emit(0x40 | rex_bits);
150 }
151 
152 
emit_optional_rex_32(XMMRegister reg,const Operand & op)153 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
154   byte rex_bits =  (reg.code() & 0x8) >> 1 | op.rex_;
155   if (rex_bits != 0) emit(0x40 | rex_bits);
156 }
157 
158 
emit_optional_rex_32(XMMRegister reg,XMMRegister base)159 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
160   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
161   if (rex_bits != 0) emit(0x40 | rex_bits);
162 }
163 
164 
emit_optional_rex_32(XMMRegister reg,Register base)165 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
166   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
167   if (rex_bits != 0) emit(0x40 | rex_bits);
168 }
169 
170 
emit_optional_rex_32(Register reg,XMMRegister base)171 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
172   byte rex_bits =  (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
173   if (rex_bits != 0) emit(0x40 | rex_bits);
174 }
175 
176 
emit_optional_rex_32(Register rm_reg)177 void Assembler::emit_optional_rex_32(Register rm_reg) {
178   if (rm_reg.high_bit()) emit(0x41);
179 }
180 
181 
emit_optional_rex_32(const Operand & op)182 void Assembler::emit_optional_rex_32(const Operand& op) {
183   if (op.rex_ != 0) emit(0x40 | op.rex_);
184 }
185 
186 
target_address_at(Address pc,ConstantPoolArray * constant_pool)187 Address Assembler::target_address_at(Address pc,
188                                      ConstantPoolArray* constant_pool) {
189   return Memory::int32_at(pc) + pc + 4;
190 }
191 
192 
set_target_address_at(Address pc,ConstantPoolArray * constant_pool,Address target,ICacheFlushMode icache_flush_mode)193 void Assembler::set_target_address_at(Address pc,
194                                       ConstantPoolArray* constant_pool,
195                                       Address target,
196                                       ICacheFlushMode icache_flush_mode) {
197   Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
198   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
199     CpuFeatures::FlushICache(pc, sizeof(int32_t));
200   }
201 }
202 
203 
target_address_from_return_address(Address pc)204 Address Assembler::target_address_from_return_address(Address pc) {
205   return pc - kCallTargetAddressOffset;
206 }
207 
208 
break_address_from_return_address(Address pc)209 Address Assembler::break_address_from_return_address(Address pc) {
210   return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
211 }
212 
213 
code_target_object_handle_at(Address pc)214 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
215   return code_targets_[Memory::int32_at(pc)];
216 }
217 
218 
runtime_entry_at(Address pc)219 Address Assembler::runtime_entry_at(Address pc) {
220   return Memory::int32_at(pc) + isolate()->code_range()->start();
221 }
222 
223 // -----------------------------------------------------------------------------
224 // Implementation of RelocInfo
225 
226 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta,ICacheFlushMode icache_flush_mode)227 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
228   bool flush_icache = icache_flush_mode != SKIP_ICACHE_FLUSH;
229   if (IsInternalReference(rmode_)) {
230     // absolute code pointer inside code object moves with the code object.
231     Memory::Address_at(pc_) += static_cast<int32_t>(delta);
232     if (flush_icache) CpuFeatures::FlushICache(pc_, sizeof(Address));
233   } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
234     Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
235     if (flush_icache) CpuFeatures::FlushICache(pc_, sizeof(int32_t));
236   } else if (rmode_ == CODE_AGE_SEQUENCE) {
237     if (*pc_ == kCallOpcode) {
238       int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
239       *p -= static_cast<int32_t>(delta);  // Relocate entry.
240       if (flush_icache) CpuFeatures::FlushICache(p, sizeof(uint32_t));
241     }
242   }
243 }
244 
245 
target_address()246 Address RelocInfo::target_address() {
247   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
248   return Assembler::target_address_at(pc_, host_);
249 }
250 
251 
target_address_address()252 Address RelocInfo::target_address_address() {
253   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
254                               || rmode_ == EMBEDDED_OBJECT
255                               || rmode_ == EXTERNAL_REFERENCE);
256   return reinterpret_cast<Address>(pc_);
257 }
258 
259 
constant_pool_entry_address()260 Address RelocInfo::constant_pool_entry_address() {
261   UNREACHABLE();
262   return NULL;
263 }
264 
265 
target_address_size()266 int RelocInfo::target_address_size() {
267   if (IsCodedSpecially()) {
268     return Assembler::kSpecialTargetSize;
269   } else {
270     return kPointerSize;
271   }
272 }
273 
274 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)275 void RelocInfo::set_target_address(Address target,
276                                    WriteBarrierMode write_barrier_mode,
277                                    ICacheFlushMode icache_flush_mode) {
278   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
279   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
280   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
281       IsCodeTarget(rmode_)) {
282     Object* target_code = Code::GetCodeFromTargetAddress(target);
283     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
284         host(), this, HeapObject::cast(target_code));
285   }
286 }
287 
288 
target_object()289 Object* RelocInfo::target_object() {
290   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
291   return Memory::Object_at(pc_);
292 }
293 
294 
target_object_handle(Assembler * origin)295 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
296   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
297   if (rmode_ == EMBEDDED_OBJECT) {
298     return Memory::Object_Handle_at(pc_);
299   } else {
300     return origin->code_target_object_handle_at(pc_);
301   }
302 }
303 
304 
target_reference()305 Address RelocInfo::target_reference() {
306   DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
307   return Memory::Address_at(pc_);
308 }
309 
310 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)311 void RelocInfo::set_target_object(Object* target,
312                                   WriteBarrierMode write_barrier_mode,
313                                   ICacheFlushMode icache_flush_mode) {
314   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
315   Memory::Object_at(pc_) = target;
316   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
317     CpuFeatures::FlushICache(pc_, sizeof(Address));
318   }
319   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
320       host() != NULL &&
321       target->IsHeapObject()) {
322     host()->GetHeap()->incremental_marking()->RecordWrite(
323         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
324   }
325 }
326 
327 
target_runtime_entry(Assembler * origin)328 Address RelocInfo::target_runtime_entry(Assembler* origin) {
329   DCHECK(IsRuntimeEntry(rmode_));
330   return origin->runtime_entry_at(pc_);
331 }
332 
333 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)334 void RelocInfo::set_target_runtime_entry(Address target,
335                                          WriteBarrierMode write_barrier_mode,
336                                          ICacheFlushMode icache_flush_mode) {
337   DCHECK(IsRuntimeEntry(rmode_));
338   if (target_address() != target) {
339     set_target_address(target, write_barrier_mode, icache_flush_mode);
340   }
341 }
342 
343 
target_cell_handle()344 Handle<Cell> RelocInfo::target_cell_handle() {
345   DCHECK(rmode_ == RelocInfo::CELL);
346   Address address = Memory::Address_at(pc_);
347   return Handle<Cell>(reinterpret_cast<Cell**>(address));
348 }
349 
350 
target_cell()351 Cell* RelocInfo::target_cell() {
352   DCHECK(rmode_ == RelocInfo::CELL);
353   return Cell::FromValueAddress(Memory::Address_at(pc_));
354 }
355 
356 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)357 void RelocInfo::set_target_cell(Cell* cell,
358                                 WriteBarrierMode write_barrier_mode,
359                                 ICacheFlushMode icache_flush_mode) {
360   DCHECK(rmode_ == RelocInfo::CELL);
361   Address address = cell->address() + Cell::kValueOffset;
362   Memory::Address_at(pc_) = address;
363   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
364     CpuFeatures::FlushICache(pc_, sizeof(Address));
365   }
366   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
367       host() != NULL) {
368     // TODO(1550) We are passing NULL as a slot because cell can never be on
369     // evacuation candidate.
370     host()->GetHeap()->incremental_marking()->RecordWrite(
371         host(), NULL, cell);
372   }
373 }
374 
375 
WipeOut()376 void RelocInfo::WipeOut() {
377   if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_)) {
378     Memory::Address_at(pc_) = NULL;
379   } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
380     // Effectively write zero into the relocation.
381     Assembler::set_target_address_at(pc_, host_, pc_ + sizeof(int32_t));
382   } else {
383     UNREACHABLE();
384   }
385 }
386 
387 
IsPatchedReturnSequence()388 bool RelocInfo::IsPatchedReturnSequence() {
389   // The recognized call sequence is:
390   //  movq(kScratchRegister, address); call(kScratchRegister);
391   // It only needs to be distinguished from a return sequence
392   //  movq(rsp, rbp); pop(rbp); ret(n); int3 *6
393   // The 11th byte is int3 (0xCC) in the return sequence and
394   // REX.WB (0x48+register bit) for the call sequence.
395   return pc_[Assembler::kMoveAddressIntoScratchRegisterInstructionLength] !=
396          0xCC;
397 }
398 
399 
IsPatchedDebugBreakSlotSequence()400 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
401   return !Assembler::IsNop(pc());
402 }
403 
404 
code_age_stub_handle(Assembler * origin)405 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
406   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
407   DCHECK(*pc_ == kCallOpcode);
408   return origin->code_target_object_handle_at(pc_ + 1);
409 }
410 
411 
code_age_stub()412 Code* RelocInfo::code_age_stub() {
413   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
414   DCHECK(*pc_ == kCallOpcode);
415   return Code::GetCodeFromTargetAddress(
416       Assembler::target_address_at(pc_ + 1, host_));
417 }
418 
419 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)420 void RelocInfo::set_code_age_stub(Code* stub,
421                                   ICacheFlushMode icache_flush_mode) {
422   DCHECK(*pc_ == kCallOpcode);
423   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
424   Assembler::set_target_address_at(pc_ + 1, host_, stub->instruction_start(),
425                                    icache_flush_mode);
426 }
427 
428 
call_address()429 Address RelocInfo::call_address() {
430   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
431          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
432   return Memory::Address_at(
433       pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
434 }
435 
436 
set_call_address(Address target)437 void RelocInfo::set_call_address(Address target) {
438   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
439          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
440   Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
441       target;
442   CpuFeatures::FlushICache(
443       pc_ + Assembler::kRealPatchReturnSequenceAddressOffset, sizeof(Address));
444   if (host() != NULL) {
445     Object* target_code = Code::GetCodeFromTargetAddress(target);
446     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
447         host(), this, HeapObject::cast(target_code));
448   }
449 }
450 
451 
call_object()452 Object* RelocInfo::call_object() {
453   return *call_object_address();
454 }
455 
456 
set_call_object(Object * target)457 void RelocInfo::set_call_object(Object* target) {
458   *call_object_address() = target;
459 }
460 
461 
call_object_address()462 Object** RelocInfo::call_object_address() {
463   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
464          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
465   return reinterpret_cast<Object**>(
466       pc_ + Assembler::kPatchReturnSequenceAddressOffset);
467 }
468 
469 
Visit(Isolate * isolate,ObjectVisitor * visitor)470 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
471   RelocInfo::Mode mode = rmode();
472   if (mode == RelocInfo::EMBEDDED_OBJECT) {
473     visitor->VisitEmbeddedPointer(this);
474     CpuFeatures::FlushICache(pc_, sizeof(Address));
475   } else if (RelocInfo::IsCodeTarget(mode)) {
476     visitor->VisitCodeTarget(this);
477   } else if (mode == RelocInfo::CELL) {
478     visitor->VisitCell(this);
479   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
480     visitor->VisitExternalReference(this);
481     CpuFeatures::FlushICache(pc_, sizeof(Address));
482   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
483     visitor->VisitCodeAgeSequence(this);
484   } else if (((RelocInfo::IsJSReturn(mode) &&
485               IsPatchedReturnSequence()) ||
486              (RelocInfo::IsDebugBreakSlot(mode) &&
487               IsPatchedDebugBreakSlotSequence())) &&
488              isolate->debug()->has_break_points()) {
489     visitor->VisitDebugTarget(this);
490   } else if (RelocInfo::IsRuntimeEntry(mode)) {
491     visitor->VisitRuntimeEntry(this);
492   }
493 }
494 
495 
496 template<typename StaticVisitor>
Visit(Heap * heap)497 void RelocInfo::Visit(Heap* heap) {
498   RelocInfo::Mode mode = rmode();
499   if (mode == RelocInfo::EMBEDDED_OBJECT) {
500     StaticVisitor::VisitEmbeddedPointer(heap, this);
501     CpuFeatures::FlushICache(pc_, sizeof(Address));
502   } else if (RelocInfo::IsCodeTarget(mode)) {
503     StaticVisitor::VisitCodeTarget(heap, this);
504   } else if (mode == RelocInfo::CELL) {
505     StaticVisitor::VisitCell(heap, this);
506   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
507     StaticVisitor::VisitExternalReference(this);
508     CpuFeatures::FlushICache(pc_, sizeof(Address));
509   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
510     StaticVisitor::VisitCodeAgeSequence(heap, this);
511   } else if (heap->isolate()->debug()->has_break_points() &&
512              ((RelocInfo::IsJSReturn(mode) &&
513               IsPatchedReturnSequence()) ||
514              (RelocInfo::IsDebugBreakSlot(mode) &&
515               IsPatchedDebugBreakSlotSequence()))) {
516     StaticVisitor::VisitDebugTarget(heap, this);
517   } else if (RelocInfo::IsRuntimeEntry(mode)) {
518     StaticVisitor::VisitRuntimeEntry(this);
519   }
520 }
521 
522 
523 // -----------------------------------------------------------------------------
524 // Implementation of Operand
525 
set_modrm(int mod,Register rm_reg)526 void Operand::set_modrm(int mod, Register rm_reg) {
527   DCHECK(is_uint2(mod));
528   buf_[0] = mod << 6 | rm_reg.low_bits();
529   // Set REX.B to the high bit of rm.code().
530   rex_ |= rm_reg.high_bit();
531 }
532 
533 
set_sib(ScaleFactor scale,Register index,Register base)534 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
535   DCHECK(len_ == 1);
536   DCHECK(is_uint2(scale));
537   // Use SIB with no index register only for base rsp or r12. Otherwise we
538   // would skip the SIB byte entirely.
539   DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
540   buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
541   rex_ |= index.high_bit() << 1 | base.high_bit();
542   len_ = 2;
543 }
544 
set_disp8(int disp)545 void Operand::set_disp8(int disp) {
546   DCHECK(is_int8(disp));
547   DCHECK(len_ == 1 || len_ == 2);
548   int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
549   *p = disp;
550   len_ += sizeof(int8_t);
551 }
552 
set_disp32(int disp)553 void Operand::set_disp32(int disp) {
554   DCHECK(len_ == 1 || len_ == 2);
555   int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
556   *p = disp;
557   len_ += sizeof(int32_t);
558 }
559 
560 
561 } }  // namespace v8::internal
562 
563 #endif  // V8_X64_ASSEMBLER_X64_INL_H_
564