1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
6 #define V8_X64_ASSEMBLER_X64_INL_H_
7
8 #include "src/x64/assembler-x64.h"
9
10 #include "src/base/cpu.h"
11 #include "src/debug.h"
12 #include "src/v8memory.h"
13
14 namespace v8 {
15 namespace internal {
16
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18
19
20 // -----------------------------------------------------------------------------
21 // Implementation of Assembler
22
23
24 static const byte kCallOpcode = 0xE8;
25 // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
26 static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
27
28
emitl(uint32_t x)29 void Assembler::emitl(uint32_t x) {
30 Memory::uint32_at(pc_) = x;
31 pc_ += sizeof(uint32_t);
32 }
33
34
emitp(void * x,RelocInfo::Mode rmode)35 void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
36 uintptr_t value = reinterpret_cast<uintptr_t>(x);
37 Memory::uintptr_at(pc_) = value;
38 if (!RelocInfo::IsNone(rmode)) {
39 RecordRelocInfo(rmode, value);
40 }
41 pc_ += sizeof(uintptr_t);
42 }
43
44
emitq(uint64_t x)45 void Assembler::emitq(uint64_t x) {
46 Memory::uint64_at(pc_) = x;
47 pc_ += sizeof(uint64_t);
48 }
49
50
emitw(uint16_t x)51 void Assembler::emitw(uint16_t x) {
52 Memory::uint16_at(pc_) = x;
53 pc_ += sizeof(uint16_t);
54 }
55
56
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)57 void Assembler::emit_code_target(Handle<Code> target,
58 RelocInfo::Mode rmode,
59 TypeFeedbackId ast_id) {
60 DCHECK(RelocInfo::IsCodeTarget(rmode) ||
61 rmode == RelocInfo::CODE_AGE_SEQUENCE);
62 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
63 RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
64 } else {
65 RecordRelocInfo(rmode);
66 }
67 int current = code_targets_.length();
68 if (current > 0 && code_targets_.last().is_identical_to(target)) {
69 // Optimization if we keep jumping to the same code target.
70 emitl(current - 1);
71 } else {
72 code_targets_.Add(target);
73 emitl(current);
74 }
75 }
76
77
emit_runtime_entry(Address entry,RelocInfo::Mode rmode)78 void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
79 DCHECK(RelocInfo::IsRuntimeEntry(rmode));
80 RecordRelocInfo(rmode);
81 emitl(static_cast<uint32_t>(entry - isolate()->code_range()->start()));
82 }
83
84
emit_rex_64(Register reg,Register rm_reg)85 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
86 emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
87 }
88
89
emit_rex_64(XMMRegister reg,Register rm_reg)90 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
91 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
92 }
93
94
emit_rex_64(Register reg,XMMRegister rm_reg)95 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
96 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
97 }
98
99
emit_rex_64(Register reg,const Operand & op)100 void Assembler::emit_rex_64(Register reg, const Operand& op) {
101 emit(0x48 | reg.high_bit() << 2 | op.rex_);
102 }
103
104
emit_rex_64(XMMRegister reg,const Operand & op)105 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
106 emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
107 }
108
109
emit_rex_64(Register rm_reg)110 void Assembler::emit_rex_64(Register rm_reg) {
111 DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
112 emit(0x48 | rm_reg.high_bit());
113 }
114
115
emit_rex_64(const Operand & op)116 void Assembler::emit_rex_64(const Operand& op) {
117 emit(0x48 | op.rex_);
118 }
119
120
emit_rex_32(Register reg,Register rm_reg)121 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
122 emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
123 }
124
125
emit_rex_32(Register reg,const Operand & op)126 void Assembler::emit_rex_32(Register reg, const Operand& op) {
127 emit(0x40 | reg.high_bit() << 2 | op.rex_);
128 }
129
130
emit_rex_32(Register rm_reg)131 void Assembler::emit_rex_32(Register rm_reg) {
132 emit(0x40 | rm_reg.high_bit());
133 }
134
135
emit_rex_32(const Operand & op)136 void Assembler::emit_rex_32(const Operand& op) {
137 emit(0x40 | op.rex_);
138 }
139
140
emit_optional_rex_32(Register reg,Register rm_reg)141 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
142 byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
143 if (rex_bits != 0) emit(0x40 | rex_bits);
144 }
145
146
emit_optional_rex_32(Register reg,const Operand & op)147 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
148 byte rex_bits = reg.high_bit() << 2 | op.rex_;
149 if (rex_bits != 0) emit(0x40 | rex_bits);
150 }
151
152
emit_optional_rex_32(XMMRegister reg,const Operand & op)153 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
154 byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
155 if (rex_bits != 0) emit(0x40 | rex_bits);
156 }
157
158
emit_optional_rex_32(XMMRegister reg,XMMRegister base)159 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
160 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
161 if (rex_bits != 0) emit(0x40 | rex_bits);
162 }
163
164
emit_optional_rex_32(XMMRegister reg,Register base)165 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
166 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
167 if (rex_bits != 0) emit(0x40 | rex_bits);
168 }
169
170
emit_optional_rex_32(Register reg,XMMRegister base)171 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
172 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
173 if (rex_bits != 0) emit(0x40 | rex_bits);
174 }
175
176
emit_optional_rex_32(Register rm_reg)177 void Assembler::emit_optional_rex_32(Register rm_reg) {
178 if (rm_reg.high_bit()) emit(0x41);
179 }
180
181
emit_optional_rex_32(const Operand & op)182 void Assembler::emit_optional_rex_32(const Operand& op) {
183 if (op.rex_ != 0) emit(0x40 | op.rex_);
184 }
185
186
target_address_at(Address pc,ConstantPoolArray * constant_pool)187 Address Assembler::target_address_at(Address pc,
188 ConstantPoolArray* constant_pool) {
189 return Memory::int32_at(pc) + pc + 4;
190 }
191
192
set_target_address_at(Address pc,ConstantPoolArray * constant_pool,Address target,ICacheFlushMode icache_flush_mode)193 void Assembler::set_target_address_at(Address pc,
194 ConstantPoolArray* constant_pool,
195 Address target,
196 ICacheFlushMode icache_flush_mode) {
197 Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
198 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
199 CpuFeatures::FlushICache(pc, sizeof(int32_t));
200 }
201 }
202
203
target_address_from_return_address(Address pc)204 Address Assembler::target_address_from_return_address(Address pc) {
205 return pc - kCallTargetAddressOffset;
206 }
207
208
break_address_from_return_address(Address pc)209 Address Assembler::break_address_from_return_address(Address pc) {
210 return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
211 }
212
213
code_target_object_handle_at(Address pc)214 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
215 return code_targets_[Memory::int32_at(pc)];
216 }
217
218
runtime_entry_at(Address pc)219 Address Assembler::runtime_entry_at(Address pc) {
220 return Memory::int32_at(pc) + isolate()->code_range()->start();
221 }
222
223 // -----------------------------------------------------------------------------
224 // Implementation of RelocInfo
225
226 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta,ICacheFlushMode icache_flush_mode)227 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
228 bool flush_icache = icache_flush_mode != SKIP_ICACHE_FLUSH;
229 if (IsInternalReference(rmode_)) {
230 // absolute code pointer inside code object moves with the code object.
231 Memory::Address_at(pc_) += static_cast<int32_t>(delta);
232 if (flush_icache) CpuFeatures::FlushICache(pc_, sizeof(Address));
233 } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
234 Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
235 if (flush_icache) CpuFeatures::FlushICache(pc_, sizeof(int32_t));
236 } else if (rmode_ == CODE_AGE_SEQUENCE) {
237 if (*pc_ == kCallOpcode) {
238 int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
239 *p -= static_cast<int32_t>(delta); // Relocate entry.
240 if (flush_icache) CpuFeatures::FlushICache(p, sizeof(uint32_t));
241 }
242 }
243 }
244
245
target_address()246 Address RelocInfo::target_address() {
247 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
248 return Assembler::target_address_at(pc_, host_);
249 }
250
251
target_address_address()252 Address RelocInfo::target_address_address() {
253 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
254 || rmode_ == EMBEDDED_OBJECT
255 || rmode_ == EXTERNAL_REFERENCE);
256 return reinterpret_cast<Address>(pc_);
257 }
258
259
constant_pool_entry_address()260 Address RelocInfo::constant_pool_entry_address() {
261 UNREACHABLE();
262 return NULL;
263 }
264
265
target_address_size()266 int RelocInfo::target_address_size() {
267 if (IsCodedSpecially()) {
268 return Assembler::kSpecialTargetSize;
269 } else {
270 return kPointerSize;
271 }
272 }
273
274
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)275 void RelocInfo::set_target_address(Address target,
276 WriteBarrierMode write_barrier_mode,
277 ICacheFlushMode icache_flush_mode) {
278 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
279 Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
280 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
281 IsCodeTarget(rmode_)) {
282 Object* target_code = Code::GetCodeFromTargetAddress(target);
283 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
284 host(), this, HeapObject::cast(target_code));
285 }
286 }
287
288
target_object()289 Object* RelocInfo::target_object() {
290 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
291 return Memory::Object_at(pc_);
292 }
293
294
target_object_handle(Assembler * origin)295 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
296 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
297 if (rmode_ == EMBEDDED_OBJECT) {
298 return Memory::Object_Handle_at(pc_);
299 } else {
300 return origin->code_target_object_handle_at(pc_);
301 }
302 }
303
304
target_reference()305 Address RelocInfo::target_reference() {
306 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
307 return Memory::Address_at(pc_);
308 }
309
310
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)311 void RelocInfo::set_target_object(Object* target,
312 WriteBarrierMode write_barrier_mode,
313 ICacheFlushMode icache_flush_mode) {
314 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
315 Memory::Object_at(pc_) = target;
316 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
317 CpuFeatures::FlushICache(pc_, sizeof(Address));
318 }
319 if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
320 host() != NULL &&
321 target->IsHeapObject()) {
322 host()->GetHeap()->incremental_marking()->RecordWrite(
323 host(), &Memory::Object_at(pc_), HeapObject::cast(target));
324 }
325 }
326
327
target_runtime_entry(Assembler * origin)328 Address RelocInfo::target_runtime_entry(Assembler* origin) {
329 DCHECK(IsRuntimeEntry(rmode_));
330 return origin->runtime_entry_at(pc_);
331 }
332
333
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)334 void RelocInfo::set_target_runtime_entry(Address target,
335 WriteBarrierMode write_barrier_mode,
336 ICacheFlushMode icache_flush_mode) {
337 DCHECK(IsRuntimeEntry(rmode_));
338 if (target_address() != target) {
339 set_target_address(target, write_barrier_mode, icache_flush_mode);
340 }
341 }
342
343
target_cell_handle()344 Handle<Cell> RelocInfo::target_cell_handle() {
345 DCHECK(rmode_ == RelocInfo::CELL);
346 Address address = Memory::Address_at(pc_);
347 return Handle<Cell>(reinterpret_cast<Cell**>(address));
348 }
349
350
target_cell()351 Cell* RelocInfo::target_cell() {
352 DCHECK(rmode_ == RelocInfo::CELL);
353 return Cell::FromValueAddress(Memory::Address_at(pc_));
354 }
355
356
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)357 void RelocInfo::set_target_cell(Cell* cell,
358 WriteBarrierMode write_barrier_mode,
359 ICacheFlushMode icache_flush_mode) {
360 DCHECK(rmode_ == RelocInfo::CELL);
361 Address address = cell->address() + Cell::kValueOffset;
362 Memory::Address_at(pc_) = address;
363 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
364 CpuFeatures::FlushICache(pc_, sizeof(Address));
365 }
366 if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
367 host() != NULL) {
368 // TODO(1550) We are passing NULL as a slot because cell can never be on
369 // evacuation candidate.
370 host()->GetHeap()->incremental_marking()->RecordWrite(
371 host(), NULL, cell);
372 }
373 }
374
375
WipeOut()376 void RelocInfo::WipeOut() {
377 if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_)) {
378 Memory::Address_at(pc_) = NULL;
379 } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
380 // Effectively write zero into the relocation.
381 Assembler::set_target_address_at(pc_, host_, pc_ + sizeof(int32_t));
382 } else {
383 UNREACHABLE();
384 }
385 }
386
387
IsPatchedReturnSequence()388 bool RelocInfo::IsPatchedReturnSequence() {
389 // The recognized call sequence is:
390 // movq(kScratchRegister, address); call(kScratchRegister);
391 // It only needs to be distinguished from a return sequence
392 // movq(rsp, rbp); pop(rbp); ret(n); int3 *6
393 // The 11th byte is int3 (0xCC) in the return sequence and
394 // REX.WB (0x48+register bit) for the call sequence.
395 return pc_[Assembler::kMoveAddressIntoScratchRegisterInstructionLength] !=
396 0xCC;
397 }
398
399
IsPatchedDebugBreakSlotSequence()400 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
401 return !Assembler::IsNop(pc());
402 }
403
404
code_age_stub_handle(Assembler * origin)405 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
406 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
407 DCHECK(*pc_ == kCallOpcode);
408 return origin->code_target_object_handle_at(pc_ + 1);
409 }
410
411
code_age_stub()412 Code* RelocInfo::code_age_stub() {
413 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
414 DCHECK(*pc_ == kCallOpcode);
415 return Code::GetCodeFromTargetAddress(
416 Assembler::target_address_at(pc_ + 1, host_));
417 }
418
419
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)420 void RelocInfo::set_code_age_stub(Code* stub,
421 ICacheFlushMode icache_flush_mode) {
422 DCHECK(*pc_ == kCallOpcode);
423 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
424 Assembler::set_target_address_at(pc_ + 1, host_, stub->instruction_start(),
425 icache_flush_mode);
426 }
427
428
call_address()429 Address RelocInfo::call_address() {
430 DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
431 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
432 return Memory::Address_at(
433 pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
434 }
435
436
set_call_address(Address target)437 void RelocInfo::set_call_address(Address target) {
438 DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
439 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
440 Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
441 target;
442 CpuFeatures::FlushICache(
443 pc_ + Assembler::kRealPatchReturnSequenceAddressOffset, sizeof(Address));
444 if (host() != NULL) {
445 Object* target_code = Code::GetCodeFromTargetAddress(target);
446 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
447 host(), this, HeapObject::cast(target_code));
448 }
449 }
450
451
call_object()452 Object* RelocInfo::call_object() {
453 return *call_object_address();
454 }
455
456
set_call_object(Object * target)457 void RelocInfo::set_call_object(Object* target) {
458 *call_object_address() = target;
459 }
460
461
call_object_address()462 Object** RelocInfo::call_object_address() {
463 DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
464 (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
465 return reinterpret_cast<Object**>(
466 pc_ + Assembler::kPatchReturnSequenceAddressOffset);
467 }
468
469
Visit(Isolate * isolate,ObjectVisitor * visitor)470 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
471 RelocInfo::Mode mode = rmode();
472 if (mode == RelocInfo::EMBEDDED_OBJECT) {
473 visitor->VisitEmbeddedPointer(this);
474 CpuFeatures::FlushICache(pc_, sizeof(Address));
475 } else if (RelocInfo::IsCodeTarget(mode)) {
476 visitor->VisitCodeTarget(this);
477 } else if (mode == RelocInfo::CELL) {
478 visitor->VisitCell(this);
479 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
480 visitor->VisitExternalReference(this);
481 CpuFeatures::FlushICache(pc_, sizeof(Address));
482 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
483 visitor->VisitCodeAgeSequence(this);
484 } else if (((RelocInfo::IsJSReturn(mode) &&
485 IsPatchedReturnSequence()) ||
486 (RelocInfo::IsDebugBreakSlot(mode) &&
487 IsPatchedDebugBreakSlotSequence())) &&
488 isolate->debug()->has_break_points()) {
489 visitor->VisitDebugTarget(this);
490 } else if (RelocInfo::IsRuntimeEntry(mode)) {
491 visitor->VisitRuntimeEntry(this);
492 }
493 }
494
495
496 template<typename StaticVisitor>
Visit(Heap * heap)497 void RelocInfo::Visit(Heap* heap) {
498 RelocInfo::Mode mode = rmode();
499 if (mode == RelocInfo::EMBEDDED_OBJECT) {
500 StaticVisitor::VisitEmbeddedPointer(heap, this);
501 CpuFeatures::FlushICache(pc_, sizeof(Address));
502 } else if (RelocInfo::IsCodeTarget(mode)) {
503 StaticVisitor::VisitCodeTarget(heap, this);
504 } else if (mode == RelocInfo::CELL) {
505 StaticVisitor::VisitCell(heap, this);
506 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
507 StaticVisitor::VisitExternalReference(this);
508 CpuFeatures::FlushICache(pc_, sizeof(Address));
509 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
510 StaticVisitor::VisitCodeAgeSequence(heap, this);
511 } else if (heap->isolate()->debug()->has_break_points() &&
512 ((RelocInfo::IsJSReturn(mode) &&
513 IsPatchedReturnSequence()) ||
514 (RelocInfo::IsDebugBreakSlot(mode) &&
515 IsPatchedDebugBreakSlotSequence()))) {
516 StaticVisitor::VisitDebugTarget(heap, this);
517 } else if (RelocInfo::IsRuntimeEntry(mode)) {
518 StaticVisitor::VisitRuntimeEntry(this);
519 }
520 }
521
522
523 // -----------------------------------------------------------------------------
524 // Implementation of Operand
525
set_modrm(int mod,Register rm_reg)526 void Operand::set_modrm(int mod, Register rm_reg) {
527 DCHECK(is_uint2(mod));
528 buf_[0] = mod << 6 | rm_reg.low_bits();
529 // Set REX.B to the high bit of rm.code().
530 rex_ |= rm_reg.high_bit();
531 }
532
533
set_sib(ScaleFactor scale,Register index,Register base)534 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
535 DCHECK(len_ == 1);
536 DCHECK(is_uint2(scale));
537 // Use SIB with no index register only for base rsp or r12. Otherwise we
538 // would skip the SIB byte entirely.
539 DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
540 buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
541 rex_ |= index.high_bit() << 1 | base.high_bit();
542 len_ = 2;
543 }
544
set_disp8(int disp)545 void Operand::set_disp8(int disp) {
546 DCHECK(is_int8(disp));
547 DCHECK(len_ == 1 || len_ == 2);
548 int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
549 *p = disp;
550 len_ += sizeof(int8_t);
551 }
552
set_disp32(int disp)553 void Operand::set_disp32(int disp) {
554 DCHECK(len_ == 1 || len_ == 2);
555 int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
556 *p = disp;
557 len_ += sizeof(int32_t);
558 }
559
560
561 } } // namespace v8::internal
562
563 #endif // V8_X64_ASSEMBLER_X64_INL_H_
564