1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_X87
8 
9 #include "src/cpu-profiler.h"
10 #include "src/log.h"
11 #include "src/macro-assembler.h"
12 #include "src/regexp-macro-assembler.h"
13 #include "src/regexp-stack.h"
14 #include "src/unicode.h"
15 #include "src/x87/regexp-macro-assembler-x87.h"
16 
17 namespace v8 {
18 namespace internal {
19 
20 #ifndef V8_INTERPRETED_REGEXP
21 /*
22  * This assembler uses the following register assignment convention
23  * - edx : Current character.  Must be loaded using LoadCurrentCharacter
24  *         before using any of the dispatch methods.  Temporarily stores the
25  *         index of capture start after a matching pass for a global regexp.
26  * - edi : Current position in input, as negative offset from end of string.
27  *         Please notice that this is the byte offset, not the character offset!
28  * - esi : end of input (points to byte after last character in input).
29  * - ebp : Frame pointer.  Used to access arguments, local variables and
30  *         RegExp registers.
31  * - esp : Points to tip of C stack.
32  * - ecx : Points to tip of backtrack stack
33  *
34  * The registers eax and ebx are free to use for computations.
35  *
36  * Each call to a public method should retain this convention.
37  * The stack will have the following structure:
38  *       - Isolate* isolate     (address of the current isolate)
39  *       - direct_call          (if 1, direct call from JavaScript code, if 0
40  *                               call through the runtime system)
41  *       - stack_area_base      (high end of the memory area to use as
42  *                               backtracking stack)
43  *       - capture array size   (may fit multiple sets of matches)
44  *       - int* capture_array   (int[num_saved_registers_], for output).
45  *       - end of input         (address of end of string)
46  *       - start of input       (address of first character in string)
47  *       - start index          (character index of start)
48  *       - String* input_string (location of a handle containing the string)
49  *       --- frame alignment (if applicable) ---
50  *       - return address
51  * ebp-> - old ebp
52  *       - backup of caller esi
53  *       - backup of caller edi
54  *       - backup of caller ebx
55  *       - success counter      (only for global regexps to count matches).
56  *       - Offset of location before start of input (effectively character
57  *         position -1). Used to initialize capture registers to a non-position.
58  *       - register 0  ebp[-4]  (only positions must be stored in the first
59  *       - register 1  ebp[-8]   num_saved_registers_ registers)
60  *       - ...
61  *
62  * The first num_saved_registers_ registers are initialized to point to
63  * "character -1" in the string (i.e., char_size() bytes before the first
64  * character of the string). The remaining registers starts out as garbage.
65  *
66  * The data up to the return address must be placed there by the calling
67  * code, by calling the code entry as cast to a function with the signature:
68  * int (*match)(String* input_string,
69  *              int start_index,
70  *              Address start,
71  *              Address end,
72  *              int* capture_output_array,
73  *              bool at_start,
74  *              byte* stack_area_base,
75  *              bool direct_call)
76  */
77 
78 #define __ ACCESS_MASM(masm_)
79 
RegExpMacroAssemblerX87(Mode mode,int registers_to_save,Zone * zone)80 RegExpMacroAssemblerX87::RegExpMacroAssemblerX87(
81     Mode mode,
82     int registers_to_save,
83     Zone* zone)
84     : NativeRegExpMacroAssembler(zone),
85       masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
86       mode_(mode),
87       num_registers_(registers_to_save),
88       num_saved_registers_(registers_to_save),
89       entry_label_(),
90       start_label_(),
91       success_label_(),
92       backtrack_label_(),
93       exit_label_() {
94   DCHECK_EQ(0, registers_to_save % 2);
95   __ jmp(&entry_label_);   // We'll write the entry code later.
96   __ bind(&start_label_);  // And then continue from here.
97 }
98 
99 
~RegExpMacroAssemblerX87()100 RegExpMacroAssemblerX87::~RegExpMacroAssemblerX87() {
101   delete masm_;
102   // Unuse labels in case we throw away the assembler without calling GetCode.
103   entry_label_.Unuse();
104   start_label_.Unuse();
105   success_label_.Unuse();
106   backtrack_label_.Unuse();
107   exit_label_.Unuse();
108   check_preempt_label_.Unuse();
109   stack_overflow_label_.Unuse();
110 }
111 
112 
stack_limit_slack()113 int RegExpMacroAssemblerX87::stack_limit_slack()  {
114   return RegExpStack::kStackLimitSlack;
115 }
116 
117 
AdvanceCurrentPosition(int by)118 void RegExpMacroAssemblerX87::AdvanceCurrentPosition(int by) {
119   if (by != 0) {
120     __ add(edi, Immediate(by * char_size()));
121   }
122 }
123 
124 
AdvanceRegister(int reg,int by)125 void RegExpMacroAssemblerX87::AdvanceRegister(int reg, int by) {
126   DCHECK(reg >= 0);
127   DCHECK(reg < num_registers_);
128   if (by != 0) {
129     __ add(register_location(reg), Immediate(by));
130   }
131 }
132 
133 
Backtrack()134 void RegExpMacroAssemblerX87::Backtrack() {
135   CheckPreemption();
136   // Pop Code* offset from backtrack stack, add Code* and jump to location.
137   Pop(ebx);
138   __ add(ebx, Immediate(masm_->CodeObject()));
139   __ jmp(ebx);
140 }
141 
142 
Bind(Label * label)143 void RegExpMacroAssemblerX87::Bind(Label* label) {
144   __ bind(label);
145 }
146 
147 
CheckCharacter(uint32_t c,Label * on_equal)148 void RegExpMacroAssemblerX87::CheckCharacter(uint32_t c, Label* on_equal) {
149   __ cmp(current_character(), c);
150   BranchOrBacktrack(equal, on_equal);
151 }
152 
153 
CheckCharacterGT(uc16 limit,Label * on_greater)154 void RegExpMacroAssemblerX87::CheckCharacterGT(uc16 limit, Label* on_greater) {
155   __ cmp(current_character(), limit);
156   BranchOrBacktrack(greater, on_greater);
157 }
158 
159 
CheckAtStart(Label * on_at_start)160 void RegExpMacroAssemblerX87::CheckAtStart(Label* on_at_start) {
161   Label not_at_start;
162   // Did we start the match at the start of the string at all?
163   __ cmp(Operand(ebp, kStartIndex), Immediate(0));
164   BranchOrBacktrack(not_equal, &not_at_start);
165   // If we did, are we still at the start of the input?
166   __ lea(eax, Operand(esi, edi, times_1, 0));
167   __ cmp(eax, Operand(ebp, kInputStart));
168   BranchOrBacktrack(equal, on_at_start);
169   __ bind(&not_at_start);
170 }
171 
172 
CheckNotAtStart(Label * on_not_at_start)173 void RegExpMacroAssemblerX87::CheckNotAtStart(Label* on_not_at_start) {
174   // Did we start the match at the start of the string at all?
175   __ cmp(Operand(ebp, kStartIndex), Immediate(0));
176   BranchOrBacktrack(not_equal, on_not_at_start);
177   // If we did, are we still at the start of the input?
178   __ lea(eax, Operand(esi, edi, times_1, 0));
179   __ cmp(eax, Operand(ebp, kInputStart));
180   BranchOrBacktrack(not_equal, on_not_at_start);
181 }
182 
183 
CheckCharacterLT(uc16 limit,Label * on_less)184 void RegExpMacroAssemblerX87::CheckCharacterLT(uc16 limit, Label* on_less) {
185   __ cmp(current_character(), limit);
186   BranchOrBacktrack(less, on_less);
187 }
188 
189 
CheckGreedyLoop(Label * on_equal)190 void RegExpMacroAssemblerX87::CheckGreedyLoop(Label* on_equal) {
191   Label fallthrough;
192   __ cmp(edi, Operand(backtrack_stackpointer(), 0));
193   __ j(not_equal, &fallthrough);
194   __ add(backtrack_stackpointer(), Immediate(kPointerSize));  // Pop.
195   BranchOrBacktrack(no_condition, on_equal);
196   __ bind(&fallthrough);
197 }
198 
199 
CheckNotBackReferenceIgnoreCase(int start_reg,Label * on_no_match)200 void RegExpMacroAssemblerX87::CheckNotBackReferenceIgnoreCase(
201     int start_reg,
202     Label* on_no_match) {
203   Label fallthrough;
204   __ mov(edx, register_location(start_reg));  // Index of start of capture
205   __ mov(ebx, register_location(start_reg + 1));  // Index of end of capture
206   __ sub(ebx, edx);  // Length of capture.
207 
208   // The length of a capture should not be negative. This can only happen
209   // if the end of the capture is unrecorded, or at a point earlier than
210   // the start of the capture.
211   BranchOrBacktrack(less, on_no_match);
212 
213   // If length is zero, either the capture is empty or it is completely
214   // uncaptured. In either case succeed immediately.
215   __ j(equal, &fallthrough);
216 
217   // Check that there are sufficient characters left in the input.
218   __ mov(eax, edi);
219   __ add(eax, ebx);
220   BranchOrBacktrack(greater, on_no_match);
221 
222   if (mode_ == LATIN1) {
223     Label success;
224     Label fail;
225     Label loop_increment;
226     // Save register contents to make the registers available below.
227     __ push(edi);
228     __ push(backtrack_stackpointer());
229     // After this, the eax, ecx, and edi registers are available.
230 
231     __ add(edx, esi);  // Start of capture
232     __ add(edi, esi);  // Start of text to match against capture.
233     __ add(ebx, edi);  // End of text to match against capture.
234 
235     Label loop;
236     __ bind(&loop);
237     __ movzx_b(eax, Operand(edi, 0));
238     __ cmpb_al(Operand(edx, 0));
239     __ j(equal, &loop_increment);
240 
241     // Mismatch, try case-insensitive match (converting letters to lower-case).
242     __ or_(eax, 0x20);  // Convert match character to lower-case.
243     __ lea(ecx, Operand(eax, -'a'));
244     __ cmp(ecx, static_cast<int32_t>('z' - 'a'));  // Is eax a lowercase letter?
245     Label convert_capture;
246     __ j(below_equal, &convert_capture);  // In range 'a'-'z'.
247     // Latin-1: Check for values in range [224,254] but not 247.
248     __ sub(ecx, Immediate(224 - 'a'));
249     __ cmp(ecx, Immediate(254 - 224));
250     __ j(above, &fail);  // Weren't Latin-1 letters.
251     __ cmp(ecx, Immediate(247 - 224));  // Check for 247.
252     __ j(equal, &fail);
253     __ bind(&convert_capture);
254     // Also convert capture character.
255     __ movzx_b(ecx, Operand(edx, 0));
256     __ or_(ecx, 0x20);
257 
258     __ cmp(eax, ecx);
259     __ j(not_equal, &fail);
260 
261     __ bind(&loop_increment);
262     // Increment pointers into match and capture strings.
263     __ add(edx, Immediate(1));
264     __ add(edi, Immediate(1));
265     // Compare to end of match, and loop if not done.
266     __ cmp(edi, ebx);
267     __ j(below, &loop);
268     __ jmp(&success);
269 
270     __ bind(&fail);
271     // Restore original values before failing.
272     __ pop(backtrack_stackpointer());
273     __ pop(edi);
274     BranchOrBacktrack(no_condition, on_no_match);
275 
276     __ bind(&success);
277     // Restore original value before continuing.
278     __ pop(backtrack_stackpointer());
279     // Drop original value of character position.
280     __ add(esp, Immediate(kPointerSize));
281     // Compute new value of character position after the matched part.
282     __ sub(edi, esi);
283   } else {
284     DCHECK(mode_ == UC16);
285     // Save registers before calling C function.
286     __ push(esi);
287     __ push(edi);
288     __ push(backtrack_stackpointer());
289     __ push(ebx);
290 
291     static const int argument_count = 4;
292     __ PrepareCallCFunction(argument_count, ecx);
293     // Put arguments into allocated stack area, last argument highest on stack.
294     // Parameters are
295     //   Address byte_offset1 - Address captured substring's start.
296     //   Address byte_offset2 - Address of current character position.
297     //   size_t byte_length - length of capture in bytes(!)
298     //   Isolate* isolate
299 
300     // Set isolate.
301     __ mov(Operand(esp, 3 * kPointerSize),
302            Immediate(ExternalReference::isolate_address(isolate())));
303     // Set byte_length.
304     __ mov(Operand(esp, 2 * kPointerSize), ebx);
305     // Set byte_offset2.
306     // Found by adding negative string-end offset of current position (edi)
307     // to end of string.
308     __ add(edi, esi);
309     __ mov(Operand(esp, 1 * kPointerSize), edi);
310     // Set byte_offset1.
311     // Start of capture, where edx already holds string-end negative offset.
312     __ add(edx, esi);
313     __ mov(Operand(esp, 0 * kPointerSize), edx);
314 
315     {
316       AllowExternalCallThatCantCauseGC scope(masm_);
317       ExternalReference compare =
318           ExternalReference::re_case_insensitive_compare_uc16(isolate());
319       __ CallCFunction(compare, argument_count);
320     }
321     // Pop original values before reacting on result value.
322     __ pop(ebx);
323     __ pop(backtrack_stackpointer());
324     __ pop(edi);
325     __ pop(esi);
326 
327     // Check if function returned non-zero for success or zero for failure.
328     __ or_(eax, eax);
329     BranchOrBacktrack(zero, on_no_match);
330     // On success, increment position by length of capture.
331     __ add(edi, ebx);
332   }
333   __ bind(&fallthrough);
334 }
335 
336 
CheckNotBackReference(int start_reg,Label * on_no_match)337 void RegExpMacroAssemblerX87::CheckNotBackReference(
338     int start_reg,
339     Label* on_no_match) {
340   Label fallthrough;
341   Label success;
342   Label fail;
343 
344   // Find length of back-referenced capture.
345   __ mov(edx, register_location(start_reg));
346   __ mov(eax, register_location(start_reg + 1));
347   __ sub(eax, edx);  // Length to check.
348   // Fail on partial or illegal capture (start of capture after end of capture).
349   BranchOrBacktrack(less, on_no_match);
350   // Succeed on empty capture (including no capture)
351   __ j(equal, &fallthrough);
352 
353   // Check that there are sufficient characters left in the input.
354   __ mov(ebx, edi);
355   __ add(ebx, eax);
356   BranchOrBacktrack(greater, on_no_match);
357 
358   // Save register to make it available below.
359   __ push(backtrack_stackpointer());
360 
361   // Compute pointers to match string and capture string
362   __ lea(ebx, Operand(esi, edi, times_1, 0));  // Start of match.
363   __ add(edx, esi);  // Start of capture.
364   __ lea(ecx, Operand(eax, ebx, times_1, 0));  // End of match
365 
366   Label loop;
367   __ bind(&loop);
368   if (mode_ == LATIN1) {
369     __ movzx_b(eax, Operand(edx, 0));
370     __ cmpb_al(Operand(ebx, 0));
371   } else {
372     DCHECK(mode_ == UC16);
373     __ movzx_w(eax, Operand(edx, 0));
374     __ cmpw_ax(Operand(ebx, 0));
375   }
376   __ j(not_equal, &fail);
377   // Increment pointers into capture and match string.
378   __ add(edx, Immediate(char_size()));
379   __ add(ebx, Immediate(char_size()));
380   // Check if we have reached end of match area.
381   __ cmp(ebx, ecx);
382   __ j(below, &loop);
383   __ jmp(&success);
384 
385   __ bind(&fail);
386   // Restore backtrack stackpointer.
387   __ pop(backtrack_stackpointer());
388   BranchOrBacktrack(no_condition, on_no_match);
389 
390   __ bind(&success);
391   // Move current character position to position after match.
392   __ mov(edi, ecx);
393   __ sub(edi, esi);
394   // Restore backtrack stackpointer.
395   __ pop(backtrack_stackpointer());
396 
397   __ bind(&fallthrough);
398 }
399 
400 
CheckNotCharacter(uint32_t c,Label * on_not_equal)401 void RegExpMacroAssemblerX87::CheckNotCharacter(uint32_t c,
402                                                  Label* on_not_equal) {
403   __ cmp(current_character(), c);
404   BranchOrBacktrack(not_equal, on_not_equal);
405 }
406 
407 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)408 void RegExpMacroAssemblerX87::CheckCharacterAfterAnd(uint32_t c,
409                                                       uint32_t mask,
410                                                       Label* on_equal) {
411   if (c == 0) {
412     __ test(current_character(), Immediate(mask));
413   } else {
414     __ mov(eax, mask);
415     __ and_(eax, current_character());
416     __ cmp(eax, c);
417   }
418   BranchOrBacktrack(equal, on_equal);
419 }
420 
421 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)422 void RegExpMacroAssemblerX87::CheckNotCharacterAfterAnd(uint32_t c,
423                                                          uint32_t mask,
424                                                          Label* on_not_equal) {
425   if (c == 0) {
426     __ test(current_character(), Immediate(mask));
427   } else {
428     __ mov(eax, mask);
429     __ and_(eax, current_character());
430     __ cmp(eax, c);
431   }
432   BranchOrBacktrack(not_equal, on_not_equal);
433 }
434 
435 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)436 void RegExpMacroAssemblerX87::CheckNotCharacterAfterMinusAnd(
437     uc16 c,
438     uc16 minus,
439     uc16 mask,
440     Label* on_not_equal) {
441   DCHECK(minus < String::kMaxUtf16CodeUnit);
442   __ lea(eax, Operand(current_character(), -minus));
443   if (c == 0) {
444     __ test(eax, Immediate(mask));
445   } else {
446     __ and_(eax, mask);
447     __ cmp(eax, c);
448   }
449   BranchOrBacktrack(not_equal, on_not_equal);
450 }
451 
452 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)453 void RegExpMacroAssemblerX87::CheckCharacterInRange(
454     uc16 from,
455     uc16 to,
456     Label* on_in_range) {
457   __ lea(eax, Operand(current_character(), -from));
458   __ cmp(eax, to - from);
459   BranchOrBacktrack(below_equal, on_in_range);
460 }
461 
462 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)463 void RegExpMacroAssemblerX87::CheckCharacterNotInRange(
464     uc16 from,
465     uc16 to,
466     Label* on_not_in_range) {
467   __ lea(eax, Operand(current_character(), -from));
468   __ cmp(eax, to - from);
469   BranchOrBacktrack(above, on_not_in_range);
470 }
471 
472 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)473 void RegExpMacroAssemblerX87::CheckBitInTable(
474     Handle<ByteArray> table,
475     Label* on_bit_set) {
476   __ mov(eax, Immediate(table));
477   Register index = current_character();
478   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
479     __ mov(ebx, kTableSize - 1);
480     __ and_(ebx, current_character());
481     index = ebx;
482   }
483   __ cmpb(FieldOperand(eax, index, times_1, ByteArray::kHeaderSize), 0);
484   BranchOrBacktrack(not_equal, on_bit_set);
485 }
486 
487 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)488 bool RegExpMacroAssemblerX87::CheckSpecialCharacterClass(uc16 type,
489                                                           Label* on_no_match) {
490   // Range checks (c in min..max) are generally implemented by an unsigned
491   // (c - min) <= (max - min) check
492   switch (type) {
493   case 's':
494     // Match space-characters
495     if (mode_ == LATIN1) {
496       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
497       Label success;
498       __ cmp(current_character(), ' ');
499       __ j(equal, &success, Label::kNear);
500       // Check range 0x09..0x0d
501       __ lea(eax, Operand(current_character(), -'\t'));
502       __ cmp(eax, '\r' - '\t');
503       __ j(below_equal, &success, Label::kNear);
504       // \u00a0 (NBSP).
505       __ cmp(eax, 0x00a0 - '\t');
506       BranchOrBacktrack(not_equal, on_no_match);
507       __ bind(&success);
508       return true;
509     }
510     return false;
511   case 'S':
512     // The emitted code for generic character classes is good enough.
513     return false;
514   case 'd':
515     // Match ASCII digits ('0'..'9')
516     __ lea(eax, Operand(current_character(), -'0'));
517     __ cmp(eax, '9' - '0');
518     BranchOrBacktrack(above, on_no_match);
519     return true;
520   case 'D':
521     // Match non ASCII-digits
522     __ lea(eax, Operand(current_character(), -'0'));
523     __ cmp(eax, '9' - '0');
524     BranchOrBacktrack(below_equal, on_no_match);
525     return true;
526   case '.': {
527     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
528     __ mov(eax, current_character());
529     __ xor_(eax, Immediate(0x01));
530     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
531     __ sub(eax, Immediate(0x0b));
532     __ cmp(eax, 0x0c - 0x0b);
533     BranchOrBacktrack(below_equal, on_no_match);
534     if (mode_ == UC16) {
535       // Compare original value to 0x2028 and 0x2029, using the already
536       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
537       // 0x201d (0x2028 - 0x0b) or 0x201e.
538       __ sub(eax, Immediate(0x2028 - 0x0b));
539       __ cmp(eax, 0x2029 - 0x2028);
540       BranchOrBacktrack(below_equal, on_no_match);
541     }
542     return true;
543   }
544   case 'w': {
545     if (mode_ != LATIN1) {
546       // Table is 256 entries, so all Latin1 characters can be tested.
547       __ cmp(current_character(), Immediate('z'));
548       BranchOrBacktrack(above, on_no_match);
549     }
550     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
551     ExternalReference word_map = ExternalReference::re_word_character_map();
552     __ test_b(current_character(),
553               Operand::StaticArray(current_character(), times_1, word_map));
554     BranchOrBacktrack(zero, on_no_match);
555     return true;
556   }
557   case 'W': {
558     Label done;
559     if (mode_ != LATIN1) {
560       // Table is 256 entries, so all Latin1 characters can be tested.
561       __ cmp(current_character(), Immediate('z'));
562       __ j(above, &done);
563     }
564     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
565     ExternalReference word_map = ExternalReference::re_word_character_map();
566     __ test_b(current_character(),
567               Operand::StaticArray(current_character(), times_1, word_map));
568     BranchOrBacktrack(not_zero, on_no_match);
569     if (mode_ != LATIN1) {
570       __ bind(&done);
571     }
572     return true;
573   }
574   // Non-standard classes (with no syntactic shorthand) used internally.
575   case '*':
576     // Match any character.
577     return true;
578   case 'n': {
579     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 or 0x2029).
580     // The opposite of '.'.
581     __ mov(eax, current_character());
582     __ xor_(eax, Immediate(0x01));
583     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
584     __ sub(eax, Immediate(0x0b));
585     __ cmp(eax, 0x0c - 0x0b);
586     if (mode_ == LATIN1) {
587       BranchOrBacktrack(above, on_no_match);
588     } else {
589       Label done;
590       BranchOrBacktrack(below_equal, &done);
591       DCHECK_EQ(UC16, mode_);
592       // Compare original value to 0x2028 and 0x2029, using the already
593       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
594       // 0x201d (0x2028 - 0x0b) or 0x201e.
595       __ sub(eax, Immediate(0x2028 - 0x0b));
596       __ cmp(eax, 1);
597       BranchOrBacktrack(above, on_no_match);
598       __ bind(&done);
599     }
600     return true;
601   }
602   // No custom implementation (yet): s(UC16), S(UC16).
603   default:
604     return false;
605   }
606 }
607 
608 
Fail()609 void RegExpMacroAssemblerX87::Fail() {
610   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
611   if (!global()) {
612     __ Move(eax, Immediate(FAILURE));
613   }
614   __ jmp(&exit_label_);
615 }
616 
617 
GetCode(Handle<String> source)618 Handle<HeapObject> RegExpMacroAssemblerX87::GetCode(Handle<String> source) {
619   Label return_eax;
620   // Finalize code - write the entry point code now we know how many
621   // registers we need.
622 
623   // Entry code:
624   __ bind(&entry_label_);
625 
626   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
627   // code is generated.
628   FrameScope scope(masm_, StackFrame::MANUAL);
629 
630   // Actually emit code to start a new stack frame.
631   __ push(ebp);
632   __ mov(ebp, esp);
633   // Save callee-save registers. Order here should correspond to order of
634   // kBackup_ebx etc.
635   __ push(esi);
636   __ push(edi);
637   __ push(ebx);  // Callee-save on MacOS.
638   __ push(Immediate(0));  // Number of successful matches in a global regexp.
639   __ push(Immediate(0));  // Make room for "input start - 1" constant.
640 
641   // Check if we have space on the stack for registers.
642   Label stack_limit_hit;
643   Label stack_ok;
644 
645   ExternalReference stack_limit =
646       ExternalReference::address_of_stack_limit(isolate());
647   __ mov(ecx, esp);
648   __ sub(ecx, Operand::StaticVariable(stack_limit));
649   // Handle it if the stack pointer is already below the stack limit.
650   __ j(below_equal, &stack_limit_hit);
651   // Check if there is room for the variable number of registers above
652   // the stack limit.
653   __ cmp(ecx, num_registers_ * kPointerSize);
654   __ j(above_equal, &stack_ok);
655   // Exit with OutOfMemory exception. There is not enough space on the stack
656   // for our working registers.
657   __ mov(eax, EXCEPTION);
658   __ jmp(&return_eax);
659 
660   __ bind(&stack_limit_hit);
661   CallCheckStackGuardState(ebx);
662   __ or_(eax, eax);
663   // If returned value is non-zero, we exit with the returned value as result.
664   __ j(not_zero, &return_eax);
665 
666   __ bind(&stack_ok);
667   // Load start index for later use.
668   __ mov(ebx, Operand(ebp, kStartIndex));
669 
670   // Allocate space on stack for registers.
671   __ sub(esp, Immediate(num_registers_ * kPointerSize));
672   // Load string length.
673   __ mov(esi, Operand(ebp, kInputEnd));
674   // Load input position.
675   __ mov(edi, Operand(ebp, kInputStart));
676   // Set up edi to be negative offset from string end.
677   __ sub(edi, esi);
678 
679   // Set eax to address of char before start of the string.
680   // (effectively string position -1).
681   __ neg(ebx);
682   if (mode_ == UC16) {
683     __ lea(eax, Operand(edi, ebx, times_2, -char_size()));
684   } else {
685     __ lea(eax, Operand(edi, ebx, times_1, -char_size()));
686   }
687   // Store this value in a local variable, for use when clearing
688   // position registers.
689   __ mov(Operand(ebp, kInputStartMinusOne), eax);
690 
691 #if V8_OS_WIN
692   // Ensure that we write to each stack page, in order. Skipping a page
693   // on Windows can cause segmentation faults. Assuming page size is 4k.
694   const int kPageSize = 4096;
695   const int kRegistersPerPage = kPageSize / kPointerSize;
696   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
697       i < num_registers_;
698       i += kRegistersPerPage) {
699     __ mov(register_location(i), eax);  // One write every page.
700   }
701 #endif  // V8_OS_WIN
702 
703   Label load_char_start_regexp, start_regexp;
704   // Load newline if index is at start, previous character otherwise.
705   __ cmp(Operand(ebp, kStartIndex), Immediate(0));
706   __ j(not_equal, &load_char_start_regexp, Label::kNear);
707   __ mov(current_character(), '\n');
708   __ jmp(&start_regexp, Label::kNear);
709 
710   // Global regexp restarts matching here.
711   __ bind(&load_char_start_regexp);
712   // Load previous char as initial value of current character register.
713   LoadCurrentCharacterUnchecked(-1, 1);
714   __ bind(&start_regexp);
715 
716   // Initialize on-stack registers.
717   if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
718     // Fill saved registers with initial value = start offset - 1
719     // Fill in stack push order, to avoid accessing across an unwritten
720     // page (a problem on Windows).
721     if (num_saved_registers_ > 8) {
722       __ mov(ecx, kRegisterZero);
723       Label init_loop;
724       __ bind(&init_loop);
725       __ mov(Operand(ebp, ecx, times_1, 0), eax);
726       __ sub(ecx, Immediate(kPointerSize));
727       __ cmp(ecx, kRegisterZero - num_saved_registers_ * kPointerSize);
728       __ j(greater, &init_loop);
729     } else {  // Unroll the loop.
730       for (int i = 0; i < num_saved_registers_; i++) {
731         __ mov(register_location(i), eax);
732       }
733     }
734   }
735 
736   // Initialize backtrack stack pointer.
737   __ mov(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
738 
739   __ jmp(&start_label_);
740 
741   // Exit code:
742   if (success_label_.is_linked()) {
743     // Save captures when successful.
744     __ bind(&success_label_);
745     if (num_saved_registers_ > 0) {
746       // copy captures to output
747       __ mov(ebx, Operand(ebp, kRegisterOutput));
748       __ mov(ecx, Operand(ebp, kInputEnd));
749       __ mov(edx, Operand(ebp, kStartIndex));
750       __ sub(ecx, Operand(ebp, kInputStart));
751       if (mode_ == UC16) {
752         __ lea(ecx, Operand(ecx, edx, times_2, 0));
753       } else {
754         __ add(ecx, edx);
755       }
756       for (int i = 0; i < num_saved_registers_; i++) {
757         __ mov(eax, register_location(i));
758         if (i == 0 && global_with_zero_length_check()) {
759           // Keep capture start in edx for the zero-length check later.
760           __ mov(edx, eax);
761         }
762         // Convert to index from start of string, not end.
763         __ add(eax, ecx);
764         if (mode_ == UC16) {
765           __ sar(eax, 1);  // Convert byte index to character index.
766         }
767         __ mov(Operand(ebx, i * kPointerSize), eax);
768       }
769     }
770 
771     if (global()) {
772     // Restart matching if the regular expression is flagged as global.
773       // Increment success counter.
774       __ inc(Operand(ebp, kSuccessfulCaptures));
775       // Capture results have been stored, so the number of remaining global
776       // output registers is reduced by the number of stored captures.
777       __ mov(ecx, Operand(ebp, kNumOutputRegisters));
778       __ sub(ecx, Immediate(num_saved_registers_));
779       // Check whether we have enough room for another set of capture results.
780       __ cmp(ecx, Immediate(num_saved_registers_));
781       __ j(less, &exit_label_);
782 
783       __ mov(Operand(ebp, kNumOutputRegisters), ecx);
784       // Advance the location for output.
785       __ add(Operand(ebp, kRegisterOutput),
786              Immediate(num_saved_registers_ * kPointerSize));
787 
788       // Prepare eax to initialize registers with its value in the next run.
789       __ mov(eax, Operand(ebp, kInputStartMinusOne));
790 
791       if (global_with_zero_length_check()) {
792         // Special case for zero-length matches.
793         // edx: capture start index
794         __ cmp(edi, edx);
795         // Not a zero-length match, restart.
796         __ j(not_equal, &load_char_start_regexp);
797         // edi (offset from the end) is zero if we already reached the end.
798         __ test(edi, edi);
799         __ j(zero, &exit_label_, Label::kNear);
800         // Advance current position after a zero-length match.
801         if (mode_ == UC16) {
802           __ add(edi, Immediate(2));
803         } else {
804           __ inc(edi);
805         }
806       }
807 
808       __ jmp(&load_char_start_regexp);
809     } else {
810       __ mov(eax, Immediate(SUCCESS));
811     }
812   }
813 
814   __ bind(&exit_label_);
815   if (global()) {
816     // Return the number of successful captures.
817     __ mov(eax, Operand(ebp, kSuccessfulCaptures));
818   }
819 
820   __ bind(&return_eax);
821   // Skip esp past regexp registers.
822   __ lea(esp, Operand(ebp, kBackup_ebx));
823   // Restore callee-save registers.
824   __ pop(ebx);
825   __ pop(edi);
826   __ pop(esi);
827   // Exit function frame, restore previous one.
828   __ pop(ebp);
829   __ ret(0);
830 
831   // Backtrack code (branch target for conditional backtracks).
832   if (backtrack_label_.is_linked()) {
833     __ bind(&backtrack_label_);
834     Backtrack();
835   }
836 
837   Label exit_with_exception;
838 
839   // Preempt-code
840   if (check_preempt_label_.is_linked()) {
841     SafeCallTarget(&check_preempt_label_);
842 
843     __ push(backtrack_stackpointer());
844     __ push(edi);
845 
846     CallCheckStackGuardState(ebx);
847     __ or_(eax, eax);
848     // If returning non-zero, we should end execution with the given
849     // result as return value.
850     __ j(not_zero, &return_eax);
851 
852     __ pop(edi);
853     __ pop(backtrack_stackpointer());
854     // String might have moved: Reload esi from frame.
855     __ mov(esi, Operand(ebp, kInputEnd));
856     SafeReturn();
857   }
858 
859   // Backtrack stack overflow code.
860   if (stack_overflow_label_.is_linked()) {
861     SafeCallTarget(&stack_overflow_label_);
862     // Reached if the backtrack-stack limit has been hit.
863 
864     Label grow_failed;
865     // Save registers before calling C function
866     __ push(esi);
867     __ push(edi);
868 
869     // Call GrowStack(backtrack_stackpointer())
870     static const int num_arguments = 3;
871     __ PrepareCallCFunction(num_arguments, ebx);
872     __ mov(Operand(esp, 2 * kPointerSize),
873            Immediate(ExternalReference::isolate_address(isolate())));
874     __ lea(eax, Operand(ebp, kStackHighEnd));
875     __ mov(Operand(esp, 1 * kPointerSize), eax);
876     __ mov(Operand(esp, 0 * kPointerSize), backtrack_stackpointer());
877     ExternalReference grow_stack =
878         ExternalReference::re_grow_stack(isolate());
879     __ CallCFunction(grow_stack, num_arguments);
880     // If return NULL, we have failed to grow the stack, and
881     // must exit with a stack-overflow exception.
882     __ or_(eax, eax);
883     __ j(equal, &exit_with_exception);
884     // Otherwise use return value as new stack pointer.
885     __ mov(backtrack_stackpointer(), eax);
886     // Restore saved registers and continue.
887     __ pop(edi);
888     __ pop(esi);
889     SafeReturn();
890   }
891 
892   if (exit_with_exception.is_linked()) {
893     // If any of the code above needed to exit with an exception.
894     __ bind(&exit_with_exception);
895     // Exit with Result EXCEPTION(-1) to signal thrown exception.
896     __ mov(eax, EXCEPTION);
897     __ jmp(&return_eax);
898   }
899 
900   CodeDesc code_desc;
901   masm_->GetCode(&code_desc);
902   Handle<Code> code =
903       isolate()->factory()->NewCode(code_desc,
904                                     Code::ComputeFlags(Code::REGEXP),
905                                     masm_->CodeObject());
906   PROFILE(isolate(), RegExpCodeCreateEvent(*code, *source));
907   return Handle<HeapObject>::cast(code);
908 }
909 
910 
GoTo(Label * to)911 void RegExpMacroAssemblerX87::GoTo(Label* to) {
912   BranchOrBacktrack(no_condition, to);
913 }
914 
915 
IfRegisterGE(int reg,int comparand,Label * if_ge)916 void RegExpMacroAssemblerX87::IfRegisterGE(int reg,
917                                             int comparand,
918                                             Label* if_ge) {
919   __ cmp(register_location(reg), Immediate(comparand));
920   BranchOrBacktrack(greater_equal, if_ge);
921 }
922 
923 
IfRegisterLT(int reg,int comparand,Label * if_lt)924 void RegExpMacroAssemblerX87::IfRegisterLT(int reg,
925                                             int comparand,
926                                             Label* if_lt) {
927   __ cmp(register_location(reg), Immediate(comparand));
928   BranchOrBacktrack(less, if_lt);
929 }
930 
931 
IfRegisterEqPos(int reg,Label * if_eq)932 void RegExpMacroAssemblerX87::IfRegisterEqPos(int reg,
933                                                Label* if_eq) {
934   __ cmp(edi, register_location(reg));
935   BranchOrBacktrack(equal, if_eq);
936 }
937 
938 
939 RegExpMacroAssembler::IrregexpImplementation
Implementation()940     RegExpMacroAssemblerX87::Implementation() {
941   return kX87Implementation;
942 }
943 
944 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)945 void RegExpMacroAssemblerX87::LoadCurrentCharacter(int cp_offset,
946                                                     Label* on_end_of_input,
947                                                     bool check_bounds,
948                                                     int characters) {
949   DCHECK(cp_offset >= -1);      // ^ and \b can look behind one character.
950   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
951   if (check_bounds) {
952     CheckPosition(cp_offset + characters - 1, on_end_of_input);
953   }
954   LoadCurrentCharacterUnchecked(cp_offset, characters);
955 }
956 
957 
PopCurrentPosition()958 void RegExpMacroAssemblerX87::PopCurrentPosition() {
959   Pop(edi);
960 }
961 
962 
PopRegister(int register_index)963 void RegExpMacroAssemblerX87::PopRegister(int register_index) {
964   Pop(eax);
965   __ mov(register_location(register_index), eax);
966 }
967 
968 
PushBacktrack(Label * label)969 void RegExpMacroAssemblerX87::PushBacktrack(Label* label) {
970   Push(Immediate::CodeRelativeOffset(label));
971   CheckStackLimit();
972 }
973 
974 
PushCurrentPosition()975 void RegExpMacroAssemblerX87::PushCurrentPosition() {
976   Push(edi);
977 }
978 
979 
PushRegister(int register_index,StackCheckFlag check_stack_limit)980 void RegExpMacroAssemblerX87::PushRegister(int register_index,
981                                             StackCheckFlag check_stack_limit) {
982   __ mov(eax, register_location(register_index));
983   Push(eax);
984   if (check_stack_limit) CheckStackLimit();
985 }
986 
987 
ReadCurrentPositionFromRegister(int reg)988 void RegExpMacroAssemblerX87::ReadCurrentPositionFromRegister(int reg) {
989   __ mov(edi, register_location(reg));
990 }
991 
992 
ReadStackPointerFromRegister(int reg)993 void RegExpMacroAssemblerX87::ReadStackPointerFromRegister(int reg) {
994   __ mov(backtrack_stackpointer(), register_location(reg));
995   __ add(backtrack_stackpointer(), Operand(ebp, kStackHighEnd));
996 }
997 
SetCurrentPositionFromEnd(int by)998 void RegExpMacroAssemblerX87::SetCurrentPositionFromEnd(int by)  {
999   Label after_position;
1000   __ cmp(edi, -by * char_size());
1001   __ j(greater_equal, &after_position, Label::kNear);
1002   __ mov(edi, -by * char_size());
1003   // On RegExp code entry (where this operation is used), the character before
1004   // the current position is expected to be already loaded.
1005   // We have advanced the position, so it's safe to read backwards.
1006   LoadCurrentCharacterUnchecked(-1, 1);
1007   __ bind(&after_position);
1008 }
1009 
1010 
SetRegister(int register_index,int to)1011 void RegExpMacroAssemblerX87::SetRegister(int register_index, int to) {
1012   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1013   __ mov(register_location(register_index), Immediate(to));
1014 }
1015 
1016 
Succeed()1017 bool RegExpMacroAssemblerX87::Succeed() {
1018   __ jmp(&success_label_);
1019   return global();
1020 }
1021 
1022 
WriteCurrentPositionToRegister(int reg,int cp_offset)1023 void RegExpMacroAssemblerX87::WriteCurrentPositionToRegister(int reg,
1024                                                               int cp_offset) {
1025   if (cp_offset == 0) {
1026     __ mov(register_location(reg), edi);
1027   } else {
1028     __ lea(eax, Operand(edi, cp_offset * char_size()));
1029     __ mov(register_location(reg), eax);
1030   }
1031 }
1032 
1033 
ClearRegisters(int reg_from,int reg_to)1034 void RegExpMacroAssemblerX87::ClearRegisters(int reg_from, int reg_to) {
1035   DCHECK(reg_from <= reg_to);
1036   __ mov(eax, Operand(ebp, kInputStartMinusOne));
1037   for (int reg = reg_from; reg <= reg_to; reg++) {
1038     __ mov(register_location(reg), eax);
1039   }
1040 }
1041 
1042 
WriteStackPointerToRegister(int reg)1043 void RegExpMacroAssemblerX87::WriteStackPointerToRegister(int reg) {
1044   __ mov(eax, backtrack_stackpointer());
1045   __ sub(eax, Operand(ebp, kStackHighEnd));
1046   __ mov(register_location(reg), eax);
1047 }
1048 
1049 
1050 // Private methods:
1051 
CallCheckStackGuardState(Register scratch)1052 void RegExpMacroAssemblerX87::CallCheckStackGuardState(Register scratch) {
1053   static const int num_arguments = 3;
1054   __ PrepareCallCFunction(num_arguments, scratch);
1055   // RegExp code frame pointer.
1056   __ mov(Operand(esp, 2 * kPointerSize), ebp);
1057   // Code* of self.
1058   __ mov(Operand(esp, 1 * kPointerSize), Immediate(masm_->CodeObject()));
1059   // Next address on the stack (will be address of return address).
1060   __ lea(eax, Operand(esp, -kPointerSize));
1061   __ mov(Operand(esp, 0 * kPointerSize), eax);
1062   ExternalReference check_stack_guard =
1063       ExternalReference::re_check_stack_guard_state(isolate());
1064   __ CallCFunction(check_stack_guard, num_arguments);
1065 }
1066 
1067 
1068 // Helper function for reading a value out of a stack frame.
1069 template <typename T>
frame_entry(Address re_frame,int frame_offset)1070 static T& frame_entry(Address re_frame, int frame_offset) {
1071   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1072 }
1073 
1074 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1075 int RegExpMacroAssemblerX87::CheckStackGuardState(Address* return_address,
1076                                                    Code* re_code,
1077                                                    Address re_frame) {
1078   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1079   StackLimitCheck check(isolate);
1080   if (check.JsHasOverflowed()) {
1081     isolate->StackOverflow();
1082     return EXCEPTION;
1083   }
1084 
1085   // If not real stack overflow the stack guard was used to interrupt
1086   // execution for another purpose.
1087 
1088   // If this is a direct call from JavaScript retry the RegExp forcing the call
1089   // through the runtime system. Currently the direct call cannot handle a GC.
1090   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1091     return RETRY;
1092   }
1093 
1094   // Prepare for possible GC.
1095   HandleScope handles(isolate);
1096   Handle<Code> code_handle(re_code);
1097 
1098   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1099 
1100   // Current string.
1101   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1102 
1103   DCHECK(re_code->instruction_start() <= *return_address);
1104   DCHECK(*return_address <=
1105       re_code->instruction_start() + re_code->instruction_size());
1106 
1107   Object* result = isolate->stack_guard()->HandleInterrupts();
1108 
1109   if (*code_handle != re_code) {  // Return address no longer valid
1110     int delta = code_handle->address() - re_code->address();
1111     // Overwrite the return address on the stack.
1112     *return_address += delta;
1113   }
1114 
1115   if (result->IsException()) {
1116     return EXCEPTION;
1117   }
1118 
1119   Handle<String> subject_tmp = subject;
1120   int slice_offset = 0;
1121 
1122   // Extract the underlying string and the slice offset.
1123   if (StringShape(*subject_tmp).IsCons()) {
1124     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1125   } else if (StringShape(*subject_tmp).IsSliced()) {
1126     SlicedString* slice = SlicedString::cast(*subject_tmp);
1127     subject_tmp = Handle<String>(slice->parent());
1128     slice_offset = slice->offset();
1129   }
1130 
1131   // String might have changed.
1132   if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1133     // If we changed between an LATIN1 and an UC16 string, the specialized
1134     // code cannot be used, and we need to restart regexp matching from
1135     // scratch (including, potentially, compiling a new version of the code).
1136     return RETRY;
1137   }
1138 
1139   // Otherwise, the content of the string might have moved. It must still
1140   // be a sequential or external string with the same content.
1141   // Update the start and end pointers in the stack frame to the current
1142   // location (whether it has actually moved or not).
1143   DCHECK(StringShape(*subject_tmp).IsSequential() ||
1144       StringShape(*subject_tmp).IsExternal());
1145 
1146   // The original start address of the characters to match.
1147   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1148 
1149   // Find the current start address of the same character at the current string
1150   // position.
1151   int start_index = frame_entry<int>(re_frame, kStartIndex);
1152   const byte* new_address = StringCharacterPosition(*subject_tmp,
1153                                                     start_index + slice_offset);
1154 
1155   if (start_address != new_address) {
1156     // If there is a difference, update the object pointer and start and end
1157     // addresses in the RegExp stack frame to match the new value.
1158     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1159     int byte_length = static_cast<int>(end_address - start_address);
1160     frame_entry<const String*>(re_frame, kInputString) = *subject;
1161     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1162     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1163   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1164     // Subject string might have been a ConsString that underwent
1165     // short-circuiting during GC. That will not change start_address but
1166     // will change pointer inside the subject handle.
1167     frame_entry<const String*>(re_frame, kInputString) = *subject;
1168   }
1169 
1170   return 0;
1171 }
1172 
1173 
register_location(int register_index)1174 Operand RegExpMacroAssemblerX87::register_location(int register_index) {
1175   DCHECK(register_index < (1<<30));
1176   if (num_registers_ <= register_index) {
1177     num_registers_ = register_index + 1;
1178   }
1179   return Operand(ebp, kRegisterZero - register_index * kPointerSize);
1180 }
1181 
1182 
CheckPosition(int cp_offset,Label * on_outside_input)1183 void RegExpMacroAssemblerX87::CheckPosition(int cp_offset,
1184                                              Label* on_outside_input) {
1185   __ cmp(edi, -cp_offset * char_size());
1186   BranchOrBacktrack(greater_equal, on_outside_input);
1187 }
1188 
1189 
BranchOrBacktrack(Condition condition,Label * to)1190 void RegExpMacroAssemblerX87::BranchOrBacktrack(Condition condition,
1191                                                  Label* to) {
1192   if (condition < 0) {  // No condition
1193     if (to == NULL) {
1194       Backtrack();
1195       return;
1196     }
1197     __ jmp(to);
1198     return;
1199   }
1200   if (to == NULL) {
1201     __ j(condition, &backtrack_label_);
1202     return;
1203   }
1204   __ j(condition, to);
1205 }
1206 
1207 
SafeCall(Label * to)1208 void RegExpMacroAssemblerX87::SafeCall(Label* to) {
1209   Label return_to;
1210   __ push(Immediate::CodeRelativeOffset(&return_to));
1211   __ jmp(to);
1212   __ bind(&return_to);
1213 }
1214 
1215 
SafeReturn()1216 void RegExpMacroAssemblerX87::SafeReturn() {
1217   __ pop(ebx);
1218   __ add(ebx, Immediate(masm_->CodeObject()));
1219   __ jmp(ebx);
1220 }
1221 
1222 
SafeCallTarget(Label * name)1223 void RegExpMacroAssemblerX87::SafeCallTarget(Label* name) {
1224   __ bind(name);
1225 }
1226 
1227 
Push(Register source)1228 void RegExpMacroAssemblerX87::Push(Register source) {
1229   DCHECK(!source.is(backtrack_stackpointer()));
1230   // Notice: This updates flags, unlike normal Push.
1231   __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1232   __ mov(Operand(backtrack_stackpointer(), 0), source);
1233 }
1234 
1235 
Push(Immediate value)1236 void RegExpMacroAssemblerX87::Push(Immediate value) {
1237   // Notice: This updates flags, unlike normal Push.
1238   __ sub(backtrack_stackpointer(), Immediate(kPointerSize));
1239   __ mov(Operand(backtrack_stackpointer(), 0), value);
1240 }
1241 
1242 
Pop(Register target)1243 void RegExpMacroAssemblerX87::Pop(Register target) {
1244   DCHECK(!target.is(backtrack_stackpointer()));
1245   __ mov(target, Operand(backtrack_stackpointer(), 0));
1246   // Notice: This updates flags, unlike normal Pop.
1247   __ add(backtrack_stackpointer(), Immediate(kPointerSize));
1248 }
1249 
1250 
CheckPreemption()1251 void RegExpMacroAssemblerX87::CheckPreemption() {
1252   // Check for preemption.
1253   Label no_preempt;
1254   ExternalReference stack_limit =
1255       ExternalReference::address_of_stack_limit(isolate());
1256   __ cmp(esp, Operand::StaticVariable(stack_limit));
1257   __ j(above, &no_preempt);
1258 
1259   SafeCall(&check_preempt_label_);
1260 
1261   __ bind(&no_preempt);
1262 }
1263 
1264 
CheckStackLimit()1265 void RegExpMacroAssemblerX87::CheckStackLimit() {
1266   Label no_stack_overflow;
1267   ExternalReference stack_limit =
1268       ExternalReference::address_of_regexp_stack_limit(isolate());
1269   __ cmp(backtrack_stackpointer(), Operand::StaticVariable(stack_limit));
1270   __ j(above, &no_stack_overflow);
1271 
1272   SafeCall(&stack_overflow_label_);
1273 
1274   __ bind(&no_stack_overflow);
1275 }
1276 
1277 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1278 void RegExpMacroAssemblerX87::LoadCurrentCharacterUnchecked(int cp_offset,
1279                                                              int characters) {
1280   if (mode_ == LATIN1) {
1281     if (characters == 4) {
1282       __ mov(current_character(), Operand(esi, edi, times_1, cp_offset));
1283     } else if (characters == 2) {
1284       __ movzx_w(current_character(), Operand(esi, edi, times_1, cp_offset));
1285     } else {
1286       DCHECK(characters == 1);
1287       __ movzx_b(current_character(), Operand(esi, edi, times_1, cp_offset));
1288     }
1289   } else {
1290     DCHECK(mode_ == UC16);
1291     if (characters == 2) {
1292       __ mov(current_character(),
1293              Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1294     } else {
1295       DCHECK(characters == 1);
1296       __ movzx_w(current_character(),
1297                  Operand(esi, edi, times_1, cp_offset * sizeof(uc16)));
1298     }
1299   }
1300 }
1301 
1302 
1303 #undef __
1304 
1305 #endif  // V8_INTERPRETED_REGEXP
1306 
1307 }}  // namespace v8::internal
1308 
1309 #endif  // V8_TARGET_ARCH_X87
1310