1 // Copyright 2014, ARM Limited
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include "test-utils-a64.h"
28
29 #include <cmath>
30
31 #include "test-runner.h"
32 #include "vixl/a64/macro-assembler-a64.h"
33 #include "vixl/a64/simulator-a64.h"
34 #include "vixl/a64/disasm-a64.h"
35 #include "vixl/a64/cpu-a64.h"
36
37 #define __ masm->
38
39 namespace vixl {
40
41
42 // This value is a signalling NaN as both a double and as a float (taking the
43 // least-significant word).
44 const double kFP64SignallingNaN =
45 rawbits_to_double(UINT64_C(0x7ff000007f800001));
46 const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
47
48 // A similar value, but as a quiet NaN.
49 const double kFP64QuietNaN = rawbits_to_double(UINT64_C(0x7ff800007fc00001));
50 const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
51
52
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)53 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
54 if (result != expected) {
55 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
56 expected, result);
57 }
58
59 return expected == result;
60 }
61
62
Equal64(uint64_t expected,const RegisterDump *,uint64_t result)63 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
64 if (result != expected) {
65 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
66 expected, result);
67 }
68
69 return expected == result;
70 }
71
72
Equal128(vec128_t expected,const RegisterDump *,vec128_t result)73 bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) {
74 if ((result.h != expected.h) || (result.l != expected.l)) {
75 printf("Expected 0x%016" PRIx64 "%016" PRIx64 "\t "
76 "Found 0x%016" PRIx64 "%016" PRIx64 "\n",
77 expected.h, expected.l, result.h, result.l);
78 }
79
80 return ((expected.h == result.h) && (expected.l == result.l));
81 }
82
83
EqualFP32(float expected,const RegisterDump *,float result)84 bool EqualFP32(float expected, const RegisterDump*, float result) {
85 if (float_to_rawbits(expected) == float_to_rawbits(result)) {
86 return true;
87 } else {
88 if (std::isnan(expected) || (expected == 0.0)) {
89 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
90 float_to_rawbits(expected), float_to_rawbits(result));
91 } else {
92 printf("Expected %.9f (0x%08" PRIx32 ")\t "
93 "Found %.9f (0x%08" PRIx32 ")\n",
94 expected, float_to_rawbits(expected),
95 result, float_to_rawbits(result));
96 }
97 return false;
98 }
99 }
100
101
EqualFP64(double expected,const RegisterDump *,double result)102 bool EqualFP64(double expected, const RegisterDump*, double result) {
103 if (double_to_rawbits(expected) == double_to_rawbits(result)) {
104 return true;
105 }
106
107 if (std::isnan(expected) || (expected == 0.0)) {
108 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
109 double_to_rawbits(expected), double_to_rawbits(result));
110 } else {
111 printf("Expected %.17f (0x%016" PRIx64 ")\t "
112 "Found %.17f (0x%016" PRIx64 ")\n",
113 expected, double_to_rawbits(expected),
114 result, double_to_rawbits(result));
115 }
116 return false;
117 }
118
119
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)120 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
121 VIXL_ASSERT(reg.Is32Bits());
122 // Retrieve the corresponding X register so we can check that the upper part
123 // was properly cleared.
124 int64_t result_x = core->xreg(reg.code());
125 if ((result_x & 0xffffffff00000000) != 0) {
126 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
127 expected, result_x);
128 return false;
129 }
130 uint32_t result_w = core->wreg(reg.code());
131 return Equal32(expected, core, result_w);
132 }
133
134
Equal64(uint64_t expected,const RegisterDump * core,const Register & reg)135 bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) {
136 VIXL_ASSERT(reg.Is64Bits());
137 uint64_t result = core->xreg(reg.code());
138 return Equal64(expected, core, result);
139 }
140
141
Equal128(uint64_t expected_h,uint64_t expected_l,const RegisterDump * core,const VRegister & vreg)142 bool Equal128(uint64_t expected_h,
143 uint64_t expected_l,
144 const RegisterDump* core,
145 const VRegister& vreg) {
146 VIXL_ASSERT(vreg.Is128Bits());
147 vec128_t expected = {expected_l, expected_h};
148 vec128_t result = core->qreg(vreg.code());
149 return Equal128(expected, core, result);
150 }
151
152
EqualFP32(float expected,const RegisterDump * core,const FPRegister & fpreg)153 bool EqualFP32(float expected,
154 const RegisterDump* core,
155 const FPRegister& fpreg) {
156 VIXL_ASSERT(fpreg.Is32Bits());
157 // Retrieve the corresponding D register so we can check that the upper part
158 // was properly cleared.
159 uint64_t result_64 = core->dreg_bits(fpreg.code());
160 if ((result_64 & 0xffffffff00000000) != 0) {
161 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
162 float_to_rawbits(expected), expected, result_64);
163 return false;
164 }
165
166 return EqualFP32(expected, core, core->sreg(fpreg.code()));
167 }
168
169
EqualFP64(double expected,const RegisterDump * core,const FPRegister & fpreg)170 bool EqualFP64(double expected,
171 const RegisterDump* core,
172 const FPRegister& fpreg) {
173 VIXL_ASSERT(fpreg.Is64Bits());
174 return EqualFP64(expected, core, core->dreg(fpreg.code()));
175 }
176
177
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1)178 bool Equal64(const Register& reg0,
179 const RegisterDump* core,
180 const Register& reg1) {
181 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
182 int64_t expected = core->xreg(reg0.code());
183 int64_t result = core->xreg(reg1.code());
184 return Equal64(expected, core, result);
185 }
186
187
FlagN(uint32_t flags)188 static char FlagN(uint32_t flags) {
189 return (flags & NFlag) ? 'N' : 'n';
190 }
191
192
FlagZ(uint32_t flags)193 static char FlagZ(uint32_t flags) {
194 return (flags & ZFlag) ? 'Z' : 'z';
195 }
196
197
FlagC(uint32_t flags)198 static char FlagC(uint32_t flags) {
199 return (flags & CFlag) ? 'C' : 'c';
200 }
201
202
FlagV(uint32_t flags)203 static char FlagV(uint32_t flags) {
204 return (flags & VFlag) ? 'V' : 'v';
205 }
206
207
EqualNzcv(uint32_t expected,uint32_t result)208 bool EqualNzcv(uint32_t expected, uint32_t result) {
209 VIXL_ASSERT((expected & ~NZCVFlag) == 0);
210 VIXL_ASSERT((result & ~NZCVFlag) == 0);
211 if (result != expected) {
212 printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
213 FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected),
214 FlagN(result), FlagZ(result), FlagC(result), FlagV(result));
215 return false;
216 }
217
218 return true;
219 }
220
221
EqualRegisters(const RegisterDump * a,const RegisterDump * b)222 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
223 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
224 if (a->xreg(i) != b->xreg(i)) {
225 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
226 i, a->xreg(i), b->xreg(i));
227 return false;
228 }
229 }
230
231 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
232 uint64_t a_bits = a->dreg_bits(i);
233 uint64_t b_bits = b->dreg_bits(i);
234 if (a_bits != b_bits) {
235 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
236 i, a_bits, b_bits);
237 return false;
238 }
239 }
240
241 return true;
242 }
243
244
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)245 RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
246 int reg_size, int reg_count, RegList allowed) {
247 RegList list = 0;
248 int i = 0;
249 for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
250 if (((UINT64_C(1) << n) & allowed) != 0) {
251 // Only assign allowed registers.
252 if (r) {
253 r[i] = Register(n, reg_size);
254 }
255 if (x) {
256 x[i] = Register(n, kXRegSize);
257 }
258 if (w) {
259 w[i] = Register(n, kWRegSize);
260 }
261 list |= (UINT64_C(1) << n);
262 i++;
263 }
264 }
265 // Check that we got enough registers.
266 VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
267
268 return list;
269 }
270
271
PopulateFPRegisterArray(FPRegister * s,FPRegister * d,FPRegister * v,int reg_size,int reg_count,RegList allowed)272 RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
273 int reg_size, int reg_count, RegList allowed) {
274 RegList list = 0;
275 int i = 0;
276 for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
277 if (((UINT64_C(1) << n) & allowed) != 0) {
278 // Only assigned allowed registers.
279 if (v) {
280 v[i] = FPRegister(n, reg_size);
281 }
282 if (d) {
283 d[i] = FPRegister(n, kDRegSize);
284 }
285 if (s) {
286 s[i] = FPRegister(n, kSRegSize);
287 }
288 list |= (UINT64_C(1) << n);
289 i++;
290 }
291 }
292 // Check that we got enough registers.
293 VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
294
295 return list;
296 }
297
298
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)299 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
300 Register first = NoReg;
301 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
302 if (reg_list & (UINT64_C(1) << i)) {
303 Register xn(i, kXRegSize);
304 // We should never write into sp here.
305 VIXL_ASSERT(!xn.Is(sp));
306 if (!xn.IsZero()) {
307 if (!first.IsValid()) {
308 // This is the first register we've hit, so construct the literal.
309 __ Mov(xn, value);
310 first = xn;
311 } else {
312 // We've already loaded the literal, so re-use the value already
313 // loaded into the first register we hit.
314 __ Mov(xn, first);
315 }
316 }
317 }
318 }
319 }
320
321
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)322 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
323 FPRegister first = NoFPReg;
324 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
325 if (reg_list & (UINT64_C(1) << i)) {
326 FPRegister dn(i, kDRegSize);
327 if (!first.IsValid()) {
328 // This is the first register we've hit, so construct the literal.
329 __ Fmov(dn, value);
330 first = dn;
331 } else {
332 // We've already loaded the literal, so re-use the value already loaded
333 // into the first register we hit.
334 __ Fmov(dn, first);
335 }
336 }
337 }
338 }
339
340
Clobber(MacroAssembler * masm,CPURegList reg_list)341 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
342 if (reg_list.type() == CPURegister::kRegister) {
343 // This will always clobber X registers.
344 Clobber(masm, reg_list.list());
345 } else if (reg_list.type() == CPURegister::kVRegister) {
346 // This will always clobber D registers.
347 ClobberFP(masm, reg_list.list());
348 } else {
349 VIXL_UNREACHABLE();
350 }
351 }
352
353
Dump(MacroAssembler * masm)354 void RegisterDump::Dump(MacroAssembler* masm) {
355 VIXL_ASSERT(__ StackPointer().Is(sp));
356
357 // Ensure that we don't unintentionally clobber any registers.
358 UseScratchRegisterScope temps(masm);
359 temps.ExcludeAll();
360
361 // Preserve some temporary registers.
362 Register dump_base = x0;
363 Register dump = x1;
364 Register tmp = x2;
365 Register dump_base_w = dump_base.W();
366 Register dump_w = dump.W();
367 Register tmp_w = tmp.W();
368
369 // Offsets into the dump_ structure.
370 const int x_offset = offsetof(dump_t, x_);
371 const int w_offset = offsetof(dump_t, w_);
372 const int d_offset = offsetof(dump_t, d_);
373 const int s_offset = offsetof(dump_t, s_);
374 const int q_offset = offsetof(dump_t, q_);
375 const int sp_offset = offsetof(dump_t, sp_);
376 const int wsp_offset = offsetof(dump_t, wsp_);
377 const int flags_offset = offsetof(dump_t, flags_);
378
379 __ Push(xzr, dump_base, dump, tmp);
380
381 // Load the address where we will dump the state.
382 __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
383
384 // Dump the stack pointer (sp and wsp).
385 // The stack pointer cannot be stored directly; it needs to be moved into
386 // another register first. Also, we pushed four X registers, so we need to
387 // compensate here.
388 __ Add(tmp, sp, 4 * kXRegSizeInBytes);
389 __ Str(tmp, MemOperand(dump_base, sp_offset));
390 __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes);
391 __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
392
393 // Dump X registers.
394 __ Add(dump, dump_base, x_offset);
395 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
396 __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1),
397 MemOperand(dump, i * kXRegSizeInBytes));
398 }
399
400 // Dump W registers.
401 __ Add(dump, dump_base, w_offset);
402 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
403 __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1),
404 MemOperand(dump, i * kWRegSizeInBytes));
405 }
406
407 // Dump D registers.
408 __ Add(dump, dump_base, d_offset);
409 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
410 __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1),
411 MemOperand(dump, i * kDRegSizeInBytes));
412 }
413
414 // Dump S registers.
415 __ Add(dump, dump_base, s_offset);
416 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
417 __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1),
418 MemOperand(dump, i * kSRegSizeInBytes));
419 }
420
421 // Dump Q registers.
422 __ Add(dump, dump_base, q_offset);
423 for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) {
424 __ Stp(VRegister::QRegFromCode(i), VRegister::QRegFromCode(i + 1),
425 MemOperand(dump, i * kQRegSizeInBytes));
426 }
427
428 // Dump the flags.
429 __ Mrs(tmp, NZCV);
430 __ Str(tmp, MemOperand(dump_base, flags_offset));
431
432 // To dump the values that were in tmp amd dump, we need a new scratch
433 // register. We can use any of the already dumped registers since we can
434 // easily restore them.
435 Register dump2_base = x10;
436 Register dump2 = x11;
437 VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
438
439 // Don't lose the dump_ address.
440 __ Mov(dump2_base, dump_base);
441
442 __ Pop(tmp, dump, dump_base, xzr);
443
444 __ Add(dump2, dump2_base, w_offset);
445 __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSizeInBytes));
446 __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSizeInBytes));
447 __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSizeInBytes));
448
449 __ Add(dump2, dump2_base, x_offset);
450 __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSizeInBytes));
451 __ Str(dump, MemOperand(dump2, dump.code() * kXRegSizeInBytes));
452 __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSizeInBytes));
453
454 // Finally, restore dump2_base and dump2.
455 __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSizeInBytes));
456 __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSizeInBytes));
457
458 completed_ = true;
459 }
460
461 } // namespace vixl
462