• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: somnath@google.com (Somnath Banerjee)
13 //         cduvivier@google.com (Christian Duvivier)
14 
15 #include "./dsp.h"
16 
17 #if defined(WEBP_USE_SSE2)
18 
19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20 // one it seems => disable it by default. Uncomment the following to enable:
21 // #define USE_TRANSFORM_AC3
22 
23 #include <emmintrin.h>
24 #include "../dec/vp8i.h"
25 
26 //------------------------------------------------------------------------------
27 // Transforms (Paragraph 14.4)
28 
Transform(const int16_t * in,uint8_t * dst,int do_two)29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
30   // This implementation makes use of 16-bit fixed point versions of two
31   // multiply constants:
32   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
33   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
34   //
35   // To be able to use signed 16-bit integers, we use the following trick to
36   // have constants within range:
37   // - Associated constants are obtained by subtracting the 16-bit fixed point
38   //   version of one:
39   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
40   //      K1 = 85267  =>  k1 =  20091
41   //      K2 = 35468  =>  k2 = -30068
42   // - The multiplication of a variable by a constant become the sum of the
43   //   variable and the multiplication of that variable by the associated
44   //   constant:
45   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46   const __m128i k1 = _mm_set1_epi16(20091);
47   const __m128i k2 = _mm_set1_epi16(-30068);
48   __m128i T0, T1, T2, T3;
49 
50   // Load and concatenate the transform coefficients (we'll do two transforms
51   // in parallel). In the case of only one transform, the second half of the
52   // vectors will just contain random value we'll never use nor store.
53   __m128i in0, in1, in2, in3;
54   {
55     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
56     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
57     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
58     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
59     // a00 a10 a20 a30   x x x x
60     // a01 a11 a21 a31   x x x x
61     // a02 a12 a22 a32   x x x x
62     // a03 a13 a23 a33   x x x x
63     if (do_two) {
64       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
65       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
66       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
67       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
68       in0 = _mm_unpacklo_epi64(in0, inB0);
69       in1 = _mm_unpacklo_epi64(in1, inB1);
70       in2 = _mm_unpacklo_epi64(in2, inB2);
71       in3 = _mm_unpacklo_epi64(in3, inB3);
72       // a00 a10 a20 a30   b00 b10 b20 b30
73       // a01 a11 a21 a31   b01 b11 b21 b31
74       // a02 a12 a22 a32   b02 b12 b22 b32
75       // a03 a13 a23 a33   b03 b13 b23 b33
76     }
77   }
78 
79   // Vertical pass and subsequent transpose.
80   {
81     // First pass, c and d calculations are longer because of the "trick"
82     // multiplications.
83     const __m128i a = _mm_add_epi16(in0, in2);
84     const __m128i b = _mm_sub_epi16(in0, in2);
85     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
86     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
87     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
88     const __m128i c3 = _mm_sub_epi16(in1, in3);
89     const __m128i c4 = _mm_sub_epi16(c1, c2);
90     const __m128i c = _mm_add_epi16(c3, c4);
91     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
92     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
93     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
94     const __m128i d3 = _mm_add_epi16(in1, in3);
95     const __m128i d4 = _mm_add_epi16(d1, d2);
96     const __m128i d = _mm_add_epi16(d3, d4);
97 
98     // Second pass.
99     const __m128i tmp0 = _mm_add_epi16(a, d);
100     const __m128i tmp1 = _mm_add_epi16(b, c);
101     const __m128i tmp2 = _mm_sub_epi16(b, c);
102     const __m128i tmp3 = _mm_sub_epi16(a, d);
103 
104     // Transpose the two 4x4.
105     // a00 a01 a02 a03   b00 b01 b02 b03
106     // a10 a11 a12 a13   b10 b11 b12 b13
107     // a20 a21 a22 a23   b20 b21 b22 b23
108     // a30 a31 a32 a33   b30 b31 b32 b33
109     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
110     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
111     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
112     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
113     // a00 a10 a01 a11   a02 a12 a03 a13
114     // a20 a30 a21 a31   a22 a32 a23 a33
115     // b00 b10 b01 b11   b02 b12 b03 b13
116     // b20 b30 b21 b31   b22 b32 b23 b33
117     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
118     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
119     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
120     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
121     // a00 a10 a20 a30 a01 a11 a21 a31
122     // b00 b10 b20 b30 b01 b11 b21 b31
123     // a02 a12 a22 a32 a03 a13 a23 a33
124     // b02 b12 a22 b32 b03 b13 b23 b33
125     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
126     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
127     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
128     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
129     // a00 a10 a20 a30   b00 b10 b20 b30
130     // a01 a11 a21 a31   b01 b11 b21 b31
131     // a02 a12 a22 a32   b02 b12 b22 b32
132     // a03 a13 a23 a33   b03 b13 b23 b33
133   }
134 
135   // Horizontal pass and subsequent transpose.
136   {
137     // First pass, c and d calculations are longer because of the "trick"
138     // multiplications.
139     const __m128i four = _mm_set1_epi16(4);
140     const __m128i dc = _mm_add_epi16(T0, four);
141     const __m128i a =  _mm_add_epi16(dc, T2);
142     const __m128i b =  _mm_sub_epi16(dc, T2);
143     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
144     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
145     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
146     const __m128i c3 = _mm_sub_epi16(T1, T3);
147     const __m128i c4 = _mm_sub_epi16(c1, c2);
148     const __m128i c = _mm_add_epi16(c3, c4);
149     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
150     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
151     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
152     const __m128i d3 = _mm_add_epi16(T1, T3);
153     const __m128i d4 = _mm_add_epi16(d1, d2);
154     const __m128i d = _mm_add_epi16(d3, d4);
155 
156     // Second pass.
157     const __m128i tmp0 = _mm_add_epi16(a, d);
158     const __m128i tmp1 = _mm_add_epi16(b, c);
159     const __m128i tmp2 = _mm_sub_epi16(b, c);
160     const __m128i tmp3 = _mm_sub_epi16(a, d);
161     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
162     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
163     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
164     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
165 
166     // Transpose the two 4x4.
167     // a00 a01 a02 a03   b00 b01 b02 b03
168     // a10 a11 a12 a13   b10 b11 b12 b13
169     // a20 a21 a22 a23   b20 b21 b22 b23
170     // a30 a31 a32 a33   b30 b31 b32 b33
171     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
172     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
173     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
174     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
175     // a00 a10 a01 a11   a02 a12 a03 a13
176     // a20 a30 a21 a31   a22 a32 a23 a33
177     // b00 b10 b01 b11   b02 b12 b03 b13
178     // b20 b30 b21 b31   b22 b32 b23 b33
179     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
180     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
181     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
182     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
183     // a00 a10 a20 a30 a01 a11 a21 a31
184     // b00 b10 b20 b30 b01 b11 b21 b31
185     // a02 a12 a22 a32 a03 a13 a23 a33
186     // b02 b12 a22 b32 b03 b13 b23 b33
187     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
188     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
189     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
190     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
191     // a00 a10 a20 a30   b00 b10 b20 b30
192     // a01 a11 a21 a31   b01 b11 b21 b31
193     // a02 a12 a22 a32   b02 b12 b22 b32
194     // a03 a13 a23 a33   b03 b13 b23 b33
195   }
196 
197   // Add inverse transform to 'dst' and store.
198   {
199     const __m128i zero = _mm_setzero_si128();
200     // Load the reference(s).
201     __m128i dst0, dst1, dst2, dst3;
202     if (do_two) {
203       // Load eight bytes/pixels per line.
204       dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
205       dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
206       dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
207       dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
208     } else {
209       // Load four bytes/pixels per line.
210       dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
211       dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
212       dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
213       dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
214     }
215     // Convert to 16b.
216     dst0 = _mm_unpacklo_epi8(dst0, zero);
217     dst1 = _mm_unpacklo_epi8(dst1, zero);
218     dst2 = _mm_unpacklo_epi8(dst2, zero);
219     dst3 = _mm_unpacklo_epi8(dst3, zero);
220     // Add the inverse transform(s).
221     dst0 = _mm_add_epi16(dst0, T0);
222     dst1 = _mm_add_epi16(dst1, T1);
223     dst2 = _mm_add_epi16(dst2, T2);
224     dst3 = _mm_add_epi16(dst3, T3);
225     // Unsigned saturate to 8b.
226     dst0 = _mm_packus_epi16(dst0, dst0);
227     dst1 = _mm_packus_epi16(dst1, dst1);
228     dst2 = _mm_packus_epi16(dst2, dst2);
229     dst3 = _mm_packus_epi16(dst3, dst3);
230     // Store the results.
231     if (do_two) {
232       // Store eight bytes/pixels per line.
233       _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
234       _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
235       _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
236       _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
237     } else {
238       // Store four bytes/pixels per line.
239       *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
240       *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
241       *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
242       *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
243     }
244   }
245 }
246 
247 #if defined(USE_TRANSFORM_AC3)
248 #define MUL(a, b) (((a) * (b)) >> 16)
TransformAC3(const int16_t * in,uint8_t * dst)249 static void TransformAC3(const int16_t* in, uint8_t* dst) {
250   static const int kC1 = 20091 + (1 << 16);
251   static const int kC2 = 35468;
252   const __m128i A = _mm_set1_epi16(in[0] + 4);
253   const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
254   const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
255   const int c1 = MUL(in[1], kC2);
256   const int d1 = MUL(in[1], kC1);
257   const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
258   const __m128i B = _mm_adds_epi16(A, CD);
259   const __m128i m0 = _mm_adds_epi16(B, d4);
260   const __m128i m1 = _mm_adds_epi16(B, c4);
261   const __m128i m2 = _mm_subs_epi16(B, c4);
262   const __m128i m3 = _mm_subs_epi16(B, d4);
263   const __m128i zero = _mm_setzero_si128();
264   // Load the source pixels.
265   __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS));
266   __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS));
267   __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS));
268   __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS));
269   // Convert to 16b.
270   dst0 = _mm_unpacklo_epi8(dst0, zero);
271   dst1 = _mm_unpacklo_epi8(dst1, zero);
272   dst2 = _mm_unpacklo_epi8(dst2, zero);
273   dst3 = _mm_unpacklo_epi8(dst3, zero);
274   // Add the inverse transform.
275   dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
276   dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
277   dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
278   dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
279   // Unsigned saturate to 8b.
280   dst0 = _mm_packus_epi16(dst0, dst0);
281   dst1 = _mm_packus_epi16(dst1, dst1);
282   dst2 = _mm_packus_epi16(dst2, dst2);
283   dst3 = _mm_packus_epi16(dst3, dst3);
284   // Store the results.
285   *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0);
286   *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1);
287   *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2);
288   *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3);
289 }
290 #undef MUL
291 #endif   // USE_TRANSFORM_AC3
292 
293 //------------------------------------------------------------------------------
294 // Loop Filter (Paragraph 15)
295 
296 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
297 #define MM_ABS(p, q)  _mm_or_si128(                                            \
298     _mm_subs_epu8((q), (p)),                                                   \
299     _mm_subs_epu8((p), (q)))
300 
301 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
SignedShift8b(__m128i * const x)302 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
303   const __m128i zero = _mm_setzero_si128();
304   const __m128i signs = _mm_cmpgt_epi8(zero, *x);
305   const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs);  // s8 -> s16 sign extend
306   const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs);
307   const __m128i lo_1 = _mm_srai_epi16(lo_0, 3);
308   const __m128i hi_1 = _mm_srai_epi16(hi_0, 3);
309   *x = _mm_packs_epi16(lo_1, hi_1);
310 }
311 
312 #define FLIP_SIGN_BIT2(a, b) {                                                 \
313   a = _mm_xor_si128(a, sign_bit);                                              \
314   b = _mm_xor_si128(b, sign_bit);                                              \
315 }
316 
317 #define FLIP_SIGN_BIT4(a, b, c, d) {                                           \
318   FLIP_SIGN_BIT2(a, b);                                                        \
319   FLIP_SIGN_BIT2(c, d);                                                        \
320 }
321 
322 // input/output is uint8_t
GetNotHEV(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int hev_thresh,__m128i * const not_hev)323 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
324                                   const __m128i* const p0,
325                                   const __m128i* const q0,
326                                   const __m128i* const q1,
327                                   int hev_thresh, __m128i* const not_hev) {
328   const __m128i zero = _mm_setzero_si128();
329   const __m128i t_1 = MM_ABS(*p1, *p0);
330   const __m128i t_2 = MM_ABS(*q1, *q0);
331 
332   const __m128i h = _mm_set1_epi8(hev_thresh);
333   const __m128i t_3 = _mm_subs_epu8(t_1, h);  // abs(p1 - p0) - hev_tresh
334   const __m128i t_4 = _mm_subs_epu8(t_2, h);  // abs(q1 - q0) - hev_tresh
335 
336   *not_hev = _mm_or_si128(t_3, t_4);
337   *not_hev = _mm_cmpeq_epi8(*not_hev, zero);  // not_hev <= t1 && not_hev <= t2
338 }
339 
340 // input pixels are int8_t
GetBaseDelta(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,__m128i * const delta)341 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
342                                      const __m128i* const p0,
343                                      const __m128i* const q0,
344                                      const __m128i* const q1,
345                                      __m128i* const delta) {
346   // beware of addition order, for saturation!
347   const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1);   // p1 - q1
348   const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0);   // q0 - p0
349   const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0);  // p1 - q1 + 1 * (q0 - p0)
350   const __m128i s2 = _mm_adds_epi8(q0_p0, s1);     // p1 - q1 + 2 * (q0 - p0)
351   const __m128i s3 = _mm_adds_epi8(q0_p0, s2);     // p1 - q1 + 3 * (q0 - p0)
352   *delta = s3;
353 }
354 
355 // input and output are int8_t
DoSimpleFilter(__m128i * const p0,__m128i * const q0,const __m128i * const fl)356 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
357                                        const __m128i* const fl) {
358   const __m128i k3 = _mm_set1_epi8(3);
359   const __m128i k4 = _mm_set1_epi8(4);
360   __m128i v3 = _mm_adds_epi8(*fl, k3);
361   __m128i v4 = _mm_adds_epi8(*fl, k4);
362 
363   SignedShift8b(&v4);                  // v4 >> 3
364   SignedShift8b(&v3);                  // v3 >> 3
365   *q0 = _mm_subs_epi8(*q0, v4);        // q0 -= v4
366   *p0 = _mm_adds_epi8(*p0, v3);        // p0 += v3
367 }
368 
369 // Updates values of 2 pixels at MB edge during complex filtering.
370 // Update operations:
371 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
372 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
Update2Pixels(__m128i * const pi,__m128i * const qi,const __m128i * const a0_lo,const __m128i * const a0_hi)373 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
374                                       const __m128i* const a0_lo,
375                                       const __m128i* const a0_hi) {
376   const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
377   const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
378   const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
379   const __m128i sign_bit = _mm_set1_epi8(0x80);
380   *pi = _mm_adds_epi8(*pi, delta);
381   *qi = _mm_subs_epi8(*qi, delta);
382   FLIP_SIGN_BIT2(*pi, *qi);
383 }
384 
385 // input pixels are uint8_t
NeedsFilter(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,__m128i * const mask)386 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
387                                     const __m128i* const p0,
388                                     const __m128i* const q0,
389                                     const __m128i* const q1,
390                                     int thresh, __m128i* const mask) {
391   const __m128i m_thresh = _mm_set1_epi8(thresh);
392   const __m128i t1 = MM_ABS(*p1, *q1);        // abs(p1 - q1)
393   const __m128i kFE = _mm_set1_epi8(0xFE);
394   const __m128i t2 = _mm_and_si128(t1, kFE);  // set lsb of each byte to zero
395   const __m128i t3 = _mm_srli_epi16(t2, 1);   // abs(p1 - q1) / 2
396 
397   const __m128i t4 = MM_ABS(*p0, *q0);        // abs(p0 - q0)
398   const __m128i t5 = _mm_adds_epu8(t4, t4);   // abs(p0 - q0) * 2
399   const __m128i t6 = _mm_adds_epu8(t5, t3);   // abs(p0-q0)*2 + abs(p1-q1)/2
400 
401   const __m128i t7 = _mm_subs_epu8(t6, m_thresh);  // mask <= m_thresh
402   *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
403 }
404 
405 //------------------------------------------------------------------------------
406 // Edge filtering functions
407 
408 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,int thresh)409 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
410                                   __m128i* const q0, __m128i* const q1,
411                                   int thresh) {
412   __m128i a, mask;
413   const __m128i sign_bit = _mm_set1_epi8(0x80);
414   // convert p1/q1 to int8_t (for GetBaseDelta)
415   const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
416   const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
417 
418   NeedsFilter(p1, p0, q0, q1, thresh, &mask);
419 
420   FLIP_SIGN_BIT2(*p0, *q0);
421   GetBaseDelta(&p1s, p0, q0, &q1s, &a);
422   a = _mm_and_si128(a, mask);     // mask filter values we don't care about
423   DoSimpleFilter(p0, q0, &a);
424   FLIP_SIGN_BIT2(*p0, *q0);
425 }
426 
427 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,const __m128i * const mask,int hev_thresh)428 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
429                                   __m128i* const q0, __m128i* const q1,
430                                   const __m128i* const mask, int hev_thresh) {
431   const __m128i sign_bit = _mm_set1_epi8(0x80);
432   const __m128i k64 = _mm_set1_epi8(0x40);
433   const __m128i zero = _mm_setzero_si128();
434   __m128i not_hev;
435   __m128i t1, t2, t3;
436 
437   // compute hev mask
438   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
439 
440   // convert to signed values
441   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
442 
443   t1 = _mm_subs_epi8(*p1, *q1);        // p1 - q1
444   t1 = _mm_andnot_si128(not_hev, t1);  // hev(p1 - q1)
445   t2 = _mm_subs_epi8(*q0, *p0);        // q0 - p0
446   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 1 * (q0 - p0)
447   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 2 * (q0 - p0)
448   t1 = _mm_adds_epi8(t1, t2);          // hev(p1 - q1) + 3 * (q0 - p0)
449   t1 = _mm_and_si128(t1, *mask);       // mask filter values we don't care about
450 
451   t2 = _mm_set1_epi8(3);
452   t3 = _mm_set1_epi8(4);
453   t2 = _mm_adds_epi8(t1, t2);        // 3 * (q0 - p0) + (p1 - q1) + 3
454   t3 = _mm_adds_epi8(t1, t3);        // 3 * (q0 - p0) + (p1 - q1) + 4
455   SignedShift8b(&t2);                // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
456   SignedShift8b(&t3);                // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
457   *p0 = _mm_adds_epi8(*p0, t2);      // p0 += t2
458   *q0 = _mm_subs_epi8(*q0, t3);      // q0 -= t3
459   FLIP_SIGN_BIT2(*p0, *q0);
460 
461   // this is equivalent to signed (a + 1) >> 1 calculation
462   t2 = _mm_add_epi8(t3, sign_bit);
463   t3 = _mm_avg_epu8(t2, zero);
464   t3 = _mm_sub_epi8(t3, k64);
465 
466   t3 = _mm_and_si128(not_hev, t3);   // if !hev
467   *q1 = _mm_subs_epi8(*q1, t3);      // q1 -= t3
468   *p1 = _mm_adds_epi8(*p1, t3);      // p1 += t3
469   FLIP_SIGN_BIT2(*p1, *q1);
470 }
471 
472 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * const p2,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,__m128i * const q2,const __m128i * const mask,int hev_thresh)473 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
474                                   __m128i* const p0, __m128i* const q0,
475                                   __m128i* const q1, __m128i* const q2,
476                                   const __m128i* const mask, int hev_thresh) {
477   const __m128i zero = _mm_setzero_si128();
478   const __m128i sign_bit = _mm_set1_epi8(0x80);
479   __m128i a, not_hev;
480 
481   // compute hev mask
482   GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
483 
484   FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
485   FLIP_SIGN_BIT2(*p2, *q2);
486   GetBaseDelta(p1, p0, q0, q1, &a);
487 
488   { // do simple filter on pixels with hev
489     const __m128i m = _mm_andnot_si128(not_hev, *mask);
490     const __m128i f = _mm_and_si128(a, m);
491     DoSimpleFilter(p0, q0, &f);
492   }
493 
494   { // do strong filter on pixels with not hev
495     const __m128i k9 = _mm_set1_epi16(0x0900);
496     const __m128i k63 = _mm_set1_epi16(63);
497 
498     const __m128i m = _mm_and_si128(not_hev, *mask);
499     const __m128i f = _mm_and_si128(a, m);
500 
501     const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
502     const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
503 
504     const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9);    // Filter (lo) * 9
505     const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9);    // Filter (hi) * 9
506 
507     const __m128i a2_lo = _mm_add_epi16(f9_lo, k63);    // Filter * 9 + 63
508     const __m128i a2_hi = _mm_add_epi16(f9_hi, k63);    // Filter * 9 + 63
509 
510     const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo);  // Filter * 18 + 63
511     const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi);  // Filter * 18 + 63
512 
513     const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo);  // Filter * 27 + 63
514     const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi);  // Filter * 27 + 63
515 
516     Update2Pixels(p2, q2, &a2_lo, &a2_hi);
517     Update2Pixels(p1, q1, &a1_lo, &a1_hi);
518     Update2Pixels(p0, q0, &a0_lo, &a0_hi);
519   }
520 }
521 
522 // reads 8 rows across a vertical edge.
523 //
524 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
525 // two Load4x4() to avoid code duplication.
Load8x4(const uint8_t * const b,int stride,__m128i * const p,__m128i * const q)526 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
527                                 __m128i* const p, __m128i* const q) {
528   __m128i t1, t2;
529 
530   // Load 0th, 1st, 4th and 5th rows
531   __m128i r0 =  _mm_cvtsi32_si128(*((int*)&b[0 * stride]));  // 03 02 01 00
532   __m128i r1 =  _mm_cvtsi32_si128(*((int*)&b[1 * stride]));  // 13 12 11 10
533   __m128i r4 =  _mm_cvtsi32_si128(*((int*)&b[4 * stride]));  // 43 42 41 40
534   __m128i r5 =  _mm_cvtsi32_si128(*((int*)&b[5 * stride]));  // 53 52 51 50
535 
536   r0 = _mm_unpacklo_epi32(r0, r4);               // 43 42 41 40 03 02 01 00
537   r1 = _mm_unpacklo_epi32(r1, r5);               // 53 52 51 50 13 12 11 10
538 
539   // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
540   t1 = _mm_unpacklo_epi8(r0, r1);
541 
542   // Load 2nd, 3rd, 6th and 7th rows
543   r0 =  _mm_cvtsi32_si128(*((int*)&b[2 * stride]));          // 23 22 21 22
544   r1 =  _mm_cvtsi32_si128(*((int*)&b[3 * stride]));          // 33 32 31 30
545   r4 =  _mm_cvtsi32_si128(*((int*)&b[6 * stride]));          // 63 62 61 60
546   r5 =  _mm_cvtsi32_si128(*((int*)&b[7 * stride]));          // 73 72 71 70
547 
548   r0 = _mm_unpacklo_epi32(r0, r4);               // 63 62 61 60 23 22 21 20
549   r1 = _mm_unpacklo_epi32(r1, r5);               // 73 72 71 70 33 32 31 30
550 
551   // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
552   t2 = _mm_unpacklo_epi8(r0, r1);
553 
554   // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
555   // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
556   r0 = t1;
557   t1 = _mm_unpacklo_epi16(t1, t2);
558   t2 = _mm_unpackhi_epi16(r0, t2);
559 
560   // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
561   // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
562   *p = _mm_unpacklo_epi32(t1, t2);
563   *q = _mm_unpackhi_epi32(t1, t2);
564 }
565 
Load16x4(const uint8_t * const r0,const uint8_t * const r8,int stride,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1)566 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
567                                  const uint8_t* const r8,
568                                  int stride,
569                                  __m128i* const p1, __m128i* const p0,
570                                  __m128i* const q0, __m128i* const q1) {
571   __m128i t1, t2;
572   // Assume the pixels around the edge (|) are numbered as follows
573   //                00 01 | 02 03
574   //                10 11 | 12 13
575   //                 ...  |  ...
576   //                e0 e1 | e2 e3
577   //                f0 f1 | f2 f3
578   //
579   // r0 is pointing to the 0th row (00)
580   // r8 is pointing to the 8th row (80)
581 
582   // Load
583   // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
584   // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
585   // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
586   // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
587   Load8x4(r0, stride, p1, q0);
588   Load8x4(r8, stride, p0, q1);
589 
590   t1 = *p1;
591   t2 = *q0;
592   // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
593   // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
594   // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
595   // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
596   *p1 = _mm_unpacklo_epi64(t1, *p0);
597   *p0 = _mm_unpackhi_epi64(t1, *p0);
598   *q0 = _mm_unpacklo_epi64(t2, *q1);
599   *q1 = _mm_unpackhi_epi64(t2, *q1);
600 }
601 
Store4x4(__m128i * const x,uint8_t * dst,int stride)602 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
603   int i;
604   for (i = 0; i < 4; ++i, dst += stride) {
605     *((int32_t*)dst) = _mm_cvtsi128_si32(*x);
606     *x = _mm_srli_si128(*x, 4);
607   }
608 }
609 
610 // Transpose back and store
Store16x4(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,uint8_t * r0,uint8_t * r8,int stride)611 static WEBP_INLINE void Store16x4(const __m128i* const p1,
612                                   const __m128i* const p0,
613                                   const __m128i* const q0,
614                                   const __m128i* const q1,
615                                   uint8_t* r0, uint8_t* r8,
616                                   int stride) {
617   __m128i t1, p1_s, p0_s, q0_s, q1_s;
618 
619   // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
620   // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
621   t1 = *p0;
622   p0_s = _mm_unpacklo_epi8(*p1, t1);
623   p1_s = _mm_unpackhi_epi8(*p1, t1);
624 
625   // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
626   // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
627   t1 = *q0;
628   q0_s = _mm_unpacklo_epi8(t1, *q1);
629   q1_s = _mm_unpackhi_epi8(t1, *q1);
630 
631   // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
632   // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
633   t1 = p0_s;
634   p0_s = _mm_unpacklo_epi16(t1, q0_s);
635   q0_s = _mm_unpackhi_epi16(t1, q0_s);
636 
637   // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
638   // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
639   t1 = p1_s;
640   p1_s = _mm_unpacklo_epi16(t1, q1_s);
641   q1_s = _mm_unpackhi_epi16(t1, q1_s);
642 
643   Store4x4(&p0_s, r0, stride);
644   r0 += 4 * stride;
645   Store4x4(&q0_s, r0, stride);
646 
647   Store4x4(&p1_s, r8, stride);
648   r8 += 4 * stride;
649   Store4x4(&q1_s, r8, stride);
650 }
651 
652 //------------------------------------------------------------------------------
653 // Simple In-loop filtering (Paragraph 15.2)
654 
SimpleVFilter16(uint8_t * p,int stride,int thresh)655 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
656   // Load
657   __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
658   __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
659   __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
660   __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
661 
662   DoFilter2(&p1, &p0, &q0, &q1, thresh);
663 
664   // Store
665   _mm_storeu_si128((__m128i*)&p[-stride], p0);
666   _mm_storeu_si128((__m128i*)&p[0], q0);
667 }
668 
SimpleHFilter16(uint8_t * p,int stride,int thresh)669 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
670   __m128i p1, p0, q0, q1;
671 
672   p -= 2;  // beginning of p1
673 
674   Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
675   DoFilter2(&p1, &p0, &q0, &q1, thresh);
676   Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
677 }
678 
SimpleVFilter16i(uint8_t * p,int stride,int thresh)679 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
680   int k;
681   for (k = 3; k > 0; --k) {
682     p += 4 * stride;
683     SimpleVFilter16(p, stride, thresh);
684   }
685 }
686 
SimpleHFilter16i(uint8_t * p,int stride,int thresh)687 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
688   int k;
689   for (k = 3; k > 0; --k) {
690     p += 4;
691     SimpleHFilter16(p, stride, thresh);
692   }
693 }
694 
695 //------------------------------------------------------------------------------
696 // Complex In-loop filtering (Paragraph 15.3)
697 
698 #define MAX_DIFF1(p3, p2, p1, p0, m) do {                                      \
699   m = MM_ABS(p1, p0);                                                          \
700   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
701   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
702 } while (0)
703 
704 #define MAX_DIFF2(p3, p2, p1, p0, m) do {                                      \
705   m = _mm_max_epu8(m, MM_ABS(p1, p0));                                         \
706   m = _mm_max_epu8(m, MM_ABS(p3, p2));                                         \
707   m = _mm_max_epu8(m, MM_ABS(p2, p1));                                         \
708 } while (0)
709 
710 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) {                             \
711   e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]);                            \
712   e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]);                            \
713   e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]);                            \
714   e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]);                            \
715 }
716 
717 #define LOADUV_H_EDGE(p, u, v, stride) do {                                    \
718   const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]);                 \
719   const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]);                 \
720   p = _mm_unpacklo_epi64(U, V);                                                \
721 } while (0)
722 
723 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) {                        \
724   LOADUV_H_EDGE(e1, u, v, 0 * stride);                                         \
725   LOADUV_H_EDGE(e2, u, v, 1 * stride);                                         \
726   LOADUV_H_EDGE(e3, u, v, 2 * stride);                                         \
727   LOADUV_H_EDGE(e4, u, v, 3 * stride);                                         \
728 }
729 
730 #define STOREUV(p, u, v, stride) {                                             \
731   _mm_storel_epi64((__m128i*)&u[(stride)], p);                                 \
732   p = _mm_srli_si128(p, 8);                                                    \
733   _mm_storel_epi64((__m128i*)&v[(stride)], p);                                 \
734 }
735 
ComplexMask(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,int ithresh,__m128i * const mask)736 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
737                                     const __m128i* const p0,
738                                     const __m128i* const q0,
739                                     const __m128i* const q1,
740                                     int thresh, int ithresh,
741                                     __m128i* const mask) {
742   const __m128i it = _mm_set1_epi8(ithresh);
743   const __m128i diff = _mm_subs_epu8(*mask, it);
744   const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
745   __m128i filter_mask;
746   NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
747   *mask = _mm_and_si128(thresh_mask, filter_mask);
748 }
749 
750 // on macroblock edges
VFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)751 static void VFilter16(uint8_t* p, int stride,
752                       int thresh, int ithresh, int hev_thresh) {
753   __m128i t1;
754   __m128i mask;
755   __m128i p2, p1, p0, q0, q1, q2;
756 
757   // Load p3, p2, p1, p0
758   LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
759   MAX_DIFF1(t1, p2, p1, p0, mask);
760 
761   // Load q0, q1, q2, q3
762   LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
763   MAX_DIFF2(t1, q2, q1, q0, mask);
764 
765   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
766   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
767 
768   // Store
769   _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
770   _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
771   _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
772   _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
773   _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
774   _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
775 }
776 
HFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)777 static void HFilter16(uint8_t* p, int stride,
778                       int thresh, int ithresh, int hev_thresh) {
779   __m128i mask;
780   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
781 
782   uint8_t* const b = p - 4;
783   Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
784   MAX_DIFF1(p3, p2, p1, p0, mask);
785 
786   Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3);  // q0, q1, q2, q3
787   MAX_DIFF2(q3, q2, q1, q0, mask);
788 
789   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
790   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
791 
792   Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
793   Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
794 }
795 
796 // on three inner edges
VFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)797 static void VFilter16i(uint8_t* p, int stride,
798                        int thresh, int ithresh, int hev_thresh) {
799   int k;
800   __m128i p3, p2, p1, p0;   // loop invariants
801 
802   LOAD_H_EDGES4(p, stride, p3, p2, p1, p0);  // prologue
803 
804   for (k = 3; k > 0; --k) {
805     __m128i mask, tmp1, tmp2;
806     uint8_t* const b = p + 2 * stride;   // beginning of p1
807     p += 4 * stride;
808 
809     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
810     LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
811     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
812 
813     // p3 and p2 are not just temporary variables here: they will be
814     // re-used for next span. And q2/q3 will become p1/p0 accordingly.
815     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
816     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
817 
818     // Store
819     _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
820     _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
821     _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
822     _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
823 
824     // rotate samples
825     p1 = tmp1;
826     p0 = tmp2;
827   }
828 }
829 
HFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)830 static void HFilter16i(uint8_t* p, int stride,
831                        int thresh, int ithresh, int hev_thresh) {
832   int k;
833   __m128i p3, p2, p1, p0;   // loop invariants
834 
835   Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0);  // prologue
836 
837   for (k = 3; k > 0; --k) {
838     __m128i mask, tmp1, tmp2;
839     uint8_t* const b = p + 2;   // beginning of p1
840 
841     p += 4;  // beginning of q0 (and next span)
842 
843     MAX_DIFF1(p3, p2, p1, p0, mask);   // compute partial mask
844     Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
845     MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
846 
847     ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
848     DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
849 
850     Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
851 
852     // rotate samples
853     p1 = tmp1;
854     p0 = tmp2;
855   }
856 }
857 
858 // 8-pixels wide variant, for chroma filtering
VFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)859 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
860                      int thresh, int ithresh, int hev_thresh) {
861   __m128i mask;
862   __m128i t1, p2, p1, p0, q0, q1, q2;
863 
864   // Load p3, p2, p1, p0
865   LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
866   MAX_DIFF1(t1, p2, p1, p0, mask);
867 
868   // Load q0, q1, q2, q3
869   LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
870   MAX_DIFF2(t1, q2, q1, q0, mask);
871 
872   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
873   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
874 
875   // Store
876   STOREUV(p2, u, v, -3 * stride);
877   STOREUV(p1, u, v, -2 * stride);
878   STOREUV(p0, u, v, -1 * stride);
879   STOREUV(q0, u, v, 0 * stride);
880   STOREUV(q1, u, v, 1 * stride);
881   STOREUV(q2, u, v, 2 * stride);
882 }
883 
HFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)884 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
885                      int thresh, int ithresh, int hev_thresh) {
886   __m128i mask;
887   __m128i p3, p2, p1, p0, q0, q1, q2, q3;
888 
889   uint8_t* const tu = u - 4;
890   uint8_t* const tv = v - 4;
891   Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0);  // p3, p2, p1, p0
892   MAX_DIFF1(p3, p2, p1, p0, mask);
893 
894   Load16x4(u, v, stride, &q0, &q1, &q2, &q3);    // q0, q1, q2, q3
895   MAX_DIFF2(q3, q2, q1, q0, mask);
896 
897   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
898   DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
899 
900   Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
901   Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
902 }
903 
VFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)904 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
905                       int thresh, int ithresh, int hev_thresh) {
906   __m128i mask;
907   __m128i t1, t2, p1, p0, q0, q1;
908 
909   // Load p3, p2, p1, p0
910   LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
911   MAX_DIFF1(t2, t1, p1, p0, mask);
912 
913   u += 4 * stride;
914   v += 4 * stride;
915 
916   // Load q0, q1, q2, q3
917   LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
918   MAX_DIFF2(t2, t1, q1, q0, mask);
919 
920   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
921   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
922 
923   // Store
924   STOREUV(p1, u, v, -2 * stride);
925   STOREUV(p0, u, v, -1 * stride);
926   STOREUV(q0, u, v, 0 * stride);
927   STOREUV(q1, u, v, 1 * stride);
928 }
929 
HFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)930 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
931                       int thresh, int ithresh, int hev_thresh) {
932   __m128i mask;
933   __m128i t1, t2, p1, p0, q0, q1;
934   Load16x4(u, v, stride, &t2, &t1, &p1, &p0);   // p3, p2, p1, p0
935   MAX_DIFF1(t2, t1, p1, p0, mask);
936 
937   u += 4;  // beginning of q0
938   v += 4;
939   Load16x4(u, v, stride, &q0, &q1, &t1, &t2);  // q0, q1, q2, q3
940   MAX_DIFF2(t2, t1, q1, q0, mask);
941 
942   ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
943   DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
944 
945   u -= 2;  // beginning of p1
946   v -= 2;
947   Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
948 }
949 
950 #endif   // WEBP_USE_SSE2
951 
952 //------------------------------------------------------------------------------
953 // Entry point
954 
955 extern void VP8DspInitSSE2(void);
956 
VP8DspInitSSE2(void)957 void VP8DspInitSSE2(void) {
958 #if defined(WEBP_USE_SSE2)
959   VP8Transform = Transform;
960 #if defined(USE_TRANSFORM_AC3)
961   VP8TransformAC3 = TransformAC3;
962 #endif
963 
964   VP8VFilter16 = VFilter16;
965   VP8HFilter16 = HFilter16;
966   VP8VFilter8 = VFilter8;
967   VP8HFilter8 = HFilter8;
968   VP8VFilter16i = VFilter16i;
969   VP8HFilter16i = HFilter16i;
970   VP8VFilter8i = VFilter8i;
971   VP8HFilter8i = HFilter8i;
972 
973   VP8SimpleVFilter16 = SimpleVFilter16;
974   VP8SimpleHFilter16 = SimpleHFilter16;
975   VP8SimpleVFilter16i = SimpleVFilter16i;
976   VP8SimpleHFilter16i = SimpleHFilter16i;
977 #endif   // WEBP_USE_SSE2
978 }
979