1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "EffectReverb"
18 //#define LOG_NDEBUG 0
19 #include <cutils/log.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <stdbool.h>
23 #include "EffectReverb.h"
24 #include "EffectsMath.h"
25 
26 // effect_handle_t interface implementation for reverb effect
27 const struct effect_interface_s gReverbInterface = {
28         Reverb_Process,
29         Reverb_Command,
30         Reverb_GetDescriptor,
31         NULL
32 };
33 
34 // Google auxiliary environmental reverb UUID: 1f0ae2e0-4ef7-11df-bc09-0002a5d5c51b
35 static const effect_descriptor_t gAuxEnvReverbDescriptor = {
36         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
37         {0x1f0ae2e0, 0x4ef7, 0x11df, 0xbc09, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
38         EFFECT_CONTROL_API_VERSION,
39         // flags other than EFFECT_FLAG_TYPE_AUXILIARY set for test purpose
40         EFFECT_FLAG_TYPE_AUXILIARY | EFFECT_FLAG_DEVICE_IND | EFFECT_FLAG_AUDIO_MODE_IND,
41         0, // TODO
42         33,
43         "Aux Environmental Reverb",
44         "The Android Open Source Project"
45 };
46 
47 // Google insert environmental reverb UUID: aa476040-6342-11df-91a4-0002a5d5c51b
48 static const effect_descriptor_t gInsertEnvReverbDescriptor = {
49         {0xc2e5d5f0, 0x94bd, 0x4763, 0x9cac, {0x4e, 0x23, 0x4d, 0x06, 0x83, 0x9e}},
50         {0xaa476040, 0x6342, 0x11df, 0x91a4, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
51         EFFECT_CONTROL_API_VERSION,
52         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
53         0, // TODO
54         33,
55         "Insert Environmental reverb",
56         "The Android Open Source Project"
57 };
58 
59 // Google auxiliary preset reverb UUID: 63909320-53a6-11df-bdbd-0002a5d5c51b
60 static const effect_descriptor_t gAuxPresetReverbDescriptor = {
61         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
62         {0x63909320, 0x53a6, 0x11df, 0xbdbd, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
63         EFFECT_CONTROL_API_VERSION,
64         EFFECT_FLAG_TYPE_AUXILIARY,
65         0, // TODO
66         33,
67         "Aux Preset Reverb",
68         "The Android Open Source Project"
69 };
70 
71 // Google insert preset reverb UUID: d93dc6a0-6342-11df-b128-0002a5d5c51b
72 static const effect_descriptor_t gInsertPresetReverbDescriptor = {
73         {0x47382d60, 0xddd8, 0x11db, 0xbf3a, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
74         {0xd93dc6a0, 0x6342, 0x11df, 0xb128, {0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b}},
75         EFFECT_CONTROL_API_VERSION,
76         EFFECT_FLAG_TYPE_INSERT | EFFECT_FLAG_INSERT_FIRST,
77         0, // TODO
78         33,
79         "Insert Preset Reverb",
80         "The Android Open Source Project"
81 };
82 
83 // gDescriptors contains pointers to all defined effect descriptor in this library
84 static const effect_descriptor_t * const gDescriptors[] = {
85         &gAuxEnvReverbDescriptor,
86         &gInsertEnvReverbDescriptor,
87         &gAuxPresetReverbDescriptor,
88         &gInsertPresetReverbDescriptor
89 };
90 
91 /*----------------------------------------------------------------------------
92  * Effect API implementation
93  *--------------------------------------------------------------------------*/
94 
95 /*--- Effect Library Interface Implementation ---*/
96 
EffectCreate(const effect_uuid_t * uuid,int32_t sessionId,int32_t ioId,effect_handle_t * pHandle)97 int EffectCreate(const effect_uuid_t *uuid,
98         int32_t sessionId,
99         int32_t ioId,
100         effect_handle_t *pHandle) {
101     int ret;
102     int i;
103     reverb_module_t *module;
104     const effect_descriptor_t *desc;
105     int aux = 0;
106     int preset = 0;
107 
108     ALOGV("EffectLibCreateEffect start");
109 
110     if (pHandle == NULL || uuid == NULL) {
111         return -EINVAL;
112     }
113 
114     for (i = 0; gDescriptors[i] != NULL; i++) {
115         desc = gDescriptors[i];
116         if (memcmp(uuid, &desc->uuid, sizeof(effect_uuid_t))
117                 == 0) {
118             break;
119         }
120     }
121 
122     if (gDescriptors[i] == NULL) {
123         return -ENOENT;
124     }
125 
126     module = malloc(sizeof(reverb_module_t));
127 
128     module->itfe = &gReverbInterface;
129 
130     module->context.mState = REVERB_STATE_UNINITIALIZED;
131 
132     if (memcmp(&desc->type, SL_IID_PRESETREVERB, sizeof(effect_uuid_t)) == 0) {
133         preset = 1;
134     }
135     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
136         aux = 1;
137     }
138     ret = Reverb_Init(module, aux, preset);
139     if (ret < 0) {
140         ALOGW("EffectLibCreateEffect() init failed");
141         free(module);
142         return ret;
143     }
144 
145     *pHandle = (effect_handle_t) module;
146 
147     module->context.mState = REVERB_STATE_INITIALIZED;
148 
149     ALOGV("EffectLibCreateEffect %p ,size %d", module, sizeof(reverb_module_t));
150 
151     return 0;
152 }
153 
EffectRelease(effect_handle_t handle)154 int EffectRelease(effect_handle_t handle) {
155     reverb_module_t *pRvbModule = (reverb_module_t *)handle;
156 
157     ALOGV("EffectLibReleaseEffect %p", handle);
158     if (handle == NULL) {
159         return -EINVAL;
160     }
161 
162     pRvbModule->context.mState = REVERB_STATE_UNINITIALIZED;
163 
164     free(pRvbModule);
165     return 0;
166 }
167 
EffectGetDescriptor(const effect_uuid_t * uuid,effect_descriptor_t * pDescriptor)168 int EffectGetDescriptor(const effect_uuid_t *uuid,
169                         effect_descriptor_t *pDescriptor) {
170     int i;
171     int length = sizeof(gDescriptors) / sizeof(const effect_descriptor_t *);
172 
173     if (pDescriptor == NULL || uuid == NULL){
174         ALOGV("EffectGetDescriptor() called with NULL pointer");
175         return -EINVAL;
176     }
177 
178     for (i = 0; i < length; i++) {
179         if (memcmp(uuid, &gDescriptors[i]->uuid, sizeof(effect_uuid_t)) == 0) {
180             *pDescriptor = *gDescriptors[i];
181             ALOGV("EffectGetDescriptor - UUID matched Reverb type %d, UUID = %x",
182                  i, gDescriptors[i]->uuid.timeLow);
183             return 0;
184         }
185     }
186 
187     return -EINVAL;
188 } /* end EffectGetDescriptor */
189 
190 /*--- Effect Control Interface Implementation ---*/
191 
Reverb_Process(effect_handle_t self,audio_buffer_t * inBuffer,audio_buffer_t * outBuffer)192 static int Reverb_Process(effect_handle_t self, audio_buffer_t *inBuffer, audio_buffer_t *outBuffer) {
193     reverb_object_t *pReverb;
194     int16_t *pSrc, *pDst;
195     reverb_module_t *pRvbModule = (reverb_module_t *)self;
196 
197     if (pRvbModule == NULL) {
198         return -EINVAL;
199     }
200 
201     if (inBuffer == NULL || inBuffer->raw == NULL ||
202         outBuffer == NULL || outBuffer->raw == NULL ||
203         inBuffer->frameCount != outBuffer->frameCount) {
204         return -EINVAL;
205     }
206 
207     pReverb = (reverb_object_t*) &pRvbModule->context;
208 
209     if (pReverb->mState == REVERB_STATE_UNINITIALIZED) {
210         return -EINVAL;
211     }
212     if (pReverb->mState == REVERB_STATE_INITIALIZED) {
213         return -ENODATA;
214     }
215 
216     //if bypassed or the preset forces the signal to be completely dry
217     if (pReverb->m_bBypass != 0) {
218         if (inBuffer->raw != outBuffer->raw) {
219             int16_t smp;
220             pSrc = inBuffer->s16;
221             pDst = outBuffer->s16;
222             size_t count = inBuffer->frameCount;
223             if (pRvbModule->config.inputCfg.channels == pRvbModule->config.outputCfg.channels) {
224                 count *= 2;
225                 while (count--) {
226                     *pDst++ = *pSrc++;
227                 }
228             } else {
229                 while (count--) {
230                     smp = *pSrc++;
231                     *pDst++ = smp;
232                     *pDst++ = smp;
233                 }
234             }
235         }
236         return 0;
237     }
238 
239     if (pReverb->m_nNextRoom != pReverb->m_nCurrentRoom) {
240         ReverbUpdateRoom(pReverb, true);
241     }
242 
243     pSrc = inBuffer->s16;
244     pDst = outBuffer->s16;
245     size_t numSamples = outBuffer->frameCount;
246     while (numSamples) {
247         uint32_t processedSamples;
248         if (numSamples > (uint32_t) pReverb->m_nUpdatePeriodInSamples) {
249             processedSamples = (uint32_t) pReverb->m_nUpdatePeriodInSamples;
250         } else {
251             processedSamples = numSamples;
252         }
253 
254         /* increment update counter */
255         pReverb->m_nUpdateCounter += (int16_t) processedSamples;
256         /* check if update counter needs to be reset */
257         if (pReverb->m_nUpdateCounter >= pReverb->m_nUpdatePeriodInSamples) {
258             /* update interval has elapsed, so reset counter */
259             pReverb->m_nUpdateCounter -= pReverb->m_nUpdatePeriodInSamples;
260             ReverbUpdateXfade(pReverb, pReverb->m_nUpdatePeriodInSamples);
261 
262         } /* end if m_nUpdateCounter >= update interval */
263 
264         Reverb(pReverb, processedSamples, pDst, pSrc);
265 
266         numSamples -= processedSamples;
267         if (pReverb->m_Aux) {
268             pSrc += processedSamples;
269         } else {
270             pSrc += processedSamples * NUM_OUTPUT_CHANNELS;
271         }
272         pDst += processedSamples * NUM_OUTPUT_CHANNELS;
273     }
274 
275     return 0;
276 }
277 
278 
Reverb_Command(effect_handle_t self,uint32_t cmdCode,uint32_t cmdSize,void * pCmdData,uint32_t * replySize,void * pReplyData)279 static int Reverb_Command(effect_handle_t self, uint32_t cmdCode, uint32_t cmdSize,
280         void *pCmdData, uint32_t *replySize, void *pReplyData) {
281     reverb_module_t *pRvbModule = (reverb_module_t *) self;
282     reverb_object_t *pReverb;
283     int retsize;
284 
285     if (pRvbModule == NULL ||
286             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
287         return -EINVAL;
288     }
289 
290     pReverb = (reverb_object_t*) &pRvbModule->context;
291 
292     ALOGV("Reverb_Command command %d cmdSize %d",cmdCode, cmdSize);
293 
294     switch (cmdCode) {
295     case EFFECT_CMD_INIT:
296         if (pReplyData == NULL || *replySize != sizeof(int)) {
297             return -EINVAL;
298         }
299         *(int *) pReplyData = Reverb_Init(pRvbModule, pReverb->m_Aux, pReverb->m_Preset);
300         if (*(int *) pReplyData == 0) {
301             pRvbModule->context.mState = REVERB_STATE_INITIALIZED;
302         }
303         break;
304     case EFFECT_CMD_SET_CONFIG:
305         if (pCmdData == NULL || cmdSize != sizeof(effect_config_t)
306                 || pReplyData == NULL || *replySize != sizeof(int)) {
307             return -EINVAL;
308         }
309         *(int *) pReplyData = Reverb_setConfig(pRvbModule,
310                 (effect_config_t *)pCmdData, false);
311         break;
312     case EFFECT_CMD_GET_CONFIG:
313         if (pReplyData == NULL || *replySize != sizeof(effect_config_t)) {
314             return -EINVAL;
315         }
316         Reverb_getConfig(pRvbModule, (effect_config_t *) pCmdData);
317         break;
318     case EFFECT_CMD_RESET:
319         Reverb_Reset(pReverb, false);
320         break;
321     case EFFECT_CMD_GET_PARAM:
322         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM pCmdData %p, *replySize %d, pReplyData: %p",pCmdData, *replySize, pReplyData);
323 
324         if (pCmdData == NULL || cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)) ||
325             pReplyData == NULL || *replySize < (int) sizeof(effect_param_t)) {
326             return -EINVAL;
327         }
328         effect_param_t *rep = (effect_param_t *) pReplyData;
329         memcpy(pReplyData, pCmdData, sizeof(effect_param_t) + sizeof(int32_t));
330         ALOGV("Reverb_Command EFFECT_CMD_GET_PARAM param %d, replySize %d",*(int32_t *)rep->data, rep->vsize);
331         rep->status = Reverb_getParameter(pReverb, *(int32_t *)rep->data, &rep->vsize,
332                 rep->data + sizeof(int32_t));
333         *replySize = sizeof(effect_param_t) + sizeof(int32_t) + rep->vsize;
334         break;
335     case EFFECT_CMD_SET_PARAM:
336         ALOGV("Reverb_Command EFFECT_CMD_SET_PARAM cmdSize %d pCmdData %p, *replySize %d, pReplyData %p",
337                 cmdSize, pCmdData, *replySize, pReplyData);
338         if (pCmdData == NULL || (cmdSize < (int)(sizeof(effect_param_t) + sizeof(int32_t)))
339                 || pReplyData == NULL || *replySize != (int)sizeof(int32_t)) {
340             return -EINVAL;
341         }
342         effect_param_t *cmd = (effect_param_t *) pCmdData;
343         *(int *)pReplyData = Reverb_setParameter(pReverb, *(int32_t *)cmd->data,
344                 cmd->vsize, cmd->data + sizeof(int32_t));
345         break;
346     case EFFECT_CMD_ENABLE:
347         if (pReplyData == NULL || *replySize != sizeof(int)) {
348             return -EINVAL;
349         }
350         if (pReverb->mState != REVERB_STATE_INITIALIZED) {
351             return -ENOSYS;
352         }
353         pReverb->mState = REVERB_STATE_ACTIVE;
354         ALOGV("EFFECT_CMD_ENABLE() OK");
355         *(int *)pReplyData = 0;
356         break;
357     case EFFECT_CMD_DISABLE:
358         if (pReplyData == NULL || *replySize != sizeof(int)) {
359             return -EINVAL;
360         }
361         if (pReverb->mState != REVERB_STATE_ACTIVE) {
362             return -ENOSYS;
363         }
364         pReverb->mState = REVERB_STATE_INITIALIZED;
365         ALOGV("EFFECT_CMD_DISABLE() OK");
366         *(int *)pReplyData = 0;
367         break;
368     case EFFECT_CMD_SET_DEVICE:
369         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
370             return -EINVAL;
371         }
372         ALOGV("Reverb_Command EFFECT_CMD_SET_DEVICE: 0x%08x", *(uint32_t *)pCmdData);
373         break;
374     case EFFECT_CMD_SET_VOLUME: {
375         // audio output is always stereo => 2 channel volumes
376         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t) * 2) {
377             return -EINVAL;
378         }
379         float left = (float)(*(uint32_t *)pCmdData) / (1 << 24);
380         float right = (float)(*((uint32_t *)pCmdData + 1)) / (1 << 24);
381         ALOGV("Reverb_Command EFFECT_CMD_SET_VOLUME: left %f, right %f ", left, right);
382         break;
383         }
384     case EFFECT_CMD_SET_AUDIO_MODE:
385         if (pCmdData == NULL || cmdSize != (int)sizeof(uint32_t)) {
386             return -EINVAL;
387         }
388         ALOGV("Reverb_Command EFFECT_CMD_SET_AUDIO_MODE: %d", *(uint32_t *)pCmdData);
389         break;
390     default:
391         ALOGW("Reverb_Command invalid command %d",cmdCode);
392         return -EINVAL;
393     }
394 
395     return 0;
396 }
397 
Reverb_GetDescriptor(effect_handle_t self,effect_descriptor_t * pDescriptor)398 int Reverb_GetDescriptor(effect_handle_t   self,
399                                     effect_descriptor_t *pDescriptor)
400 {
401     reverb_module_t *pRvbModule = (reverb_module_t *) self;
402     reverb_object_t *pReverb;
403     const effect_descriptor_t *desc;
404 
405     if (pRvbModule == NULL ||
406             pRvbModule->context.mState == REVERB_STATE_UNINITIALIZED) {
407         return -EINVAL;
408     }
409 
410     pReverb = (reverb_object_t*) &pRvbModule->context;
411 
412     if (pReverb->m_Aux) {
413         if (pReverb->m_Preset) {
414             desc = &gAuxPresetReverbDescriptor;
415         } else {
416             desc = &gAuxEnvReverbDescriptor;
417         }
418     } else {
419         if (pReverb->m_Preset) {
420             desc = &gInsertPresetReverbDescriptor;
421         } else {
422             desc = &gInsertEnvReverbDescriptor;
423         }
424     }
425 
426     *pDescriptor = *desc;
427 
428     return 0;
429 }   /* end Reverb_getDescriptor */
430 
431 /*----------------------------------------------------------------------------
432  * Reverb internal functions
433  *--------------------------------------------------------------------------*/
434 
435 /*----------------------------------------------------------------------------
436  * Reverb_Init()
437  *----------------------------------------------------------------------------
438  * Purpose:
439  * Initialize reverb context and apply default parameters
440  *
441  * Inputs:
442  *  pRvbModule    - pointer to reverb effect module
443  *  aux           - indicates if the reverb is used as auxiliary (1) or insert (0)
444  *  preset        - indicates if the reverb is used in preset (1) or environmental (0) mode
445  *
446  * Outputs:
447  *
448  * Side Effects:
449  *
450  *----------------------------------------------------------------------------
451  */
452 
Reverb_Init(reverb_module_t * pRvbModule,int aux,int preset)453 int Reverb_Init(reverb_module_t *pRvbModule, int aux, int preset) {
454     int ret;
455 
456     ALOGV("Reverb_Init module %p, aux: %d, preset: %d", pRvbModule,aux, preset);
457 
458     memset(&pRvbModule->context, 0, sizeof(reverb_object_t));
459 
460     pRvbModule->context.m_Aux = (uint16_t)aux;
461     pRvbModule->context.m_Preset = (uint16_t)preset;
462 
463     pRvbModule->config.inputCfg.samplingRate = 44100;
464     if (aux) {
465         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_MONO;
466     } else {
467         pRvbModule->config.inputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
468     }
469     pRvbModule->config.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
470     pRvbModule->config.inputCfg.bufferProvider.getBuffer = NULL;
471     pRvbModule->config.inputCfg.bufferProvider.releaseBuffer = NULL;
472     pRvbModule->config.inputCfg.bufferProvider.cookie = NULL;
473     pRvbModule->config.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ;
474     pRvbModule->config.inputCfg.mask = EFFECT_CONFIG_ALL;
475     pRvbModule->config.outputCfg.samplingRate = 44100;
476     pRvbModule->config.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO;
477     pRvbModule->config.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT;
478     pRvbModule->config.outputCfg.bufferProvider.getBuffer = NULL;
479     pRvbModule->config.outputCfg.bufferProvider.releaseBuffer = NULL;
480     pRvbModule->config.outputCfg.bufferProvider.cookie = NULL;
481     pRvbModule->config.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_ACCUMULATE;
482     pRvbModule->config.outputCfg.mask = EFFECT_CONFIG_ALL;
483 
484     ret = Reverb_setConfig(pRvbModule, &pRvbModule->config, true);
485     if (ret < 0) {
486         ALOGV("Reverb_Init error %d on module %p", ret, pRvbModule);
487     }
488 
489     return ret;
490 }
491 
492 /*----------------------------------------------------------------------------
493  * Reverb_setConfig()
494  *----------------------------------------------------------------------------
495  * Purpose:
496  *  Set input and output audio configuration.
497  *
498  * Inputs:
499  *  pRvbModule    - pointer to reverb effect module
500  *  pConfig       - pointer to effect_config_t structure containing input
501  *              and output audio parameters configuration
502  *  init          - true if called from init function
503  * Outputs:
504  *
505  * Side Effects:
506  *
507  *----------------------------------------------------------------------------
508  */
509 
Reverb_setConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig,bool init)510 int Reverb_setConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig,
511         bool init) {
512     reverb_object_t *pReverb = &pRvbModule->context;
513     int bufferSizeInSamples;
514     int updatePeriodInSamples;
515     int xfadePeriodInSamples;
516 
517     // Check configuration compatibility with build options
518     if (pConfig->inputCfg.samplingRate
519         != pConfig->outputCfg.samplingRate
520         || pConfig->outputCfg.channels != OUTPUT_CHANNELS
521         || pConfig->inputCfg.format != AUDIO_FORMAT_PCM_16_BIT
522         || pConfig->outputCfg.format != AUDIO_FORMAT_PCM_16_BIT) {
523         ALOGV("Reverb_setConfig invalid config");
524         return -EINVAL;
525     }
526     if ((pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_MONO)) ||
527         (!pReverb->m_Aux && (pConfig->inputCfg.channels != AUDIO_CHANNEL_OUT_STEREO))) {
528         ALOGV("Reverb_setConfig invalid config");
529         return -EINVAL;
530     }
531 
532     pRvbModule->config = *pConfig;
533 
534     pReverb->m_nSamplingRate = pRvbModule->config.outputCfg.samplingRate;
535 
536     switch (pReverb->m_nSamplingRate) {
537     case 8000:
538         pReverb->m_nUpdatePeriodInBits = 5;
539         bufferSizeInSamples = 4096;
540         pReverb->m_nCosWT_5KHz = -23170;
541         break;
542     case 16000:
543         pReverb->m_nUpdatePeriodInBits = 6;
544         bufferSizeInSamples = 8192;
545         pReverb->m_nCosWT_5KHz = -12540;
546         break;
547     case 22050:
548         pReverb->m_nUpdatePeriodInBits = 7;
549         bufferSizeInSamples = 8192;
550         pReverb->m_nCosWT_5KHz = 4768;
551         break;
552     case 32000:
553         pReverb->m_nUpdatePeriodInBits = 7;
554         bufferSizeInSamples = 16384;
555         pReverb->m_nCosWT_5KHz = 18205;
556         break;
557     case 44100:
558         pReverb->m_nUpdatePeriodInBits = 8;
559         bufferSizeInSamples = 16384;
560         pReverb->m_nCosWT_5KHz = 24799;
561         break;
562     case 48000:
563         pReverb->m_nUpdatePeriodInBits = 8;
564         bufferSizeInSamples = 16384;
565         pReverb->m_nCosWT_5KHz = 25997;
566         break;
567     default:
568         ALOGV("Reverb_setConfig invalid sampling rate %d", pReverb->m_nSamplingRate);
569         return -EINVAL;
570     }
571 
572     // Define a mask for circular addressing, so that array index
573     // can wraparound and stay in array boundary of 0, 1, ..., (buffer size -1)
574     // The buffer size MUST be a power of two
575     pReverb->m_nBufferMask = (int32_t) (bufferSizeInSamples - 1);
576     /* reverb parameters are updated every 2^(pReverb->m_nUpdatePeriodInBits) samples */
577     updatePeriodInSamples = (int32_t) (0x1L << pReverb->m_nUpdatePeriodInBits);
578     /*
579      calculate the update counter by bitwise ANDING with this value to
580      generate a 2^n modulo value
581      */
582     pReverb->m_nUpdatePeriodInSamples = (int32_t) updatePeriodInSamples;
583 
584     xfadePeriodInSamples = (int32_t) (REVERB_XFADE_PERIOD_IN_SECONDS
585             * (double) pReverb->m_nSamplingRate);
586 
587     // set xfade parameters
588     pReverb->m_nPhaseIncrement
589             = (int16_t) (65536 / ((int16_t) xfadePeriodInSamples
590                     / (int16_t) updatePeriodInSamples));
591 
592     if (init) {
593         ReverbReadInPresets(pReverb);
594 
595         // for debugging purposes, allow noise generator
596         pReverb->m_bUseNoise = true;
597 
598         // for debugging purposes, allow bypass
599         pReverb->m_bBypass = 0;
600 
601         pReverb->m_nNextRoom = 1;
602 
603         pReverb->m_nNoise = (int16_t) 0xABCD;
604     }
605 
606     Reverb_Reset(pReverb, init);
607 
608     return 0;
609 }
610 
611 /*----------------------------------------------------------------------------
612  * Reverb_getConfig()
613  *----------------------------------------------------------------------------
614  * Purpose:
615  *  Get input and output audio configuration.
616  *
617  * Inputs:
618  *  pRvbModule    - pointer to reverb effect module
619  *  pConfig       - pointer to effect_config_t structure containing input
620  *              and output audio parameters configuration
621  * Outputs:
622  *
623  * Side Effects:
624  *
625  *----------------------------------------------------------------------------
626  */
627 
Reverb_getConfig(reverb_module_t * pRvbModule,effect_config_t * pConfig)628 void Reverb_getConfig(reverb_module_t *pRvbModule, effect_config_t *pConfig)
629 {
630     *pConfig = pRvbModule->config;
631 }
632 
633 /*----------------------------------------------------------------------------
634  * Reverb_Reset()
635  *----------------------------------------------------------------------------
636  * Purpose:
637  *  Reset internal states and clear delay lines.
638  *
639  * Inputs:
640  *  pReverb    - pointer to reverb context
641  *  init       - true if called from init function
642  *
643  * Outputs:
644  *
645  * Side Effects:
646  *
647  *----------------------------------------------------------------------------
648  */
649 
Reverb_Reset(reverb_object_t * pReverb,bool init)650 void Reverb_Reset(reverb_object_t *pReverb, bool init) {
651     int bufferSizeInSamples = (int32_t) (pReverb->m_nBufferMask + 1);
652     int maxApSamples;
653     int maxDelaySamples;
654     int maxEarlySamples;
655     int ap1In;
656     int delay0In;
657     int delay1In;
658     int32_t i;
659     uint16_t nOffset;
660 
661     maxApSamples = ((int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16);
662     maxDelaySamples = ((int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
663             >> 16);
664     maxEarlySamples = ((int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
665             >> 16);
666 
667     ap1In = (AP0_IN + maxApSamples + GUARD);
668     delay0In = (ap1In + maxApSamples + GUARD);
669     delay1In = (delay0In + maxDelaySamples + GUARD);
670     // Define the max offsets for the end points of each section
671     // i.e., we don't expect a given section's taps to go beyond
672     // the following limits
673 
674     pReverb->m_nEarly0in = (delay1In + maxDelaySamples + GUARD);
675     pReverb->m_nEarly1in = (pReverb->m_nEarly0in + maxEarlySamples + GUARD);
676 
677     pReverb->m_sAp0.m_zApIn = AP0_IN;
678 
679     pReverb->m_zD0In = delay0In;
680 
681     pReverb->m_sAp1.m_zApIn = ap1In;
682 
683     pReverb->m_zD1In = delay1In;
684 
685     pReverb->m_zOutLpfL = 0;
686     pReverb->m_zOutLpfR = 0;
687 
688     pReverb->m_nRevFbkR = 0;
689     pReverb->m_nRevFbkL = 0;
690 
691     // set base index into circular buffer
692     pReverb->m_nBaseIndex = 0;
693 
694     // clear the reverb delay line
695     for (i = 0; i < bufferSizeInSamples; i++) {
696         pReverb->m_nDelayLine[i] = 0;
697     }
698 
699     ReverbUpdateRoom(pReverb, init);
700 
701     pReverb->m_nUpdateCounter = 0;
702 
703     pReverb->m_nPhase = -32768;
704 
705     pReverb->m_nSin = 0;
706     pReverb->m_nCos = 0;
707     pReverb->m_nSinIncrement = 0;
708     pReverb->m_nCosIncrement = 0;
709 
710     // set delay tap lengths
711     nOffset = ReverbCalculateNoise(pReverb);
712 
713     pReverb->m_zD1Cross = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
714             + nOffset;
715 
716     nOffset = ReverbCalculateNoise(pReverb);
717 
718     pReverb->m_zD0Cross = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
719             - nOffset;
720 
721     nOffset = ReverbCalculateNoise(pReverb);
722 
723     pReverb->m_zD0Self = pReverb->m_nDelay0Out - pReverb->m_nMaxExcursion
724             - nOffset;
725 
726     nOffset = ReverbCalculateNoise(pReverb);
727 
728     pReverb->m_zD1Self = pReverb->m_nDelay1Out - pReverb->m_nMaxExcursion
729             + nOffset;
730 }
731 
732 /*----------------------------------------------------------------------------
733  * Reverb_getParameter()
734  *----------------------------------------------------------------------------
735  * Purpose:
736  * Get a Reverb parameter
737  *
738  * Inputs:
739  *  pReverb       - handle to instance data
740  *  param         - parameter
741  *  pValue        - pointer to variable to hold retrieved value
742  *  pSize         - pointer to value size: maximum size as input
743  *
744  * Outputs:
745  *  *pValue updated with parameter value
746  *  *pSize updated with actual value size
747  *
748  *
749  * Side Effects:
750  *
751  *----------------------------------------------------------------------------
752  */
Reverb_getParameter(reverb_object_t * pReverb,int32_t param,uint32_t * pSize,void * pValue)753 int Reverb_getParameter(reverb_object_t *pReverb, int32_t param, uint32_t *pSize,
754         void *pValue) {
755     int32_t *pValue32;
756     int16_t *pValue16;
757     t_reverb_settings *pProperties;
758     int32_t i;
759     int32_t temp;
760     int32_t temp2;
761     uint32_t size;
762 
763     if (pReverb->m_Preset) {
764         if (param != REVERB_PARAM_PRESET || *pSize < sizeof(int16_t)) {
765             return -EINVAL;
766         }
767         size = sizeof(int16_t);
768         pValue16 = (int16_t *)pValue;
769         // REVERB_PRESET_NONE is mapped to bypass
770         if (pReverb->m_bBypass != 0) {
771             *pValue16 = (int16_t)REVERB_PRESET_NONE;
772         } else {
773             *pValue16 = (int16_t)(pReverb->m_nNextRoom + 1);
774         }
775         ALOGV("get REVERB_PARAM_PRESET, preset %d", *pValue16);
776     } else {
777         switch (param) {
778         case REVERB_PARAM_ROOM_LEVEL:
779         case REVERB_PARAM_ROOM_HF_LEVEL:
780         case REVERB_PARAM_DECAY_HF_RATIO:
781         case REVERB_PARAM_REFLECTIONS_LEVEL:
782         case REVERB_PARAM_REVERB_LEVEL:
783         case REVERB_PARAM_DIFFUSION:
784         case REVERB_PARAM_DENSITY:
785             size = sizeof(int16_t);
786             break;
787 
788         case REVERB_PARAM_BYPASS:
789         case REVERB_PARAM_DECAY_TIME:
790         case REVERB_PARAM_REFLECTIONS_DELAY:
791         case REVERB_PARAM_REVERB_DELAY:
792             size = sizeof(int32_t);
793             break;
794 
795         case REVERB_PARAM_PROPERTIES:
796             size = sizeof(t_reverb_settings);
797             break;
798 
799         default:
800             return -EINVAL;
801         }
802 
803         if (*pSize < size) {
804             return -EINVAL;
805         }
806 
807         pValue32 = (int32_t *) pValue;
808         pValue16 = (int16_t *) pValue;
809         pProperties = (t_reverb_settings *) pValue;
810 
811         switch (param) {
812         case REVERB_PARAM_BYPASS:
813             *pValue32 = (int32_t) pReverb->m_bBypass;
814             break;
815 
816         case REVERB_PARAM_PROPERTIES:
817             pValue16 = &pProperties->roomLevel;
818             /* FALL THROUGH */
819 
820         case REVERB_PARAM_ROOM_LEVEL:
821             // Convert m_nRoomLpfFwd to millibels
822             temp = (pReverb->m_nRoomLpfFwd << 15)
823                     / (32767 - pReverb->m_nRoomLpfFbk);
824             *pValue16 = Effects_Linear16ToMillibels(temp);
825 
826             ALOGV("get REVERB_PARAM_ROOM_LEVEL %d, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", *pValue16, temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
827 
828             if (param == REVERB_PARAM_ROOM_LEVEL) {
829                 break;
830             }
831             pValue16 = &pProperties->roomHFLevel;
832             /* FALL THROUGH */
833 
834         case REVERB_PARAM_ROOM_HF_LEVEL:
835             // The ratio between linear gain at 0Hz and at 5000Hz for the room low pass is:
836             // (1 + a1) / sqrt(a1^2 + 2*C*a1 + 1) where:
837             // - a1 is minus the LP feedback gain: -pReverb->m_nRoomLpfFbk
838             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
839 
840             temp = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFbk);
841             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 %d", temp);
842             temp2 = MULT_EG1_EG1(pReverb->m_nRoomLpfFbk, pReverb->m_nCosWT_5KHz)
843                     << 1;
844             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, 2 Cos a1 %d", temp2);
845             temp = 32767 + temp - temp2;
846             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, a1^2 + 2 Cos a1 + 1 %d", temp);
847             temp = Effects_Sqrt(temp) * 181;
848             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, SQRT(a1^2 + 2 Cos a1 + 1) %d", temp);
849             temp = ((32767 - pReverb->m_nRoomLpfFbk) << 15) / temp;
850 
851             ALOGV("get REVERB_PARAM_ROOM_HF_LEVEL, gain %d, m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
852 
853             *pValue16 = Effects_Linear16ToMillibels(temp);
854 
855             if (param == REVERB_PARAM_ROOM_HF_LEVEL) {
856                 break;
857             }
858             pValue32 = (int32_t *)&pProperties->decayTime;
859             /* FALL THROUGH */
860 
861         case REVERB_PARAM_DECAY_TIME:
862             // Calculate reverb feedback path gain
863             temp = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
864             temp = Effects_Linear16ToMillibels(temp);
865 
866             // Calculate decay time: g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
867             temp = (-6000 * pReverb->m_nLateDelay) / temp;
868 
869             // Convert samples to ms
870             *pValue32 = (temp * 1000) / pReverb->m_nSamplingRate;
871 
872             ALOGV("get REVERB_PARAM_DECAY_TIME, samples %d, ms %d", temp, *pValue32);
873 
874             if (param == REVERB_PARAM_DECAY_TIME) {
875                 break;
876             }
877             pValue16 = &pProperties->decayHFRatio;
878             /* FALL THROUGH */
879 
880         case REVERB_PARAM_DECAY_HF_RATIO:
881             // If r is the decay HF ratio  (r = REVERB_PARAM_DECAY_HF_RATIO/1000) we have:
882             //       DT_5000Hz = DT_0Hz * r
883             //  and  G_5000Hz = -6000 * d / DT_5000Hz and G_0Hz = -6000 * d / DT_0Hz in millibels so :
884             // r = G_0Hz/G_5000Hz in millibels
885             // The linear gain at 5000Hz is b0 / sqrt(a1^2 + 2*C*a1 + 1) where:
886             // - a1 is minus the LP feedback gain: -pReverb->m_nRvbLpfFbk
887             // - b0 is the LP forward gain: pReverb->m_nRvbLpfFwd
888             // - C is cos(2piWT) @ 5000Hz: pReverb->m_nCosWT_5KHz
889             if (pReverb->m_nRvbLpfFbk == 0) {
890                 *pValue16 = 1000;
891                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, pReverb->m_nRvbLpfFbk == 0, ratio %d", *pValue16);
892             } else {
893                 temp = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFbk);
894                 temp2 = MULT_EG1_EG1(pReverb->m_nRvbLpfFbk, pReverb->m_nCosWT_5KHz)
895                         << 1;
896                 temp = 32767 + temp - temp2;
897                 temp = Effects_Sqrt(temp) * 181;
898                 temp = (pReverb->m_nRvbLpfFwd << 15) / temp;
899                 // The linear gain at 0Hz is b0 / (a1 + 1)
900                 temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767
901                         - pReverb->m_nRvbLpfFbk);
902 
903                 temp = Effects_Linear16ToMillibels(temp);
904                 temp2 = Effects_Linear16ToMillibels(temp2);
905                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, gain 5KHz %d mB, gain DC %d mB", temp, temp2);
906 
907                 if (temp == 0)
908                     temp = 1;
909                 temp = (int16_t) ((1000 * temp2) / temp);
910                 if (temp > 1000)
911                     temp = 1000;
912 
913                 *pValue16 = temp;
914                 ALOGV("get REVERB_PARAM_DECAY_HF_RATIO, ratio %d", *pValue16);
915             }
916 
917             if (param == REVERB_PARAM_DECAY_HF_RATIO) {
918                 break;
919             }
920             pValue16 = &pProperties->reflectionsLevel;
921             /* FALL THROUGH */
922 
923         case REVERB_PARAM_REFLECTIONS_LEVEL:
924             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nEarlyGain);
925 
926             ALOGV("get REVERB_PARAM_REFLECTIONS_LEVEL, %d", *pValue16);
927             if (param == REVERB_PARAM_REFLECTIONS_LEVEL) {
928                 break;
929             }
930             pValue32 = (int32_t *)&pProperties->reflectionsDelay;
931             /* FALL THROUGH */
932 
933         case REVERB_PARAM_REFLECTIONS_DELAY:
934             // convert samples to ms
935             *pValue32 = (pReverb->m_nEarlyDelay * 1000) / pReverb->m_nSamplingRate;
936 
937             ALOGV("get REVERB_PARAM_REFLECTIONS_DELAY, samples %d, ms %d", pReverb->m_nEarlyDelay, *pValue32);
938 
939             if (param == REVERB_PARAM_REFLECTIONS_DELAY) {
940                 break;
941             }
942             pValue16 = &pProperties->reverbLevel;
943             /* FALL THROUGH */
944 
945         case REVERB_PARAM_REVERB_LEVEL:
946             // Convert linear gain to millibels
947             *pValue16 = Effects_Linear16ToMillibels(pReverb->m_nLateGain << 2);
948 
949             ALOGV("get REVERB_PARAM_REVERB_LEVEL %d", *pValue16);
950 
951             if (param == REVERB_PARAM_REVERB_LEVEL) {
952                 break;
953             }
954             pValue32 = (int32_t *)&pProperties->reverbDelay;
955             /* FALL THROUGH */
956 
957         case REVERB_PARAM_REVERB_DELAY:
958             // convert samples to ms
959             *pValue32 = (pReverb->m_nLateDelay * 1000) / pReverb->m_nSamplingRate;
960 
961             ALOGV("get REVERB_PARAM_REVERB_DELAY, samples %d, ms %d", pReverb->m_nLateDelay, *pValue32);
962 
963             if (param == REVERB_PARAM_REVERB_DELAY) {
964                 break;
965             }
966             pValue16 = &pProperties->diffusion;
967             /* FALL THROUGH */
968 
969         case REVERB_PARAM_DIFFUSION:
970             temp = (int16_t) ((1000 * (pReverb->m_sAp0.m_nApGain - AP0_GAIN_BASE))
971                     / AP0_GAIN_RANGE);
972 
973             if (temp < 0)
974                 temp = 0;
975             if (temp > 1000)
976                 temp = 1000;
977 
978             *pValue16 = temp;
979             ALOGV("get REVERB_PARAM_DIFFUSION, %d, AP0 gain %d", *pValue16, pReverb->m_sAp0.m_nApGain);
980 
981             if (param == REVERB_PARAM_DIFFUSION) {
982                 break;
983             }
984             pValue16 = &pProperties->density;
985             /* FALL THROUGH */
986 
987         case REVERB_PARAM_DENSITY:
988             // Calculate AP delay in time units
989             temp = ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn) << 16)
990                     / pReverb->m_nSamplingRate;
991 
992             temp = (int16_t) ((1000 * (temp - AP0_TIME_BASE)) / AP0_TIME_RANGE);
993 
994             if (temp < 0)
995                 temp = 0;
996             if (temp > 1000)
997                 temp = 1000;
998 
999             *pValue16 = temp;
1000 
1001             ALOGV("get REVERB_PARAM_DENSITY, %d, AP0 delay smps %d", *pValue16, pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn);
1002             break;
1003 
1004         default:
1005             break;
1006         }
1007     }
1008 
1009     *pSize = size;
1010 
1011     ALOGV("Reverb_getParameter, context %p, param %d, value %d",
1012             pReverb, param, *(int *)pValue);
1013 
1014     return 0;
1015 } /* end Reverb_getParameter */
1016 
1017 /*----------------------------------------------------------------------------
1018  * Reverb_setParameter()
1019  *----------------------------------------------------------------------------
1020  * Purpose:
1021  * Set a Reverb parameter
1022  *
1023  * Inputs:
1024  *  pReverb       - handle to instance data
1025  *  param         - parameter
1026  *  pValue        - pointer to parameter value
1027  *  size          - value size
1028  *
1029  * Outputs:
1030  *
1031  *
1032  * Side Effects:
1033  *
1034  *----------------------------------------------------------------------------
1035  */
Reverb_setParameter(reverb_object_t * pReverb,int32_t param,uint32_t size,void * pValue)1036 int Reverb_setParameter(reverb_object_t *pReverb, int32_t param, uint32_t size,
1037         void *pValue) {
1038     int32_t value32;
1039     int16_t value16;
1040     t_reverb_settings *pProperties;
1041     int32_t i;
1042     int32_t temp;
1043     int32_t temp2;
1044     reverb_preset_t *pPreset;
1045     int maxSamples;
1046     int32_t averageDelay;
1047     uint32_t paramSize;
1048 
1049     ALOGV("Reverb_setParameter, context %p, param %d, value16 %d, value32 %d",
1050             pReverb, param, *(int16_t *)pValue, *(int32_t *)pValue);
1051 
1052     if (pReverb->m_Preset) {
1053         if (param != REVERB_PARAM_PRESET || size != sizeof(int16_t)) {
1054             return -EINVAL;
1055         }
1056         value16 = *(int16_t *)pValue;
1057         ALOGV("set REVERB_PARAM_PRESET, preset %d", value16);
1058         if (value16 < REVERB_PRESET_NONE || value16 > REVERB_PRESET_PLATE) {
1059             return -EINVAL;
1060         }
1061         // REVERB_PRESET_NONE is mapped to bypass
1062         if (value16 == REVERB_PRESET_NONE) {
1063             pReverb->m_bBypass = 1;
1064         } else {
1065             pReverb->m_bBypass = 0;
1066             pReverb->m_nNextRoom = value16 - 1;
1067         }
1068     } else {
1069         switch (param) {
1070         case REVERB_PARAM_ROOM_LEVEL:
1071         case REVERB_PARAM_ROOM_HF_LEVEL:
1072         case REVERB_PARAM_DECAY_HF_RATIO:
1073         case REVERB_PARAM_REFLECTIONS_LEVEL:
1074         case REVERB_PARAM_REVERB_LEVEL:
1075         case REVERB_PARAM_DIFFUSION:
1076         case REVERB_PARAM_DENSITY:
1077             paramSize = sizeof(int16_t);
1078             break;
1079 
1080         case REVERB_PARAM_BYPASS:
1081         case REVERB_PARAM_DECAY_TIME:
1082         case REVERB_PARAM_REFLECTIONS_DELAY:
1083         case REVERB_PARAM_REVERB_DELAY:
1084             paramSize = sizeof(int32_t);
1085             break;
1086 
1087         case REVERB_PARAM_PROPERTIES:
1088             paramSize = sizeof(t_reverb_settings);
1089             break;
1090 
1091         default:
1092             return -EINVAL;
1093         }
1094 
1095         if (size != paramSize) {
1096             return -EINVAL;
1097         }
1098 
1099         if (paramSize == sizeof(int16_t)) {
1100             value16 = *(int16_t *) pValue;
1101         } else if (paramSize == sizeof(int32_t)) {
1102             value32 = *(int32_t *) pValue;
1103         } else {
1104             pProperties = (t_reverb_settings *) pValue;
1105         }
1106 
1107         pPreset = &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1108 
1109         switch (param) {
1110         case REVERB_PARAM_BYPASS:
1111             pReverb->m_bBypass = (uint16_t)value32;
1112             break;
1113 
1114         case REVERB_PARAM_PROPERTIES:
1115             value16 = pProperties->roomLevel;
1116             /* FALL THROUGH */
1117 
1118         case REVERB_PARAM_ROOM_LEVEL:
1119             // Convert millibels to linear 16 bit signed => m_nRoomLpfFwd
1120             if (value16 > 0)
1121                 return -EINVAL;
1122 
1123             temp = Effects_MillibelsToLinear16(value16);
1124 
1125             pReverb->m_nRoomLpfFwd
1126                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRoomLpfFbk));
1127 
1128             ALOGV("REVERB_PARAM_ROOM_LEVEL, gain %d, new m_nRoomLpfFwd %d, m_nRoomLpfFbk %d", temp, pReverb->m_nRoomLpfFwd, pReverb->m_nRoomLpfFbk);
1129             if (param == REVERB_PARAM_ROOM_LEVEL)
1130                 break;
1131             value16 = pProperties->roomHFLevel;
1132             /* FALL THROUGH */
1133 
1134         case REVERB_PARAM_ROOM_HF_LEVEL:
1135 
1136             // Limit to 0 , -40dB range because of low pass implementation
1137             if (value16 > 0 || value16 < -4000)
1138                 return -EINVAL;
1139             // Convert attenuation @ 5000H expressed in millibels to => m_nRoomLpfFbk
1140             // m_nRoomLpfFbk is -a1 where a1 is the solution of:
1141             // a1^2 + 2*(C-dG^2)/(1-dG^2)*a1 + 1 = 0 where:
1142             // - C is cos(2*pi*5000/Fs) (pReverb->m_nCosWT_5KHz)
1143             // - dG is G0/Gf (G0 is the linear gain at DC and Gf is the wanted gain at 5000Hz)
1144 
1145             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1146             // while changing HF level
1147             temp2 = (pReverb->m_nRoomLpfFwd << 15) / (32767
1148                     - pReverb->m_nRoomLpfFbk);
1149             if (value16 == 0) {
1150                 pReverb->m_nRoomLpfFbk = 0;
1151             } else {
1152                 int32_t dG2, b, delta;
1153 
1154                 // dG^2
1155                 temp = Effects_MillibelsToLinear16(value16);
1156                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, HF gain %d", temp);
1157                 temp = (1 << 30) / temp;
1158                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain %d", temp);
1159                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1160                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, 1/ HF gain ^ 2 %d", dG2);
1161                 // b = 2*(C-dG^2)/(1-dG^2)
1162                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1163                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1164                         / ((int64_t) 32767 - (int64_t) dG2));
1165 
1166                 // delta = b^2 - 4
1167                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1168                         + 2)));
1169 
1170                 ALOGV_IF(delta > (1<<30), " delta overflow %d", delta);
1171 
1172                 ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, dG2 %d, b %d, delta %d, m_nCosWT_5KHz %d", dG2, b, delta, pReverb->m_nCosWT_5KHz);
1173                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1174                 pReverb->m_nRoomLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1175             }
1176             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, olg DC gain %d new m_nRoomLpfFbk %d, old m_nRoomLpfFwd %d",
1177                     temp2, pReverb->m_nRoomLpfFbk, pReverb->m_nRoomLpfFwd);
1178 
1179             pReverb->m_nRoomLpfFwd
1180                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRoomLpfFbk));
1181             ALOGV("REVERB_PARAM_ROOM_HF_LEVEL, new m_nRoomLpfFwd %d", pReverb->m_nRoomLpfFwd);
1182 
1183             if (param == REVERB_PARAM_ROOM_HF_LEVEL)
1184                 break;
1185             value32 = pProperties->decayTime;
1186             /* FALL THROUGH */
1187 
1188         case REVERB_PARAM_DECAY_TIME:
1189 
1190             // Convert milliseconds to => m_nRvbLpfFwd (function of m_nRvbLpfFbk)
1191             // convert ms to samples
1192             value32 = (value32 * pReverb->m_nSamplingRate) / 1000;
1193 
1194             // calculate valid decay time range as a function of current reverb delay and
1195             // max feed back gain. Min value <=> -40dB in one pass, Max value <=> feedback gain = -1 dB
1196             // Calculate attenuation for each round in late reverb given a total attenuation of -6000 millibels.
1197             // g = -6000 d/DT , g gain in millibels, d reverb delay, DT decay time
1198             averageDelay = pReverb->m_nLateDelay - pReverb->m_nMaxExcursion;
1199             averageDelay += ((pReverb->m_sAp0.m_zApOut - pReverb->m_sAp0.m_zApIn)
1200                     + (pReverb->m_sAp1.m_zApOut - pReverb->m_sAp1.m_zApIn)) >> 1;
1201 
1202             temp = (-6000 * averageDelay) / value32;
1203             ALOGV("REVERB_PARAM_DECAY_TIME, delay smps %d, DT smps %d, gain mB %d",averageDelay, value32, temp);
1204             if (temp < -4000 || temp > -100)
1205                 return -EINVAL;
1206 
1207             // calculate low pass gain by adding reverb input attenuation (pReverb->m_nLateGain) and substrating output
1208             // xfade and sum gain (max +9dB)
1209             temp -= Effects_Linear16ToMillibels(pReverb->m_nLateGain) + 900;
1210             temp = Effects_MillibelsToLinear16(temp);
1211 
1212             // DC gain (temp) = b0 / (1 + a1) = pReverb->m_nRvbLpfFwd / (32767 - pReverb->m_nRvbLpfFbk)
1213             pReverb->m_nRvbLpfFwd
1214                     = MULT_EG1_EG1(temp, (32767 - pReverb->m_nRvbLpfFbk));
1215 
1216             ALOGV("REVERB_PARAM_DECAY_TIME, gain %d, new m_nRvbLpfFwd %d, old m_nRvbLpfFbk %d, reverb gain %d", temp, pReverb->m_nRvbLpfFwd, pReverb->m_nRvbLpfFbk, Effects_Linear16ToMillibels(pReverb->m_nLateGain));
1217 
1218             if (param == REVERB_PARAM_DECAY_TIME)
1219                 break;
1220             value16 = pProperties->decayHFRatio;
1221             /* FALL THROUGH */
1222 
1223         case REVERB_PARAM_DECAY_HF_RATIO:
1224 
1225             // We limit max value to 1000 because reverb filter is lowpass only
1226             if (value16 < 100 || value16 > 1000)
1227                 return -EINVAL;
1228             // Convert per mille to => m_nLpfFwd, m_nLpfFbk
1229 
1230             // Save current DC gain m_nRoomLpfFwd / (32767 - m_nRoomLpfFbk) to keep it unchanged
1231             // while changing HF level
1232             temp2 = (pReverb->m_nRvbLpfFwd << 15) / (32767 - pReverb->m_nRvbLpfFbk);
1233 
1234             if (value16 == 1000) {
1235                 pReverb->m_nRvbLpfFbk = 0;
1236             } else {
1237                 int32_t dG2, b, delta;
1238 
1239                 temp = Effects_Linear16ToMillibels(temp2);
1240                 // G_5000Hz = G_DC * (1000/REVERB_PARAM_DECAY_HF_RATIO) in millibels
1241 
1242                 value32 = ((int32_t) 1000 << 15) / (int32_t) value16;
1243                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, DC gain %d, DC gain mB %d, 1000/R %d", temp2, temp, value32);
1244 
1245                 temp = (int32_t) (((int64_t) temp * (int64_t) value32) >> 15);
1246 
1247                 if (temp < -4000) {
1248                     ALOGV("REVERB_PARAM_DECAY_HF_RATIO HF gain overflow %d mB", temp);
1249                     temp = -4000;
1250                 }
1251 
1252                 temp = Effects_MillibelsToLinear16(temp);
1253                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, HF gain %d", temp);
1254                 // dG^2
1255                 temp = (temp2 << 15) / temp;
1256                 dG2 = (int32_t) (((int64_t) temp * (int64_t) temp) >> 15);
1257 
1258                 // b = 2*(C-dG^2)/(1-dG^2)
1259                 b = (int32_t) ((((int64_t) 1 << (15 + 1))
1260                         * ((int64_t) pReverb->m_nCosWT_5KHz - (int64_t) dG2))
1261                         / ((int64_t) 32767 - (int64_t) dG2));
1262 
1263                 // delta = b^2 - 4
1264                 delta = (int32_t) ((((int64_t) b * (int64_t) b) >> 15) - (1 << (15
1265                         + 2)));
1266 
1267                 // m_nRoomLpfFbk = -a1 = - (- b + sqrt(delta)) / 2
1268                 pReverb->m_nRvbLpfFbk = (b - Effects_Sqrt(delta) * 181) >> 1;
1269 
1270                 ALOGV("REVERB_PARAM_DECAY_HF_RATIO, dG2 %d, b %d, delta %d", dG2, b, delta);
1271 
1272             }
1273 
1274             ALOGV("REVERB_PARAM_DECAY_HF_RATIO, gain %d, m_nRvbLpfFbk %d, m_nRvbLpfFwd %d", temp2, pReverb->m_nRvbLpfFbk, pReverb->m_nRvbLpfFwd);
1275 
1276             pReverb->m_nRvbLpfFwd
1277                     = MULT_EG1_EG1(temp2, (32767 - pReverb->m_nRvbLpfFbk));
1278 
1279             if (param == REVERB_PARAM_DECAY_HF_RATIO)
1280                 break;
1281             value16 = pProperties->reflectionsLevel;
1282             /* FALL THROUGH */
1283 
1284         case REVERB_PARAM_REFLECTIONS_LEVEL:
1285             // We limit max value to 0 because gain is limited to 0dB
1286             if (value16 > 0 || value16 < -6000)
1287                 return -EINVAL;
1288 
1289             // Convert millibels to linear 16 bit signed and recompute m_sEarlyL.m_nGain[i] and m_sEarlyR.m_nGain[i].
1290             value16 = Effects_MillibelsToLinear16(value16);
1291             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1292                 pReverb->m_sEarlyL.m_nGain[i]
1293                         = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],value16);
1294                 pReverb->m_sEarlyR.m_nGain[i]
1295                         = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],value16);
1296             }
1297             pReverb->m_nEarlyGain = value16;
1298             ALOGV("REVERB_PARAM_REFLECTIONS_LEVEL, m_nEarlyGain %d", pReverb->m_nEarlyGain);
1299 
1300             if (param == REVERB_PARAM_REFLECTIONS_LEVEL)
1301                 break;
1302             value32 = pProperties->reflectionsDelay;
1303             /* FALL THROUGH */
1304 
1305         case REVERB_PARAM_REFLECTIONS_DELAY:
1306             // We limit max value MAX_EARLY_TIME
1307             // convert ms to time units
1308             temp = (value32 * 65536) / 1000;
1309             if (temp < 0 || temp > MAX_EARLY_TIME)
1310                 return -EINVAL;
1311 
1312             maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1313                     >> 16;
1314             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1315             for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1316                 temp2 = temp + (((int32_t) pPreset->m_sEarlyL.m_zDelay[i]
1317                         * pReverb->m_nSamplingRate) >> 16);
1318                 if (temp2 > maxSamples)
1319                     temp2 = maxSamples;
1320                 pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp2;
1321                 temp2 = temp + (((int32_t) pPreset->m_sEarlyR.m_zDelay[i]
1322                         * pReverb->m_nSamplingRate) >> 16);
1323                 if (temp2 > maxSamples)
1324                     temp2 = maxSamples;
1325                 pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp2;
1326             }
1327             pReverb->m_nEarlyDelay = temp;
1328 
1329             ALOGV("REVERB_PARAM_REFLECTIONS_DELAY, m_nEarlyDelay smps %d max smp delay %d", pReverb->m_nEarlyDelay, maxSamples);
1330 
1331             // Convert milliseconds to sample count => m_nEarlyDelay
1332             if (param == REVERB_PARAM_REFLECTIONS_DELAY)
1333                 break;
1334             value16 = pProperties->reverbLevel;
1335             /* FALL THROUGH */
1336 
1337         case REVERB_PARAM_REVERB_LEVEL:
1338             // We limit max value to 0 because gain is limited to 0dB
1339             if (value16 > 0 || value16 < -6000)
1340                 return -EINVAL;
1341             // Convert millibels to linear 16 bits (gange 0 - 8191) => m_nLateGain.
1342             pReverb->m_nLateGain = Effects_MillibelsToLinear16(value16) >> 2;
1343 
1344             ALOGV("REVERB_PARAM_REVERB_LEVEL, m_nLateGain %d", pReverb->m_nLateGain);
1345 
1346             if (param == REVERB_PARAM_REVERB_LEVEL)
1347                 break;
1348             value32 = pProperties->reverbDelay;
1349             /* FALL THROUGH */
1350 
1351         case REVERB_PARAM_REVERB_DELAY:
1352             // We limit max value to MAX_DELAY_TIME
1353             // convert ms to time units
1354             temp = (value32 * 65536) / 1000;
1355             if (temp < 0 || temp > MAX_DELAY_TIME)
1356                 return -EINVAL;
1357 
1358             maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1359                     >> 16;
1360             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1361             if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1362                 temp = maxSamples - pReverb->m_nMaxExcursion;
1363             }
1364             if (temp < pReverb->m_nMaxExcursion) {
1365                 temp = pReverb->m_nMaxExcursion;
1366             }
1367 
1368             temp -= pReverb->m_nLateDelay;
1369             pReverb->m_nDelay0Out += temp;
1370             pReverb->m_nDelay1Out += temp;
1371             pReverb->m_nLateDelay += temp;
1372 
1373             ALOGV("REVERB_PARAM_REVERB_DELAY, m_nLateDelay smps %d max smp delay %d", pReverb->m_nLateDelay, maxSamples);
1374 
1375             // Convert milliseconds to sample count => m_nDelay1Out + m_nMaxExcursion
1376             if (param == REVERB_PARAM_REVERB_DELAY)
1377                 break;
1378 
1379             value16 = pProperties->diffusion;
1380             /* FALL THROUGH */
1381 
1382         case REVERB_PARAM_DIFFUSION:
1383             if (value16 < 0 || value16 > 1000)
1384                 return -EINVAL;
1385 
1386             // Convert per mille to m_sAp0.m_nApGain, m_sAp1.m_nApGain
1387             pReverb->m_sAp0.m_nApGain = AP0_GAIN_BASE + ((int32_t) value16
1388                     * AP0_GAIN_RANGE) / 1000;
1389             pReverb->m_sAp1.m_nApGain = AP1_GAIN_BASE + ((int32_t) value16
1390                     * AP1_GAIN_RANGE) / 1000;
1391 
1392             ALOGV("REVERB_PARAM_DIFFUSION, m_sAp0.m_nApGain %d m_sAp1.m_nApGain %d", pReverb->m_sAp0.m_nApGain, pReverb->m_sAp1.m_nApGain);
1393 
1394             if (param == REVERB_PARAM_DIFFUSION)
1395                 break;
1396 
1397             value16 = pProperties->density;
1398             /* FALL THROUGH */
1399 
1400         case REVERB_PARAM_DENSITY:
1401             if (value16 < 0 || value16 > 1000)
1402                 return -EINVAL;
1403 
1404             // Convert per mille to m_sAp0.m_zApOut, m_sAp1.m_zApOut
1405             maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1406 
1407             temp = AP0_TIME_BASE + ((int32_t) value16 * AP0_TIME_RANGE) / 1000;
1408             /*lint -e{702} shift for performance */
1409             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1410             if (temp > maxSamples)
1411                 temp = maxSamples;
1412             pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1413 
1414             ALOGV("REVERB_PARAM_DENSITY, Ap0 delay smps %d", temp);
1415 
1416             temp = AP1_TIME_BASE + ((int32_t) value16 * AP1_TIME_RANGE) / 1000;
1417             /*lint -e{702} shift for performance */
1418             temp = (temp * pReverb->m_nSamplingRate) >> 16;
1419             if (temp > maxSamples)
1420                 temp = maxSamples;
1421             pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1422 
1423             ALOGV("Ap1 delay smps %d", temp);
1424 
1425             break;
1426 
1427         default:
1428             break;
1429         }
1430     }
1431 
1432     return 0;
1433 } /* end Reverb_setParameter */
1434 
1435 /*----------------------------------------------------------------------------
1436  * ReverbUpdateXfade
1437  *----------------------------------------------------------------------------
1438  * Purpose:
1439  * Update the xfade parameters as required
1440  *
1441  * Inputs:
1442  * nNumSamplesToAdd - number of samples to write to buffer
1443  *
1444  * Outputs:
1445  *
1446  *
1447  * Side Effects:
1448  * - xfade parameters will be changed
1449  *
1450  *----------------------------------------------------------------------------
1451  */
ReverbUpdateXfade(reverb_object_t * pReverb,int nNumSamplesToAdd)1452 static int ReverbUpdateXfade(reverb_object_t *pReverb, int nNumSamplesToAdd) {
1453     uint16_t nOffset;
1454     int16_t tempCos;
1455     int16_t tempSin;
1456 
1457     if (pReverb->m_nXfadeCounter >= pReverb->m_nXfadeInterval) {
1458         /* update interval has elapsed, so reset counter */
1459         pReverb->m_nXfadeCounter = 0;
1460 
1461         // Pin the sin,cos values to min / max values to ensure that the
1462         // modulated taps' coefs are zero (thus no clicks)
1463         if (pReverb->m_nPhaseIncrement > 0) {
1464             // if phase increment > 0, then sin -> 1, cos -> 0
1465             pReverb->m_nSin = 32767;
1466             pReverb->m_nCos = 0;
1467 
1468             // reset the phase to match the sin, cos values
1469             pReverb->m_nPhase = 32767;
1470 
1471             // modulate the cross taps because their tap coefs are zero
1472             nOffset = ReverbCalculateNoise(pReverb);
1473 
1474             pReverb->m_zD1Cross = pReverb->m_nDelay1Out
1475                     - pReverb->m_nMaxExcursion + nOffset;
1476 
1477             nOffset = ReverbCalculateNoise(pReverb);
1478 
1479             pReverb->m_zD0Cross = pReverb->m_nDelay0Out
1480                     - pReverb->m_nMaxExcursion - nOffset;
1481         } else {
1482             // if phase increment < 0, then sin -> 0, cos -> 1
1483             pReverb->m_nSin = 0;
1484             pReverb->m_nCos = 32767;
1485 
1486             // reset the phase to match the sin, cos values
1487             pReverb->m_nPhase = -32768;
1488 
1489             // modulate the self taps because their tap coefs are zero
1490             nOffset = ReverbCalculateNoise(pReverb);
1491 
1492             pReverb->m_zD0Self = pReverb->m_nDelay0Out
1493                     - pReverb->m_nMaxExcursion - nOffset;
1494 
1495             nOffset = ReverbCalculateNoise(pReverb);
1496 
1497             pReverb->m_zD1Self = pReverb->m_nDelay1Out
1498                     - pReverb->m_nMaxExcursion + nOffset;
1499 
1500         } // end if-else (pReverb->m_nPhaseIncrement > 0)
1501 
1502         // Reverse the direction of the sin,cos so that the
1503         // tap whose coef was previously increasing now decreases
1504         // and vice versa
1505         pReverb->m_nPhaseIncrement = -pReverb->m_nPhaseIncrement;
1506 
1507     } // end if counter >= update interval
1508 
1509     //compute what phase will be next time
1510     pReverb->m_nPhase += pReverb->m_nPhaseIncrement;
1511 
1512     //calculate what the new sin and cos need to reach by the next update
1513     ReverbCalculateSinCos(pReverb->m_nPhase, &tempSin, &tempCos);
1514 
1515     //calculate the per-sample increment required to get there by the next update
1516     /*lint -e{702} shift for performance */
1517     pReverb->m_nSinIncrement = (tempSin - pReverb->m_nSin)
1518             >> pReverb->m_nUpdatePeriodInBits;
1519 
1520     /*lint -e{702} shift for performance */
1521     pReverb->m_nCosIncrement = (tempCos - pReverb->m_nCos)
1522             >> pReverb->m_nUpdatePeriodInBits;
1523 
1524     /* increment update counter */
1525     pReverb->m_nXfadeCounter += (uint16_t) nNumSamplesToAdd;
1526 
1527     return 0;
1528 
1529 } /* end ReverbUpdateXfade */
1530 
1531 /*----------------------------------------------------------------------------
1532  * ReverbCalculateNoise
1533  *----------------------------------------------------------------------------
1534  * Purpose:
1535  * Calculate a noise sample and limit its value
1536  *
1537  * Inputs:
1538  * nMaxExcursion - noise value is limited to this value
1539  * pnNoise - return new noise sample in this (not limited)
1540  *
1541  * Outputs:
1542  * new limited noise value
1543  *
1544  * Side Effects:
1545  * - *pnNoise noise value is updated
1546  *
1547  *----------------------------------------------------------------------------
1548  */
ReverbCalculateNoise(reverb_object_t * pReverb)1549 static uint16_t ReverbCalculateNoise(reverb_object_t *pReverb) {
1550     int16_t nNoise = pReverb->m_nNoise;
1551 
1552     // calculate new noise value
1553     if (pReverb->m_bUseNoise) {
1554         nNoise = (int16_t) (nNoise * 5 + 1);
1555     } else {
1556         nNoise = 0;
1557     }
1558 
1559     pReverb->m_nNoise = nNoise;
1560     // return the limited noise value
1561     return (pReverb->m_nMaxExcursion & nNoise);
1562 
1563 } /* end ReverbCalculateNoise */
1564 
1565 /*----------------------------------------------------------------------------
1566  * ReverbCalculateSinCos
1567  *----------------------------------------------------------------------------
1568  * Purpose:
1569  * Calculate a new sin and cosine value based on the given phase
1570  *
1571  * Inputs:
1572  * nPhase   - phase angle
1573  * pnSin    - input old value, output new value
1574  * pnCos    - input old value, output new value
1575  *
1576  * Outputs:
1577  *
1578  * Side Effects:
1579  * - *pnSin, *pnCos are updated
1580  *
1581  *----------------------------------------------------------------------------
1582  */
ReverbCalculateSinCos(int16_t nPhase,int16_t * pnSin,int16_t * pnCos)1583 static int ReverbCalculateSinCos(int16_t nPhase, int16_t *pnSin, int16_t *pnCos) {
1584     int32_t nTemp;
1585     int32_t nNetAngle;
1586 
1587     //  -1 <=  nPhase  < 1
1588     // However, for the calculation, we need a value
1589     // that ranges from -1/2 to +1/2, so divide the phase by 2
1590     /*lint -e{702} shift for performance */
1591     nNetAngle = nPhase >> 1;
1592 
1593     /*
1594      Implement the following
1595      sin(x) = (2-4*c)*x^2 + c + x
1596      cos(x) = (2-4*c)*x^2 + c - x
1597 
1598      where  c = 1/sqrt(2)
1599      using the a0 + x*(a1 + x*a2) approach
1600      */
1601 
1602     /* limit the input "angle" to be between -0.5 and +0.5 */
1603     if (nNetAngle > EG1_HALF) {
1604         nNetAngle = EG1_HALF;
1605     } else if (nNetAngle < EG1_MINUS_HALF) {
1606         nNetAngle = EG1_MINUS_HALF;
1607     }
1608 
1609     /* calculate sin */
1610     nTemp = EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1611     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1612     *pnSin = (int16_t) SATURATE_EG1(nTemp);
1613 
1614     /* calculate cos */
1615     nTemp = -EG1_ONE + MULT_EG1_EG1(REVERB_PAN_G2, nNetAngle);
1616     nTemp = REVERB_PAN_G0 + MULT_EG1_EG1(nTemp, nNetAngle);
1617     *pnCos = (int16_t) SATURATE_EG1(nTemp);
1618 
1619     return 0;
1620 } /* end ReverbCalculateSinCos */
1621 
1622 /*----------------------------------------------------------------------------
1623  * Reverb
1624  *----------------------------------------------------------------------------
1625  * Purpose:
1626  * apply reverb to the given signal
1627  *
1628  * Inputs:
1629  * nNu
1630  * pnSin    - input old value, output new value
1631  * pnCos    - input old value, output new value
1632  *
1633  * Outputs:
1634  * number of samples actually reverberated
1635  *
1636  * Side Effects:
1637  *
1638  *----------------------------------------------------------------------------
1639  */
Reverb(reverb_object_t * pReverb,int nNumSamplesToAdd,short * pOutputBuffer,short * pInputBuffer)1640 static int Reverb(reverb_object_t *pReverb, int nNumSamplesToAdd,
1641         short *pOutputBuffer, short *pInputBuffer) {
1642     int32_t i;
1643     int32_t nDelayOut0;
1644     int32_t nDelayOut1;
1645     uint16_t nBase;
1646 
1647     uint32_t nAddr;
1648     int32_t nTemp1;
1649     int32_t nTemp2;
1650     int32_t nApIn;
1651     int32_t nApOut;
1652 
1653     int32_t j;
1654     int32_t nEarlyOut;
1655 
1656     int32_t tempValue;
1657 
1658     // get the base address
1659     nBase = pReverb->m_nBaseIndex;
1660 
1661     for (i = 0; i < nNumSamplesToAdd; i++) {
1662         // ********** Left Allpass - start
1663         nApIn = *pInputBuffer;
1664         if (!pReverb->m_Aux) {
1665             pInputBuffer++;
1666         }
1667         // store to early delay line
1668         nAddr = CIRCULAR(nBase, pReverb->m_nEarly0in, pReverb->m_nBufferMask);
1669         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1670 
1671         // left input = (left dry * m_nLateGain) + right feedback from previous period
1672 
1673         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkR);
1674         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1675 
1676         // fetch allpass delay line out
1677         //nAddr = CIRCULAR(nBase, psAp0->m_zApOut, pReverb->m_nBufferMask);
1678         nAddr
1679                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApOut, pReverb->m_nBufferMask);
1680         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1681 
1682         // calculate allpass feedforward; subtract the feedforward result
1683         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp0.m_nApGain);
1684         nApOut = SATURATE(nDelayOut0 - nTemp1); // allpass output
1685 
1686         // calculate allpass feedback; add the feedback result
1687         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp0.m_nApGain);
1688         nTemp1 = SATURATE(nApIn + nTemp1);
1689 
1690         // inject into allpass delay
1691         nAddr
1692                 = CIRCULAR(nBase, pReverb->m_sAp0.m_zApIn, pReverb->m_nBufferMask);
1693         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1694 
1695         // inject allpass output into delay line
1696         nAddr = CIRCULAR(nBase, pReverb->m_zD0In, pReverb->m_nBufferMask);
1697         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1698 
1699         // ********** Left Allpass - end
1700 
1701         // ********** Right Allpass - start
1702         nApIn = (*pInputBuffer++);
1703         // store to early delay line
1704         nAddr = CIRCULAR(nBase, pReverb->m_nEarly1in, pReverb->m_nBufferMask);
1705         pReverb->m_nDelayLine[nAddr] = (short) nApIn;
1706 
1707         // right input = (right dry * m_nLateGain) + left feedback from previous period
1708         /*lint -e{702} use shift for performance */
1709         nApIn = SATURATE(nApIn + pReverb->m_nRevFbkL);
1710         nApIn = MULT_EG1_EG1(nApIn, pReverb->m_nLateGain);
1711 
1712         // fetch allpass delay line out
1713         nAddr
1714                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApOut, pReverb->m_nBufferMask);
1715         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1716 
1717         // calculate allpass feedforward; subtract the feedforward result
1718         nTemp1 = MULT_EG1_EG1(nApIn, pReverb->m_sAp1.m_nApGain);
1719         nApOut = SATURATE(nDelayOut1 - nTemp1); // allpass output
1720 
1721         // calculate allpass feedback; add the feedback result
1722         nTemp1 = MULT_EG1_EG1(nApOut, pReverb->m_sAp1.m_nApGain);
1723         nTemp1 = SATURATE(nApIn + nTemp1);
1724 
1725         // inject into allpass delay
1726         nAddr
1727                 = CIRCULAR(nBase, pReverb->m_sAp1.m_zApIn, pReverb->m_nBufferMask);
1728         pReverb->m_nDelayLine[nAddr] = (short) nTemp1;
1729 
1730         // inject allpass output into delay line
1731         nAddr = CIRCULAR(nBase, pReverb->m_zD1In, pReverb->m_nBufferMask);
1732         pReverb->m_nDelayLine[nAddr] = (short) nApOut;
1733 
1734         // ********** Right Allpass - end
1735 
1736         // ********** D0 output - start
1737         // fetch delay line self out
1738         nAddr = CIRCULAR(nBase, pReverb->m_zD0Self, pReverb->m_nBufferMask);
1739         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1740 
1741         // calculate delay line self out
1742         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nSin);
1743 
1744         // fetch delay line cross out
1745         nAddr = CIRCULAR(nBase, pReverb->m_zD1Cross, pReverb->m_nBufferMask);
1746         nDelayOut0 = pReverb->m_nDelayLine[nAddr];
1747 
1748         // calculate delay line self out
1749         nTemp2 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nCos);
1750 
1751         // calculate unfiltered delay out
1752         nDelayOut0 = SATURATE(nTemp1 + nTemp2);
1753 
1754         // ********** D0 output - end
1755 
1756         // ********** D1 output - start
1757         // fetch delay line self out
1758         nAddr = CIRCULAR(nBase, pReverb->m_zD1Self, pReverb->m_nBufferMask);
1759         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1760 
1761         // calculate delay line self out
1762         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nSin);
1763 
1764         // fetch delay line cross out
1765         nAddr = CIRCULAR(nBase, pReverb->m_zD0Cross, pReverb->m_nBufferMask);
1766         nDelayOut1 = pReverb->m_nDelayLine[nAddr];
1767 
1768         // calculate delay line self out
1769         nTemp2 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nCos);
1770 
1771         // calculate unfiltered delay out
1772         nDelayOut1 = SATURATE(nTemp1 + nTemp2);
1773 
1774         // ********** D1 output - end
1775 
1776         // ********** mixer and feedback - start
1777         // sum is fedback to right input (R + L)
1778         nDelayOut0 = (short) SATURATE(nDelayOut0 + nDelayOut1);
1779 
1780         // difference is feedback to left input (R - L)
1781         /*lint -e{685} lint complains that it can't saturate negative */
1782         nDelayOut1 = (short) SATURATE(nDelayOut1 - nDelayOut0);
1783 
1784         // ********** mixer and feedback - end
1785 
1786         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1787         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRvbLpfFwd);
1788 
1789         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkL, pReverb->m_nRvbLpfFbk);
1790 
1791         // calculate filtered delay out and simultaneously update LPF state variable
1792         // filtered delay output is stored in m_nRevFbkL
1793         pReverb->m_nRevFbkL = (short) SATURATE(nTemp1 + nTemp2);
1794 
1795         // calculate lowpass filter (mixer scale factor included in LPF feedforward)
1796         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRvbLpfFwd);
1797 
1798         nTemp2 = MULT_EG1_EG1(pReverb->m_nRevFbkR, pReverb->m_nRvbLpfFbk);
1799 
1800         // calculate filtered delay out and simultaneously update LPF state variable
1801         // filtered delay output is stored in m_nRevFbkR
1802         pReverb->m_nRevFbkR = (short) SATURATE(nTemp1 + nTemp2);
1803 
1804         // ********** start early reflection generator, left
1805         //psEarly = &(pReverb->m_sEarlyL);
1806 
1807 
1808         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1809             // fetch delay line out
1810             //nAddr = CIRCULAR(nBase, psEarly->m_zDelay[j], pReverb->m_nBufferMask);
1811             nAddr
1812                     = CIRCULAR(nBase, pReverb->m_sEarlyL.m_zDelay[j], pReverb->m_nBufferMask);
1813 
1814             nTemp1 = pReverb->m_nDelayLine[nAddr];
1815 
1816             // calculate reflection
1817             //nTemp1 = MULT_EG1_EG1(nDelayOut0, psEarly->m_nGain[j]);
1818             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyL.m_nGain[j]);
1819 
1820             nDelayOut0 = SATURATE(nDelayOut0 + nTemp1);
1821 
1822         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1823 
1824         // apply lowpass to early reflections and reverb output
1825         //nTemp1 = MULT_EG1_EG1(nEarlyOut, psEarly->m_nRvbLpfFwd);
1826         nTemp1 = MULT_EG1_EG1(nDelayOut0, pReverb->m_nRoomLpfFwd);
1827 
1828         //nTemp2 = MULT_EG1_EG1(psEarly->m_zLpf, psEarly->m_nLpfFbk);
1829         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfL, pReverb->m_nRoomLpfFbk);
1830 
1831         // calculate filtered out and simultaneously update LPF state variable
1832         // filtered output is stored in m_zOutLpfL
1833         pReverb->m_zOutLpfL = (short) SATURATE(nTemp1 + nTemp2);
1834 
1835         //sum with output buffer
1836         tempValue = *pOutputBuffer;
1837         *pOutputBuffer++ = (short) SATURATE(tempValue+pReverb->m_zOutLpfL);
1838 
1839         // ********** end early reflection generator, left
1840 
1841         // ********** start early reflection generator, right
1842         //psEarly = &(pReverb->m_sEarlyR);
1843 
1844         for (j = 0; j < REVERB_MAX_NUM_REFLECTIONS; j++) {
1845             // fetch delay line out
1846             nAddr
1847                     = CIRCULAR(nBase, pReverb->m_sEarlyR.m_zDelay[j], pReverb->m_nBufferMask);
1848             nTemp1 = pReverb->m_nDelayLine[nAddr];
1849 
1850             // calculate reflection
1851             nTemp1 = MULT_EG1_EG1(nTemp1, pReverb->m_sEarlyR.m_nGain[j]);
1852 
1853             nDelayOut1 = SATURATE(nDelayOut1 + nTemp1);
1854 
1855         } // end for (j=0; j < REVERB_MAX_NUM_REFLECTIONS; j++)
1856 
1857         // apply lowpass to early reflections
1858         nTemp1 = MULT_EG1_EG1(nDelayOut1, pReverb->m_nRoomLpfFwd);
1859 
1860         nTemp2 = MULT_EG1_EG1(pReverb->m_zOutLpfR, pReverb->m_nRoomLpfFbk);
1861 
1862         // calculate filtered out and simultaneously update LPF state variable
1863         // filtered output is stored in m_zOutLpfR
1864         pReverb->m_zOutLpfR = (short) SATURATE(nTemp1 + nTemp2);
1865 
1866         //sum with output buffer
1867         tempValue = *pOutputBuffer;
1868         *pOutputBuffer++ = (short) SATURATE(tempValue + pReverb->m_zOutLpfR);
1869 
1870         // ********** end early reflection generator, right
1871 
1872         // decrement base addr for next sample period
1873         nBase--;
1874 
1875         pReverb->m_nSin += pReverb->m_nSinIncrement;
1876         pReverb->m_nCos += pReverb->m_nCosIncrement;
1877 
1878     } // end for (i=0; i < nNumSamplesToAdd; i++)
1879 
1880     // store the most up to date version
1881     pReverb->m_nBaseIndex = nBase;
1882 
1883     return 0;
1884 } /* end Reverb */
1885 
1886 /*----------------------------------------------------------------------------
1887  * ReverbUpdateRoom
1888  *----------------------------------------------------------------------------
1889  * Purpose:
1890  * Update the room's preset parameters as required
1891  *
1892  * Inputs:
1893  *
1894  * Outputs:
1895  *
1896  *
1897  * Side Effects:
1898  * - reverb paramters (fbk, fwd, etc) will be changed
1899  * - m_nCurrentRoom := m_nNextRoom
1900  *----------------------------------------------------------------------------
1901  */
ReverbUpdateRoom(reverb_object_t * pReverb,bool fullUpdate)1902 static int ReverbUpdateRoom(reverb_object_t *pReverb, bool fullUpdate) {
1903     int temp;
1904     int i;
1905     int maxSamples;
1906     int earlyDelay;
1907     int earlyGain;
1908 
1909     reverb_preset_t *pPreset =
1910             &pReverb->m_sPreset.m_sPreset[pReverb->m_nNextRoom];
1911 
1912     if (fullUpdate) {
1913         pReverb->m_nRvbLpfFwd = pPreset->m_nRvbLpfFwd;
1914         pReverb->m_nRvbLpfFbk = pPreset->m_nRvbLpfFbk;
1915 
1916         pReverb->m_nEarlyGain = pPreset->m_nEarlyGain;
1917         //stored as time based, convert to sample based
1918         pReverb->m_nLateGain = pPreset->m_nLateGain;
1919         pReverb->m_nRoomLpfFbk = pPreset->m_nRoomLpfFbk;
1920         pReverb->m_nRoomLpfFwd = pPreset->m_nRoomLpfFwd;
1921 
1922         // set the early reflections gains
1923         earlyGain = pPreset->m_nEarlyGain;
1924         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1925             pReverb->m_sEarlyL.m_nGain[i]
1926                     = MULT_EG1_EG1(pPreset->m_sEarlyL.m_nGain[i],earlyGain);
1927             pReverb->m_sEarlyR.m_nGain[i]
1928                     = MULT_EG1_EG1(pPreset->m_sEarlyR.m_nGain[i],earlyGain);
1929         }
1930 
1931         pReverb->m_nMaxExcursion = pPreset->m_nMaxExcursion;
1932 
1933         pReverb->m_sAp0.m_nApGain = pPreset->m_nAp0_ApGain;
1934         pReverb->m_sAp1.m_nApGain = pPreset->m_nAp1_ApGain;
1935 
1936         // set the early reflections delay
1937         earlyDelay = ((int) pPreset->m_nEarlyDelay * pReverb->m_nSamplingRate)
1938                 >> 16;
1939         pReverb->m_nEarlyDelay = earlyDelay;
1940         maxSamples = (int32_t) (MAX_EARLY_TIME * pReverb->m_nSamplingRate)
1941                 >> 16;
1942         for (i = 0; i < REVERB_MAX_NUM_REFLECTIONS; i++) {
1943             //stored as time based, convert to sample based
1944             temp = earlyDelay + (((int) pPreset->m_sEarlyL.m_zDelay[i]
1945                     * pReverb->m_nSamplingRate) >> 16);
1946             if (temp > maxSamples)
1947                 temp = maxSamples;
1948             pReverb->m_sEarlyL.m_zDelay[i] = pReverb->m_nEarly0in + temp;
1949             //stored as time based, convert to sample based
1950             temp = earlyDelay + (((int) pPreset->m_sEarlyR.m_zDelay[i]
1951                     * pReverb->m_nSamplingRate) >> 16);
1952             if (temp > maxSamples)
1953                 temp = maxSamples;
1954             pReverb->m_sEarlyR.m_zDelay[i] = pReverb->m_nEarly1in + temp;
1955         }
1956 
1957         maxSamples = (int32_t) (MAX_DELAY_TIME * pReverb->m_nSamplingRate)
1958                 >> 16;
1959         //stored as time based, convert to sample based
1960         /*lint -e{702} shift for performance */
1961         temp = (pPreset->m_nLateDelay * pReverb->m_nSamplingRate) >> 16;
1962         if ((temp + pReverb->m_nMaxExcursion) > maxSamples) {
1963             temp = maxSamples - pReverb->m_nMaxExcursion;
1964         }
1965         temp -= pReverb->m_nLateDelay;
1966         pReverb->m_nDelay0Out += temp;
1967         pReverb->m_nDelay1Out += temp;
1968         pReverb->m_nLateDelay += temp;
1969 
1970         maxSamples = (int32_t) (MAX_AP_TIME * pReverb->m_nSamplingRate) >> 16;
1971         //stored as time based, convert to absolute sample value
1972         temp = pPreset->m_nAp0_ApOut;
1973         /*lint -e{702} shift for performance */
1974         temp = (temp * pReverb->m_nSamplingRate) >> 16;
1975         if (temp > maxSamples)
1976             temp = maxSamples;
1977         pReverb->m_sAp0.m_zApOut = (uint16_t) (pReverb->m_sAp0.m_zApIn + temp);
1978 
1979         //stored as time based, convert to absolute sample value
1980         temp = pPreset->m_nAp1_ApOut;
1981         /*lint -e{702} shift for performance */
1982         temp = (temp * pReverb->m_nSamplingRate) >> 16;
1983         if (temp > maxSamples)
1984             temp = maxSamples;
1985         pReverb->m_sAp1.m_zApOut = (uint16_t) (pReverb->m_sAp1.m_zApIn + temp);
1986         //gpsReverbObject->m_sAp1.m_zApOut = pPreset->m_nAp1_ApOut;
1987     }
1988 
1989     //stored as time based, convert to sample based
1990     temp = pPreset->m_nXfadeInterval;
1991     /*lint -e{702} shift for performance */
1992     temp = (temp * pReverb->m_nSamplingRate) >> 16;
1993     pReverb->m_nXfadeInterval = (uint16_t) temp;
1994     //gsReverbObject.m_nXfadeInterval = pPreset->m_nXfadeInterval;
1995     pReverb->m_nXfadeCounter = pReverb->m_nXfadeInterval + 1; // force update on first iteration
1996 
1997     pReverb->m_nCurrentRoom = pReverb->m_nNextRoom;
1998 
1999     return 0;
2000 
2001 } /* end ReverbUpdateRoom */
2002 
2003 /*----------------------------------------------------------------------------
2004  * ReverbReadInPresets()
2005  *----------------------------------------------------------------------------
2006  * Purpose: sets global reverb preset bank to defaults
2007  *
2008  * Inputs:
2009  *
2010  * Outputs:
2011  *
2012  *----------------------------------------------------------------------------
2013  */
ReverbReadInPresets(reverb_object_t * pReverb)2014 static int ReverbReadInPresets(reverb_object_t *pReverb) {
2015 
2016     int preset;
2017 
2018     // this is for test only. OpenSL ES presets are mapped to 4 presets.
2019     // REVERB_PRESET_NONE is mapped to bypass
2020     for (preset = 0; preset < REVERB_NUM_PRESETS; preset++) {
2021         reverb_preset_t *pPreset = &pReverb->m_sPreset.m_sPreset[preset];
2022         switch (preset + 1) {
2023         case REVERB_PRESET_PLATE:
2024         case REVERB_PRESET_SMALLROOM:
2025             pPreset->m_nRvbLpfFbk = 5077;
2026             pPreset->m_nRvbLpfFwd = 11076;
2027             pPreset->m_nEarlyGain = 27690;
2028             pPreset->m_nEarlyDelay = 1311;
2029             pPreset->m_nLateGain = 8191;
2030             pPreset->m_nLateDelay = 3932;
2031             pPreset->m_nRoomLpfFbk = 3692;
2032             pPreset->m_nRoomLpfFwd = 20474;
2033             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2034             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2035             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2036             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2037             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2038             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2039             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2040             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2041             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2042             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2043             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2044             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2045             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2046             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2047             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2048             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2049             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2050             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2051             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2052             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2053             pPreset->m_nMaxExcursion = 127;
2054             pPreset->m_nXfadeInterval = 6470; //6483;
2055             pPreset->m_nAp0_ApGain = 14768;
2056             pPreset->m_nAp0_ApOut = 792;
2057             pPreset->m_nAp1_ApGain = 14777;
2058             pPreset->m_nAp1_ApOut = 1191;
2059             pPreset->m_rfu4 = 0;
2060             pPreset->m_rfu5 = 0;
2061             pPreset->m_rfu6 = 0;
2062             pPreset->m_rfu7 = 0;
2063             pPreset->m_rfu8 = 0;
2064             pPreset->m_rfu9 = 0;
2065             pPreset->m_rfu10 = 0;
2066             break;
2067         case REVERB_PRESET_MEDIUMROOM:
2068         case REVERB_PRESET_LARGEROOM:
2069             pPreset->m_nRvbLpfFbk = 5077;
2070             pPreset->m_nRvbLpfFwd = 12922;
2071             pPreset->m_nEarlyGain = 27690;
2072             pPreset->m_nEarlyDelay = 1311;
2073             pPreset->m_nLateGain = 8191;
2074             pPreset->m_nLateDelay = 3932;
2075             pPreset->m_nRoomLpfFbk = 3692;
2076             pPreset->m_nRoomLpfFwd = 21703;
2077             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2078             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2079             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2080             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2081             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2082             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2083             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2084             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2085             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2086             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2087             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2088             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2089             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2090             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2091             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2092             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2093             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2094             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2095             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2096             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2097             pPreset->m_nMaxExcursion = 127;
2098             pPreset->m_nXfadeInterval = 6449;
2099             pPreset->m_nAp0_ApGain = 15691;
2100             pPreset->m_nAp0_ApOut = 774;
2101             pPreset->m_nAp1_ApGain = 16317;
2102             pPreset->m_nAp1_ApOut = 1155;
2103             pPreset->m_rfu4 = 0;
2104             pPreset->m_rfu5 = 0;
2105             pPreset->m_rfu6 = 0;
2106             pPreset->m_rfu7 = 0;
2107             pPreset->m_rfu8 = 0;
2108             pPreset->m_rfu9 = 0;
2109             pPreset->m_rfu10 = 0;
2110             break;
2111         case REVERB_PRESET_MEDIUMHALL:
2112             pPreset->m_nRvbLpfFbk = 6461;
2113             pPreset->m_nRvbLpfFwd = 14307;
2114             pPreset->m_nEarlyGain = 27690;
2115             pPreset->m_nEarlyDelay = 1311;
2116             pPreset->m_nLateGain = 8191;
2117             pPreset->m_nLateDelay = 3932;
2118             pPreset->m_nRoomLpfFbk = 3692;
2119             pPreset->m_nRoomLpfFwd = 24569;
2120             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2121             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2122             pPreset->m_sEarlyL.m_zDelay[1] = 1462;
2123             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2124             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2125             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2126             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2127             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2128             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2129             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2130             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2131             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2132             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2133             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2134             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2135             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2136             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2137             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2138             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2139             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2140             pPreset->m_nMaxExcursion = 127;
2141             pPreset->m_nXfadeInterval = 6391;
2142             pPreset->m_nAp0_ApGain = 15230;
2143             pPreset->m_nAp0_ApOut = 708;
2144             pPreset->m_nAp1_ApGain = 15547;
2145             pPreset->m_nAp1_ApOut = 1023;
2146             pPreset->m_rfu4 = 0;
2147             pPreset->m_rfu5 = 0;
2148             pPreset->m_rfu6 = 0;
2149             pPreset->m_rfu7 = 0;
2150             pPreset->m_rfu8 = 0;
2151             pPreset->m_rfu9 = 0;
2152             pPreset->m_rfu10 = 0;
2153             break;
2154         case REVERB_PRESET_LARGEHALL:
2155             pPreset->m_nRvbLpfFbk = 8307;
2156             pPreset->m_nRvbLpfFwd = 14768;
2157             pPreset->m_nEarlyGain = 27690;
2158             pPreset->m_nEarlyDelay = 1311;
2159             pPreset->m_nLateGain = 8191;
2160             pPreset->m_nLateDelay = 3932;
2161             pPreset->m_nRoomLpfFbk = 3692;
2162             pPreset->m_nRoomLpfFwd = 24569;
2163             pPreset->m_sEarlyL.m_zDelay[0] = 1376;
2164             pPreset->m_sEarlyL.m_nGain[0] = 22152;
2165             pPreset->m_sEarlyL.m_zDelay[1] = 2163;
2166             pPreset->m_sEarlyL.m_nGain[1] = 17537;
2167             pPreset->m_sEarlyL.m_zDelay[2] = 0;
2168             pPreset->m_sEarlyL.m_nGain[2] = 14768;
2169             pPreset->m_sEarlyL.m_zDelay[3] = 1835;
2170             pPreset->m_sEarlyL.m_nGain[3] = 14307;
2171             pPreset->m_sEarlyL.m_zDelay[4] = 0;
2172             pPreset->m_sEarlyL.m_nGain[4] = 13384;
2173             pPreset->m_sEarlyR.m_zDelay[0] = 721;
2174             pPreset->m_sEarlyR.m_nGain[0] = 20306;
2175             pPreset->m_sEarlyR.m_zDelay[1] = 2621;
2176             pPreset->m_sEarlyR.m_nGain[1] = 17537;
2177             pPreset->m_sEarlyR.m_zDelay[2] = 0;
2178             pPreset->m_sEarlyR.m_nGain[2] = 14768;
2179             pPreset->m_sEarlyR.m_zDelay[3] = 0;
2180             pPreset->m_sEarlyR.m_nGain[3] = 16153;
2181             pPreset->m_sEarlyR.m_zDelay[4] = 0;
2182             pPreset->m_sEarlyR.m_nGain[4] = 13384;
2183             pPreset->m_nMaxExcursion = 127;
2184             pPreset->m_nXfadeInterval = 6388;
2185             pPreset->m_nAp0_ApGain = 15691;
2186             pPreset->m_nAp0_ApOut = 711;
2187             pPreset->m_nAp1_ApGain = 16317;
2188             pPreset->m_nAp1_ApOut = 1029;
2189             pPreset->m_rfu4 = 0;
2190             pPreset->m_rfu5 = 0;
2191             pPreset->m_rfu6 = 0;
2192             pPreset->m_rfu7 = 0;
2193             pPreset->m_rfu8 = 0;
2194             pPreset->m_rfu9 = 0;
2195             pPreset->m_rfu10 = 0;
2196             break;
2197         }
2198     }
2199 
2200     return 0;
2201 }
2202 
2203 audio_effect_library_t AUDIO_EFFECT_LIBRARY_INFO_SYM = {
2204     .tag = AUDIO_EFFECT_LIBRARY_TAG,
2205     .version = EFFECT_LIBRARY_API_VERSION,
2206     .name = "Test Equalizer Library",
2207     .implementor = "The Android Open Source Project",
2208     .create_effect = EffectCreate,
2209     .release_effect = EffectRelease,
2210     .get_descriptor = EffectGetDescriptor,
2211 };
2212