1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19 
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25 
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31 
32 #include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirGen.h" // requires math.h
36 #include "AudioResamplerDyn.h"
37 
38 //#define DEBUG_RESAMPLER
39 
40 namespace android {
41 
42 /*
43  * InBuffer is a type agnostic input buffer.
44  *
45  * Layout of the state buffer for halfNumCoefs=8.
46  *
47  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
48  *  S            I                                R
49  *
50  * S = mState
51  * I = mImpulse
52  * R = mRingFull
53  * p = past samples, convoluted with the (p)ositive side of sinc()
54  * n = future samples, convoluted with the (n)egative side of sinc()
55  * r = extra space for implementing the ring buffer
56  */
57 
58 template<typename TC, typename TI, typename TO>
InBuffer()59 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
60     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
61 {
62 }
63 
64 template<typename TC, typename TI, typename TO>
~InBuffer()65 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
66 {
67     init();
68 }
69 
70 template<typename TC, typename TI, typename TO>
init()71 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
72 {
73     free(mState);
74     mState = NULL;
75     mImpulse = NULL;
76     mRingFull = NULL;
77     mStateCount = 0;
78 }
79 
80 // resizes the state buffer to accommodate the appropriate filter length
81 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)82 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
83 {
84     // calculate desired state size
85     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
86 
87     // check if buffer needs resizing
88     if (mState
89             && stateCount == mStateCount
90             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
91         return;
92     }
93 
94     // create new buffer
95     TI* state = NULL;
96     (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
97     memset(state, 0, stateCount*sizeof(*state));
98 
99     // attempt to preserve state
100     if (mState) {
101         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
102         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
103         TI* dst = state;
104 
105         if (srcLo < mState) {
106             dst += mState-srcLo;
107             srcLo = mState;
108         }
109         if (srcHi > mState + mStateCount) {
110             srcHi = mState + mStateCount;
111         }
112         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
113         free(mState);
114     }
115 
116     // set class member vars
117     mState = state;
118     mStateCount = stateCount;
119     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
120     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
121 }
122 
123 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
124 template<typename TC, typename TI, typename TO>
125 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)126 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
127         const TI* const in, const size_t inputIndex)
128 {
129     TI* head = impulse + halfNumCoefs*CHANNELS;
130     for (size_t i=0 ; i<CHANNELS ; i++) {
131         head[i] = in[inputIndex*CHANNELS + i];
132     }
133 }
134 
135 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
136 template<typename TC, typename TI, typename TO>
137 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)138 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
139         const TI* const in, const size_t inputIndex)
140 {
141     impulse += CHANNELS;
142 
143     if (CC_UNLIKELY(impulse >= mRingFull)) {
144         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
145         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
146         impulse -= shiftDown;
147     }
148     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
149 }
150 
151 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)152 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
153         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
154 {
155     int bits = 0;
156     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
157             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
158     for (int i=lscale; i; ++bits, i>>=1)
159         ;
160     mL = L;
161     mShift = kNumPhaseBits - bits;
162     mHalfNumCoefs = halfNumCoefs;
163 }
164 
165 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)166 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
167         int inChannelCount, int32_t sampleRate, src_quality quality)
168     : AudioResampler(inChannelCount, sampleRate, quality),
169       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
170     mCoefBuffer(NULL)
171 {
172     mVolumeSimd[0] = mVolumeSimd[1] = 0;
173     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
174     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
175     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
176     mInSampleRate = 0;
177     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
178 }
179 
180 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()181 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
182 {
183     free(mCoefBuffer);
184 }
185 
186 template<typename TC, typename TI, typename TO>
init()187 void AudioResamplerDyn<TC, TI, TO>::init()
188 {
189     mFilterSampleRate = 0; // always trigger new filter generation
190     mInBuffer.init();
191 }
192 
193 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)194 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
195 {
196     AudioResampler::setVolume(left, right);
197     if (is_same<TO, float>::value || is_same<TO, double>::value) {
198         mVolumeSimd[0] = static_cast<TO>(left);
199         mVolumeSimd[1] = static_cast<TO>(right);
200     } else {  // integer requires scaling to U4_28 (rounding down)
201         // integer volumes are clamped to 0 to UNITY_GAIN so there
202         // are no issues with signed overflow.
203         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
204         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
205     }
206 }
207 
max(T a,T b)208 template<typename T> T max(T a, T b) {return a > b ? a : b;}
209 
absdiff(T a,T b)210 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
211 
212 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)213 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
214         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
215 {
216     TC* buf = NULL;
217     static const double atten = 0.9998;   // to avoid ripple overflow
218     double fcr;
219     double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
220 
221     (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
222     if (inSampleRate < outSampleRate) { // upsample
223         fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
224     } else { // downsample
225         fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
226     }
227     // create and set filter
228     firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
229     c.mFirCoefs = buf;
230     if (mCoefBuffer) {
231         free(mCoefBuffer);
232     }
233     mCoefBuffer = buf;
234 #ifdef DEBUG_RESAMPLER
235     // print basic filter stats
236     printf("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
237             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
238     // test the filter and report results
239     double fp = (fcr - tbw/2)/c.mL;
240     double fs = (fcr + tbw/2)/c.mL;
241     double passMin, passMax, passRipple;
242     double stopMax, stopRipple;
243     testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
244             passMin, passMax, passRipple, stopMax, stopRipple);
245     printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
246     printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
247 #endif
248 }
249 
250 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)251 static int gcd(int n, int m)
252 {
253     if (m == 0) {
254         return n;
255     }
256     return gcd(m, n % m);
257 }
258 
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)259 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
260         int32_t filterSampleRate, int32_t outSampleRate)
261 {
262 
263     // different upsampling ratios do not need a filter change.
264     if (filterSampleRate != 0
265             && filterSampleRate < outSampleRate
266             && newSampleRate < outSampleRate)
267         return true;
268 
269     // check design criteria again if downsampling is detected.
270     int pdiff = absdiff(newSampleRate, prevSampleRate);
271     int adiff = absdiff(newSampleRate, filterSampleRate);
272 
273     // allow up to 6% relative change increments.
274     // allow up to 12% absolute change increments (from filter design)
275     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
276 }
277 
278 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)279 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
280 {
281     if (mInSampleRate == inSampleRate) {
282         return;
283     }
284     int32_t oldSampleRate = mInSampleRate;
285     int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
286     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
287     bool useS32 = false;
288 
289     mInSampleRate = inSampleRate;
290 
291     // TODO: Add precalculated Equiripple filters
292 
293     if (mFilterQuality != getQuality() ||
294             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
295         mFilterSampleRate = inSampleRate;
296         mFilterQuality = getQuality();
297 
298         // Begin Kaiser Filter computation
299         //
300         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
301         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
302         //
303         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
304         // 96-98dB
305         //
306 
307         double stopBandAtten;
308         double tbwCheat = 1.; // how much we "cheat" into aliasing
309         int halfLength;
310         if (mFilterQuality == DYN_HIGH_QUALITY) {
311             // 32b coefficients, 64 length
312             useS32 = true;
313             stopBandAtten = 98.;
314             if (inSampleRate >= mSampleRate * 4) {
315                 halfLength = 48;
316             } else if (inSampleRate >= mSampleRate * 2) {
317                 halfLength = 40;
318             } else {
319                 halfLength = 32;
320             }
321         } else if (mFilterQuality == DYN_LOW_QUALITY) {
322             // 16b coefficients, 16-32 length
323             useS32 = false;
324             stopBandAtten = 80.;
325             if (inSampleRate >= mSampleRate * 4) {
326                 halfLength = 24;
327             } else if (inSampleRate >= mSampleRate * 2) {
328                 halfLength = 16;
329             } else {
330                 halfLength = 8;
331             }
332             if (inSampleRate <= mSampleRate) {
333                 tbwCheat = 1.05;
334             } else {
335                 tbwCheat = 1.03;
336             }
337         } else { // DYN_MED_QUALITY
338             // 16b coefficients, 32-64 length
339             // note: > 64 length filters with 16b coefs can have quantization noise problems
340             useS32 = false;
341             stopBandAtten = 84.;
342             if (inSampleRate >= mSampleRate * 4) {
343                 halfLength = 32;
344             } else if (inSampleRate >= mSampleRate * 2) {
345                 halfLength = 24;
346             } else {
347                 halfLength = 16;
348             }
349             if (inSampleRate <= mSampleRate) {
350                 tbwCheat = 1.03;
351             } else {
352                 tbwCheat = 1.01;
353             }
354         }
355 
356         // determine the number of polyphases in the filterbank.
357         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
358         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
359         //
360         // We are a bit more lax on this.
361 
362         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
363 
364         // TODO: Once dynamic sample rate change is an option, the code below
365         // should be modified to execute only when dynamic sample rate change is enabled.
366         //
367         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
368         // we increase the phases to compensate, but more phases means more memory per
369         // filter and more time to compute the filter.
370         //
371         // if we know that the filter will be used for dynamic sample rate changes,
372         // that would allow us skip this part for fixed sample rate resamplers.
373         //
374         while (phases<63) {
375             phases *= 2; // this code only needed to support dynamic rate changes
376         }
377 
378         if (phases>=256) {  // too many phases, always interpolate
379             phases = 127;
380         }
381 
382         // create the filter
383         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
384         createKaiserFir(mConstants, stopBandAtten,
385                 inSampleRate, mSampleRate, tbwCheat);
386     } // End Kaiser filter
387 
388     // update phase and state based on the new filter.
389     const Constants& c(mConstants);
390     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
391     const uint32_t phaseWrapLimit = c.mL << c.mShift;
392     // try to preserve as much of the phase fraction as possible for on-the-fly changes
393     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
394             * phaseWrapLimit / oldPhaseWrapLimit;
395     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
396     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
397             * inSampleRate / mSampleRate);
398 
399     // determine which resampler to use
400     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
401     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
402     if (locked) {
403         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
404     }
405 
406     // stride is the minimum number of filter coefficients processed per loop iteration.
407     // We currently only allow a stride of 16 to match with SIMD processing.
408     // This means that the filter length must be a multiple of 16,
409     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
410     //
411     // Note: A stride of 2 is achieved with non-SIMD processing.
412     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
413     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
414     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
415             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
416     // stride 16 (falls back to stride 2 for machines that do not support NEON)
417     if (locked) {
418         switch (mChannelCount) {
419         case 1:
420             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
421             break;
422         case 2:
423             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
424             break;
425         case 3:
426             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
427             break;
428         case 4:
429             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
430             break;
431         case 5:
432             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
433             break;
434         case 6:
435             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
436             break;
437         case 7:
438             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
439             break;
440         case 8:
441             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
442             break;
443         }
444     } else {
445         switch (mChannelCount) {
446         case 1:
447             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
448             break;
449         case 2:
450             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
451             break;
452         case 3:
453             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
454             break;
455         case 4:
456             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
457             break;
458         case 5:
459             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
460             break;
461         case 6:
462             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
463             break;
464         case 7:
465             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
466             break;
467         case 8:
468             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
469             break;
470         }
471     }
472 #ifdef DEBUG_RESAMPLER
473     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
474             mChannelCount, locked ? "locked" : "interpolated",
475             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
476 #endif
477 }
478 
479 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)480 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
481             AudioBufferProvider* provider)
482 {
483     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
484 }
485 
486 template<typename TC, typename TI, typename TO>
487 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)488 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
489         AudioBufferProvider* provider)
490 {
491     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
492     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
493     const Constants& c(mConstants);
494     const TC* const coefs = mConstants.mFirCoefs;
495     TI* impulse = mInBuffer.getImpulse();
496     size_t inputIndex = 0;
497     uint32_t phaseFraction = mPhaseFraction;
498     const uint32_t phaseIncrement = mPhaseIncrement;
499     size_t outputIndex = 0;
500     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
501     const uint32_t phaseWrapLimit = c.mL << c.mShift;
502     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
503             / phaseWrapLimit;
504     // sanity check that inFrameCount is in signed 32 bit integer range.
505     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
506 
507     //ALOGV("inFrameCount:%d  outFrameCount:%d"
508     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
509     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
510 
511     // NOTE: be very careful when modifying the code here. register
512     // pressure is very high and a small change might cause the compiler
513     // to generate far less efficient code.
514     // Always sanity check the result with objdump or test-resample.
515 
516     // the following logic is a bit convoluted to keep the main processing loop
517     // as tight as possible with register allocation.
518     while (outputIndex < outputSampleCount) {
519         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
520         //        "  phaseFraction:%u  phaseWrapLimit:%u",
521         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
522 
523         // check inputIndex overflow
524         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%d > frameCount%d",
525                 inputIndex, mBuffer.frameCount);
526         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
527         // We may not fetch a new buffer if the existing data is sufficient.
528         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
529             mBuffer.frameCount = inFrameCount;
530             provider->getNextBuffer(&mBuffer,
531                     calculateOutputPTS(outputIndex / OUTPUT_CHANNELS));
532             if (mBuffer.raw == NULL) {
533                 goto resample_exit;
534             }
535             inFrameCount -= mBuffer.frameCount;
536             if (phaseFraction >= phaseWrapLimit) { // read in data
537                 mInBuffer.template readAdvance<CHANNELS>(
538                         impulse, c.mHalfNumCoefs,
539                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
540                 inputIndex++;
541                 phaseFraction -= phaseWrapLimit;
542                 while (phaseFraction >= phaseWrapLimit) {
543                     if (inputIndex >= mBuffer.frameCount) {
544                         inputIndex = 0;
545                         provider->releaseBuffer(&mBuffer);
546                         break;
547                     }
548                     mInBuffer.template readAdvance<CHANNELS>(
549                             impulse, c.mHalfNumCoefs,
550                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
551                     inputIndex++;
552                     phaseFraction -= phaseWrapLimit;
553                 }
554             }
555         }
556         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
557         const size_t frameCount = mBuffer.frameCount;
558         const int coefShift = c.mShift;
559         const int halfNumCoefs = c.mHalfNumCoefs;
560         const TO* const volumeSimd = mVolumeSimd;
561 
562         // main processing loop
563         while (CC_LIKELY(outputIndex < outputSampleCount)) {
564             // caution: fir() is inlined and may be large.
565             // output will be loaded with the appropriate values
566             //
567             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
568             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
569             //
570             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
571             //        "  phaseFraction:%u  phaseWrapLimit:%u",
572             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
573             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
574             fir<CHANNELS, LOCKED, STRIDE>(
575                     &out[outputIndex],
576                     phaseFraction, phaseWrapLimit,
577                     coefShift, halfNumCoefs, coefs,
578                     impulse, volumeSimd);
579 
580             outputIndex += OUTPUT_CHANNELS;
581 
582             phaseFraction += phaseIncrement;
583             while (phaseFraction >= phaseWrapLimit) {
584                 if (inputIndex >= frameCount) {
585                     goto done;  // need a new buffer
586                 }
587                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
588                 inputIndex++;
589                 phaseFraction -= phaseWrapLimit;
590             }
591         }
592 done:
593         // We arrive here when we're finished or when the input buffer runs out.
594         // Regardless we need to release the input buffer if we've acquired it.
595         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
596             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%d) != frameCount(%d)",
597                     inputIndex, frameCount);  // must have been fully read.
598             inputIndex = 0;
599             provider->releaseBuffer(&mBuffer);
600             ALOG_ASSERT(mBuffer.frameCount == 0);
601         }
602     }
603 
604 resample_exit:
605     // inputIndex must be zero in all three cases:
606     // (1) the buffer never was been acquired; (2) the buffer was
607     // released at "done:"; or (3) getNextBuffer() failed.
608     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%d frameCount:%d  phaseFraction:%u",
609             inputIndex, mBuffer.frameCount, phaseFraction);
610     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
611     mInBuffer.setImpulse(impulse);
612     mPhaseFraction = phaseFraction;
613     return outputIndex / OUTPUT_CHANNELS;
614 }
615 
616 /* instantiate templates used by AudioResampler::create */
617 template class AudioResamplerDyn<float, float, float>;
618 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
619 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
620 
621 // ----------------------------------------------------------------------------
622 } // namespace android
623