1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "szipinf"
19 #include <utils/Log.h>
20
21 #include <androidfw/StreamingZipInflater.h>
22 #include <utils/FileMap.h>
23 #include <string.h>
24 #include <stddef.h>
25 #include <assert.h>
26 #include <unistd.h>
27 #include <errno.h>
28
29 /*
30 * TEMP_FAILURE_RETRY is defined by some, but not all, versions of
31 * <unistd.h>. (Alas, it is not as standard as we'd hoped!) So, if it's
32 * not already defined, then define it here.
33 */
34 #ifndef TEMP_FAILURE_RETRY
35 /* Used to retry syscalls that can return EINTR. */
36 #define TEMP_FAILURE_RETRY(exp) ({ \
37 typeof (exp) _rc; \
38 do { \
39 _rc = (exp); \
40 } while (_rc == -1 && errno == EINTR); \
41 _rc; })
42 #endif
43
44 static const bool kIsDebug = false;
45
min_of(size_t a,size_t b)46 static inline size_t min_of(size_t a, size_t b) { return (a < b) ? a : b; }
47
48 using namespace android;
49
50 /*
51 * Streaming access to compressed asset data in an open fd
52 */
StreamingZipInflater(int fd,off64_t compDataStart,size_t uncompSize,size_t compSize)53 StreamingZipInflater::StreamingZipInflater(int fd, off64_t compDataStart,
54 size_t uncompSize, size_t compSize) {
55 mFd = fd;
56 mDataMap = NULL;
57 mInFileStart = compDataStart;
58 mOutTotalSize = uncompSize;
59 mInTotalSize = compSize;
60
61 mInBufSize = StreamingZipInflater::INPUT_CHUNK_SIZE;
62 mInBuf = new uint8_t[mInBufSize];
63
64 mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
65 mOutBuf = new uint8_t[mOutBufSize];
66
67 initInflateState();
68 }
69
70 /*
71 * Streaming access to compressed data held in an mmapped region of memory
72 */
StreamingZipInflater(FileMap * dataMap,size_t uncompSize)73 StreamingZipInflater::StreamingZipInflater(FileMap* dataMap, size_t uncompSize) {
74 mFd = -1;
75 mDataMap = dataMap;
76 mOutTotalSize = uncompSize;
77 mInTotalSize = dataMap->getDataLength();
78
79 mInBuf = (uint8_t*) dataMap->getDataPtr();
80 mInBufSize = mInTotalSize;
81
82 mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
83 mOutBuf = new uint8_t[mOutBufSize];
84
85 initInflateState();
86 }
87
~StreamingZipInflater()88 StreamingZipInflater::~StreamingZipInflater() {
89 // tear down the in-flight zip state just in case
90 ::inflateEnd(&mInflateState);
91
92 if (mDataMap == NULL) {
93 delete [] mInBuf;
94 }
95 delete [] mOutBuf;
96 }
97
initInflateState()98 void StreamingZipInflater::initInflateState() {
99 ALOGV("Initializing inflate state");
100
101 memset(&mInflateState, 0, sizeof(mInflateState));
102 mInflateState.zalloc = Z_NULL;
103 mInflateState.zfree = Z_NULL;
104 mInflateState.opaque = Z_NULL;
105 mInflateState.next_in = (Bytef*)mInBuf;
106 mInflateState.next_out = (Bytef*) mOutBuf;
107 mInflateState.avail_out = mOutBufSize;
108 mInflateState.data_type = Z_UNKNOWN;
109
110 mOutLastDecoded = mOutDeliverable = mOutCurPosition = 0;
111 mInNextChunkOffset = 0;
112 mStreamNeedsInit = true;
113
114 if (mDataMap == NULL) {
115 ::lseek(mFd, mInFileStart, SEEK_SET);
116 mInflateState.avail_in = 0; // set when a chunk is read in
117 } else {
118 mInflateState.avail_in = mInBufSize;
119 }
120 }
121
122 /*
123 * Basic approach:
124 *
125 * 1. If we have undelivered uncompressed data, send it. At this point
126 * either we've satisfied the request, or we've exhausted the available
127 * output data in mOutBuf.
128 *
129 * 2. While we haven't sent enough data to satisfy the request:
130 * 0. if the request is for more data than exists, bail.
131 * a. if there is no input data to decode, read some into the input buffer
132 * and readjust the z_stream input pointers
133 * b. point the output to the start of the output buffer and decode what we can
134 * c. deliver whatever output data we can
135 */
read(void * outBuf,size_t count)136 ssize_t StreamingZipInflater::read(void* outBuf, size_t count) {
137 uint8_t* dest = (uint8_t*) outBuf;
138 size_t bytesRead = 0;
139 size_t toRead = min_of(count, size_t(mOutTotalSize - mOutCurPosition));
140 while (toRead > 0) {
141 // First, write from whatever we already have decoded and ready to go
142 size_t deliverable = min_of(toRead, mOutLastDecoded - mOutDeliverable);
143 if (deliverable > 0) {
144 if (outBuf != NULL) memcpy(dest, mOutBuf + mOutDeliverable, deliverable);
145 mOutDeliverable += deliverable;
146 mOutCurPosition += deliverable;
147 dest += deliverable;
148 bytesRead += deliverable;
149 toRead -= deliverable;
150 }
151
152 // need more data? time to decode some.
153 if (toRead > 0) {
154 // if we don't have any data to decode, read some in. If we're working
155 // from mmapped data this won't happen, because the clipping to total size
156 // will prevent reading off the end of the mapped input chunk.
157 if ((mInflateState.avail_in == 0) && (mDataMap == NULL)) {
158 int err = readNextChunk();
159 if (err < 0) {
160 ALOGE("Unable to access asset data: %d", err);
161 if (!mStreamNeedsInit) {
162 ::inflateEnd(&mInflateState);
163 initInflateState();
164 }
165 return -1;
166 }
167 }
168 // we know we've drained whatever is in the out buffer now, so just
169 // start from scratch there, reading all the input we have at present.
170 mInflateState.next_out = (Bytef*) mOutBuf;
171 mInflateState.avail_out = mOutBufSize;
172
173 /*
174 ALOGV("Inflating to outbuf: avail_in=%u avail_out=%u next_in=%p next_out=%p",
175 mInflateState.avail_in, mInflateState.avail_out,
176 mInflateState.next_in, mInflateState.next_out);
177 */
178 int result = Z_OK;
179 if (mStreamNeedsInit) {
180 ALOGV("Initializing zlib to inflate");
181 result = inflateInit2(&mInflateState, -MAX_WBITS);
182 mStreamNeedsInit = false;
183 }
184 if (result == Z_OK) result = ::inflate(&mInflateState, Z_SYNC_FLUSH);
185 if (result < 0) {
186 // Whoops, inflation failed
187 ALOGE("Error inflating asset: %d", result);
188 ::inflateEnd(&mInflateState);
189 initInflateState();
190 return -1;
191 } else {
192 if (result == Z_STREAM_END) {
193 // we know we have to have reached the target size here and will
194 // not try to read any further, so just wind things up.
195 ::inflateEnd(&mInflateState);
196 }
197
198 // Note how much data we got, and off we go
199 mOutDeliverable = 0;
200 mOutLastDecoded = mOutBufSize - mInflateState.avail_out;
201 }
202 }
203 }
204 return bytesRead;
205 }
206
readNextChunk()207 int StreamingZipInflater::readNextChunk() {
208 assert(mDataMap == NULL);
209
210 if (mInNextChunkOffset < mInTotalSize) {
211 size_t toRead = min_of(mInBufSize, mInTotalSize - mInNextChunkOffset);
212 if (toRead > 0) {
213 ssize_t didRead = TEMP_FAILURE_RETRY(::read(mFd, mInBuf, toRead));
214 if (kIsDebug) {
215 ALOGV("Reading input chunk, size %08zx didread %08zx", toRead, didRead);
216 }
217 if (didRead < 0) {
218 ALOGE("Error reading asset data: %s", strerror(errno));
219 return didRead;
220 } else {
221 mInNextChunkOffset += didRead;
222 mInflateState.next_in = (Bytef*) mInBuf;
223 mInflateState.avail_in = didRead;
224 }
225 }
226 }
227 return 0;
228 }
229
230 // seeking backwards requires uncompressing fom the beginning, so is very
231 // expensive. seeking forwards only requires uncompressing from the current
232 // position to the destination.
seekAbsolute(off64_t absoluteInputPosition)233 off64_t StreamingZipInflater::seekAbsolute(off64_t absoluteInputPosition) {
234 if (absoluteInputPosition < mOutCurPosition) {
235 // rewind and reprocess the data from the beginning
236 if (!mStreamNeedsInit) {
237 ::inflateEnd(&mInflateState);
238 }
239 initInflateState();
240 read(NULL, absoluteInputPosition);
241 } else if (absoluteInputPosition > mOutCurPosition) {
242 read(NULL, absoluteInputPosition - mOutCurPosition);
243 }
244 // else if the target position *is* our current position, do nothing
245 return absoluteInputPosition;
246 }
247