1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitReader_3_0.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/GVMaterializer.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/OperandTraits.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36
37 using namespace llvm;
38 using namespace llvm_3_0;
39
40 #define FUNC_CODE_INST_UNWIND_2_7 14
41 #define eh_exception_2_7 145
42 #define eh_selector_2_7 149
43
44 #define TYPE_BLOCK_ID_OLD_3_0 10
45 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13
46 #define TYPE_CODE_STRUCT_OLD_3_0 10
47
48 namespace {
FindExnAndSelIntrinsics(BasicBlock * BB,CallInst * & Exn,CallInst * & Sel,SmallPtrSet<BasicBlock *,8> & Visited)49 void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
50 CallInst *&Sel,
51 SmallPtrSet<BasicBlock*, 8> &Visited) {
52 if (!Visited.insert(BB).second) return;
53
54 for (BasicBlock::iterator
55 I = BB->begin(), E = BB->end(); I != E; ++I) {
56 if (CallInst *CI = dyn_cast<CallInst>(I)) {
57 switch (CI->getCalledFunction()->getIntrinsicID()) {
58 default: break;
59 case eh_exception_2_7:
60 assert(!Exn && "Found more than one eh.exception call!");
61 Exn = CI;
62 break;
63 case eh_selector_2_7:
64 assert(!Sel && "Found more than one eh.selector call!");
65 Sel = CI;
66 break;
67 }
68
69 if (Exn && Sel) return;
70 }
71 }
72
73 if (Exn && Sel) return;
74
75 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
76 FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
77 if (Exn && Sel) return;
78 }
79 }
80
81
82
83 /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
84 /// from the eh_selector call to the new landingpad instruction.
TransferClausesToLandingPadInst(LandingPadInst * LPI,CallInst * EHSel)85 void TransferClausesToLandingPadInst(LandingPadInst *LPI,
86 CallInst *EHSel) {
87 LLVMContext &Context = LPI->getContext();
88 unsigned N = EHSel->getNumArgOperands();
89
90 for (unsigned i = N - 1; i > 1; --i) {
91 if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
92 unsigned FilterLength = CI->getZExtValue();
93 unsigned FirstCatch = i + FilterLength + !FilterLength;
94 assert(FirstCatch <= N && "Invalid filter length");
95
96 if (FirstCatch < N)
97 for (unsigned j = FirstCatch; j < N; ++j) {
98 Value *Val = EHSel->getArgOperand(j);
99 if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
100 LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
101 } else {
102 GlobalVariable *GV = cast<GlobalVariable>(Val);
103 LPI->addClause(GV->getInitializer());
104 }
105 }
106
107 if (!FilterLength) {
108 // Cleanup.
109 LPI->setCleanup(true);
110 } else {
111 // Filter.
112 SmallVector<Constant *, 4> TyInfo;
113 TyInfo.reserve(FilterLength - 1);
114 for (unsigned j = i + 1; j < FirstCatch; ++j)
115 TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
116 ArrayType *AType =
117 ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
118 PointerType::getUnqual(Type::getInt8Ty(Context)),
119 TyInfo.size());
120 LPI->addClause(ConstantArray::get(AType, TyInfo));
121 }
122
123 N = i;
124 }
125 }
126
127 if (N > 2)
128 for (unsigned j = 2; j < N; ++j) {
129 Value *Val = EHSel->getArgOperand(j);
130 if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
131 LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
132 } else {
133 GlobalVariable *GV = cast<GlobalVariable>(Val);
134 LPI->addClause(GV->getInitializer());
135 }
136 }
137 }
138
139
140 /// This function upgrades the old pre-3.0 exception handling system to the new
141 /// one. N.B. This will be removed in 3.1.
UpgradeExceptionHandling(Module * M)142 void UpgradeExceptionHandling(Module *M) {
143 Function *EHException = M->getFunction("llvm.eh.exception");
144 Function *EHSelector = M->getFunction("llvm.eh.selector");
145 if (!EHException || !EHSelector)
146 return;
147
148 LLVMContext &Context = M->getContext();
149 Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
150 Type *SelTy = Type::getInt32Ty(Context);
151 Type *LPadSlotTy = StructType::get(ExnTy, SelTy, nullptr);
152
153 // This map links the invoke instruction with the eh.exception and eh.selector
154 // calls associated with it.
155 DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
156 for (Module::iterator
157 I = M->begin(), E = M->end(); I != E; ++I) {
158 Function &F = *I;
159
160 for (Function::iterator
161 II = F.begin(), IE = F.end(); II != IE; ++II) {
162 BasicBlock *BB = &*II;
163 InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
164 if (!Inst) continue;
165 BasicBlock *UnwindDest = Inst->getUnwindDest();
166 if (UnwindDest->isLandingPad()) continue; // Already converted.
167
168 SmallPtrSet<BasicBlock*, 8> Visited;
169 CallInst *Exn = 0;
170 CallInst *Sel = 0;
171 FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
172 assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
173 InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
174 }
175 }
176
177 // This map stores the slots where the exception object and selector value are
178 // stored within a function.
179 DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
180 SmallPtrSet<Instruction*, 32> DeadInsts;
181 for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
182 I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
183 I != E; ++I) {
184 InvokeInst *Invoke = I->first;
185 BasicBlock *UnwindDest = Invoke->getUnwindDest();
186 Function *F = UnwindDest->getParent();
187 std::pair<Value*, Value*> EHIntrinsics = I->second;
188 CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
189 CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
190
191 // Store the exception object and selector value in the entry block.
192 Value *ExnSlot = 0;
193 Value *SelSlot = 0;
194 if (!FnToLPadSlotMap[F].first) {
195 BasicBlock *Entry = &F->front();
196 ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
197 SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
198 FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
199 } else {
200 ExnSlot = FnToLPadSlotMap[F].first;
201 SelSlot = FnToLPadSlotMap[F].second;
202 }
203
204 if (!UnwindDest->getSinglePredecessor()) {
205 // The unwind destination doesn't have a single predecessor. Create an
206 // unwind destination which has only one predecessor.
207 BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
208 UnwindDest->getParent());
209 BranchInst::Create(UnwindDest, NewBB);
210 Invoke->setUnwindDest(NewBB);
211
212 // Fix up any PHIs in the original unwind destination block.
213 for (BasicBlock::iterator
214 II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
215 PHINode *PN = cast<PHINode>(II);
216 int Idx = PN->getBasicBlockIndex(Invoke->getParent());
217 if (Idx == -1) continue;
218 PN->setIncomingBlock(Idx, NewBB);
219 }
220
221 UnwindDest = NewBB;
222 }
223
224 IRBuilder<> Builder(Context);
225 Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
226
227 Value *PersFn = Sel->getArgOperand(1);
228 LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0);
229 Value *LPExn = Builder.CreateExtractValue(LPI, 0);
230 Value *LPSel = Builder.CreateExtractValue(LPI, 1);
231 Builder.CreateStore(LPExn, ExnSlot);
232 Builder.CreateStore(LPSel, SelSlot);
233
234 TransferClausesToLandingPadInst(LPI, Sel);
235
236 DeadInsts.insert(Exn);
237 DeadInsts.insert(Sel);
238 }
239
240 // Replace the old intrinsic calls with the values from the landingpad
241 // instruction(s). These values were stored in allocas for us to use here.
242 for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
243 I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
244 I != E; ++I) {
245 std::pair<Value*, Value*> EHIntrinsics = I->second;
246 CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
247 CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
248 BasicBlock *Parent = Exn->getParent();
249
250 std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
251
252 IRBuilder<> Builder(Context);
253 Builder.SetInsertPoint(Parent, Exn);
254 LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
255 LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
256
257 Exn->replaceAllUsesWith(LPExn);
258 Sel->replaceAllUsesWith(LPSel);
259 }
260
261 // Remove the dead instructions.
262 for (SmallPtrSet<Instruction*, 32>::iterator
263 I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
264 Instruction *Inst = *I;
265 Inst->eraseFromParent();
266 }
267
268 // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
269 // exception and selector values from the stored place.
270 Function *EHResume = M->getFunction("llvm.eh.resume");
271 if (!EHResume) return;
272
273 while (!EHResume->use_empty()) {
274 CallInst *Resume = cast<CallInst>(*EHResume->use_begin());
275 BasicBlock *BB = Resume->getParent();
276
277 IRBuilder<> Builder(Context);
278 Builder.SetInsertPoint(BB, Resume);
279
280 Value *LPadVal =
281 Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
282 Resume->getArgOperand(0), 0, "lpad.val");
283 LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
284 1, "lpad.val");
285 Builder.CreateResume(LPadVal);
286
287 // Remove all instructions after the 'resume.'
288 BasicBlock::iterator I = Resume;
289 while (I != BB->end()) {
290 Instruction *Inst = &*I++;
291 Inst->eraseFromParent();
292 }
293 }
294 }
295
296
StripDebugInfoOfFunction(Module * M,const char * name)297 void StripDebugInfoOfFunction(Module* M, const char* name) {
298 if (Function* FuncStart = M->getFunction(name)) {
299 while (!FuncStart->use_empty()) {
300 cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
301 }
302 FuncStart->eraseFromParent();
303 }
304 }
305
306 /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
307 /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
308 /// strips that use.
CheckDebugInfoIntrinsics(Module * M)309 void CheckDebugInfoIntrinsics(Module *M) {
310 StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
311 StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
312 StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
313 StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
314
315 if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
316 if (!Declare->use_empty()) {
317 DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
318 if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
319 !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
320 while (!Declare->use_empty()) {
321 CallInst *CI = cast<CallInst>(*Declare->use_begin());
322 CI->eraseFromParent();
323 }
324 Declare->eraseFromParent();
325 }
326 }
327 }
328 }
329
330
331 //===----------------------------------------------------------------------===//
332 // BitcodeReaderValueList Class
333 //===----------------------------------------------------------------------===//
334
335 class BitcodeReaderValueList {
336 std::vector<WeakVH> ValuePtrs;
337
338 /// ResolveConstants - As we resolve forward-referenced constants, we add
339 /// information about them to this vector. This allows us to resolve them in
340 /// bulk instead of resolving each reference at a time. See the code in
341 /// ResolveConstantForwardRefs for more information about this.
342 ///
343 /// The key of this vector is the placeholder constant, the value is the slot
344 /// number that holds the resolved value.
345 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
346 ResolveConstantsTy ResolveConstants;
347 LLVMContext &Context;
348 public:
BitcodeReaderValueList(LLVMContext & C)349 BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()350 ~BitcodeReaderValueList() {
351 assert(ResolveConstants.empty() && "Constants not resolved?");
352 }
353
354 // vector compatibility methods
size() const355 unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)356 void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)357 void push_back(Value *V) {
358 ValuePtrs.push_back(V);
359 }
360
clear()361 void clear() {
362 assert(ResolveConstants.empty() && "Constants not resolved?");
363 ValuePtrs.clear();
364 }
365
operator [](unsigned i) const366 Value *operator[](unsigned i) const {
367 assert(i < ValuePtrs.size());
368 return ValuePtrs[i];
369 }
370
back() const371 Value *back() const { return ValuePtrs.back(); }
pop_back()372 void pop_back() { ValuePtrs.pop_back(); }
empty() const373 bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)374 void shrinkTo(unsigned N) {
375 assert(N <= size() && "Invalid shrinkTo request!");
376 ValuePtrs.resize(N);
377 }
378
379 Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
380 Value *getValueFwdRef(unsigned Idx, Type *Ty);
381
382 void AssignValue(Value *V, unsigned Idx);
383
384 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
385 /// resolves any forward references.
386 void ResolveConstantForwardRefs();
387 };
388
389
390 //===----------------------------------------------------------------------===//
391 // BitcodeReaderMDValueList Class
392 //===----------------------------------------------------------------------===//
393
394 class BitcodeReaderMDValueList {
395 unsigned NumFwdRefs;
396 bool AnyFwdRefs;
397 std::vector<TrackingMDRef> MDValuePtrs;
398
399 LLVMContext &Context;
400 public:
BitcodeReaderMDValueList(LLVMContext & C)401 BitcodeReaderMDValueList(LLVMContext &C)
402 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
403
404 // vector compatibility methods
size() const405 unsigned size() const { return MDValuePtrs.size(); }
resize(unsigned N)406 void resize(unsigned N) { MDValuePtrs.resize(N); }
push_back(Metadata * MD)407 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
clear()408 void clear() { MDValuePtrs.clear(); }
back() const409 Metadata *back() const { return MDValuePtrs.back(); }
pop_back()410 void pop_back() { MDValuePtrs.pop_back(); }
empty() const411 bool empty() const { return MDValuePtrs.empty(); }
412
operator [](unsigned i) const413 Metadata *operator[](unsigned i) const {
414 assert(i < MDValuePtrs.size());
415 return MDValuePtrs[i];
416 }
417
shrinkTo(unsigned N)418 void shrinkTo(unsigned N) {
419 assert(N <= size() && "Invalid shrinkTo request!");
420 MDValuePtrs.resize(N);
421 }
422
423 Metadata *getValueFwdRef(unsigned Idx);
424 void AssignValue(Metadata *MD, unsigned Idx);
425 void tryToResolveCycles();
426 };
427
428 class BitcodeReader : public GVMaterializer {
429 LLVMContext &Context;
430 DiagnosticHandlerFunction DiagnosticHandler;
431 Module *TheModule;
432 std::unique_ptr<MemoryBuffer> Buffer;
433 std::unique_ptr<BitstreamReader> StreamFile;
434 BitstreamCursor Stream;
435 DataStreamer *LazyStreamer;
436 uint64_t NextUnreadBit;
437 bool SeenValueSymbolTable;
438
439 std::vector<Type*> TypeList;
440 BitcodeReaderValueList ValueList;
441 BitcodeReaderMDValueList MDValueList;
442 SmallVector<Instruction *, 64> InstructionList;
443
444 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
445 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
446
447 /// MAttributes - The set of attributes by index. Index zero in the
448 /// file is for null, and is thus not represented here. As such all indices
449 /// are off by one.
450 std::vector<AttributeSet> MAttributes;
451
452 /// \brief The set of attribute groups.
453 std::map<unsigned, AttributeSet> MAttributeGroups;
454
455 /// FunctionBBs - While parsing a function body, this is a list of the basic
456 /// blocks for the function.
457 std::vector<BasicBlock*> FunctionBBs;
458
459 // When reading the module header, this list is populated with functions that
460 // have bodies later in the file.
461 std::vector<Function*> FunctionsWithBodies;
462
463 // When intrinsic functions are encountered which require upgrading they are
464 // stored here with their replacement function.
465 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
466 UpgradedIntrinsicMap UpgradedIntrinsics;
467
468 // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
469 DenseMap<unsigned, unsigned> MDKindMap;
470
471 // Several operations happen after the module header has been read, but
472 // before function bodies are processed. This keeps track of whether
473 // we've done this yet.
474 bool SeenFirstFunctionBody;
475
476 /// DeferredFunctionInfo - When function bodies are initially scanned, this
477 /// map contains info about where to find deferred function body in the
478 /// stream.
479 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
480
481 /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These
482 /// are resolved lazily when functions are loaded.
483 typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
484 DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
485
486 static const std::error_category &BitcodeErrorCategory();
487
488 public:
489 std::error_code Error(BitcodeError E, const Twine &Message);
490 std::error_code Error(BitcodeError E);
491 std::error_code Error(const Twine &Message);
492
493 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
494 DiagnosticHandlerFunction DiagnosticHandler);
~BitcodeReader()495 ~BitcodeReader() { FreeState(); }
496
497 void FreeState();
498
499 void releaseBuffer();
500
501 bool isDematerializable(const GlobalValue *GV) const override;
502 std::error_code materialize(GlobalValue *GV) override;
503 std::error_code MaterializeModule(Module *M) override;
504 std::vector<StructType *> getIdentifiedStructTypes() const override;
505 void Dematerialize(GlobalValue *GV) override;
506
507 /// @brief Main interface to parsing a bitcode buffer.
508 /// @returns true if an error occurred.
509 std::error_code ParseBitcodeInto(Module *M);
510
511 /// @brief Cheap mechanism to just extract module triple
512 /// @returns true if an error occurred.
513 llvm::ErrorOr<std::string> parseTriple();
514
515 static uint64_t decodeSignRotatedValue(uint64_t V);
516
517 /// Materialize any deferred Metadata block.
518 std::error_code materializeMetadata() override;
519
520 void setStripDebugInfo() override;
521
522 private:
523 std::vector<StructType *> IdentifiedStructTypes;
524 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
525 StructType *createIdentifiedStructType(LLVMContext &Context);
526
527 Type *getTypeByID(unsigned ID);
528 Type *getTypeByIDOrNull(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)529 Value *getFnValueByID(unsigned ID, Type *Ty) {
530 if (Ty && Ty->isMetadataTy())
531 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
532 return ValueList.getValueFwdRef(ID, Ty);
533 }
getFnMetadataByID(unsigned ID)534 Metadata *getFnMetadataByID(unsigned ID) {
535 return MDValueList.getValueFwdRef(ID);
536 }
getBasicBlock(unsigned ID) const537 BasicBlock *getBasicBlock(unsigned ID) const {
538 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
539 return FunctionBBs[ID];
540 }
getAttributes(unsigned i) const541 AttributeSet getAttributes(unsigned i) const {
542 if (i-1 < MAttributes.size())
543 return MAttributes[i-1];
544 return AttributeSet();
545 }
546
547 /// getValueTypePair - Read a value/type pair out of the specified record from
548 /// slot 'Slot'. Increment Slot past the number of slots used in the record.
549 /// Return true on failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)550 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
551 unsigned InstNum, Value *&ResVal) {
552 if (Slot == Record.size()) return true;
553 unsigned ValNo = (unsigned)Record[Slot++];
554 if (ValNo < InstNum) {
555 // If this is not a forward reference, just return the value we already
556 // have.
557 ResVal = getFnValueByID(ValNo, nullptr);
558 return ResVal == nullptr;
559 } else if (Slot == Record.size()) {
560 return true;
561 }
562
563 unsigned TypeNo = (unsigned)Record[Slot++];
564 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
565 return ResVal == nullptr;
566 }
getValue(SmallVector<uint64_t,64> & Record,unsigned & Slot,Type * Ty,Value * & ResVal)567 bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
568 Type *Ty, Value *&ResVal) {
569 if (Slot == Record.size()) return true;
570 unsigned ValNo = (unsigned)Record[Slot++];
571 ResVal = getFnValueByID(ValNo, Ty);
572 return ResVal == 0;
573 }
574
575
576 std::error_code ParseModule(bool Resume);
577 std::error_code ParseAttributeBlock();
578 std::error_code ParseTypeTable();
579 std::error_code ParseOldTypeTable(); // FIXME: Remove in LLVM 3.1
580 std::error_code ParseTypeTableBody();
581
582 std::error_code ParseOldTypeSymbolTable(); // FIXME: Remove in LLVM 3.1
583 std::error_code ParseValueSymbolTable();
584 std::error_code ParseConstants();
585 std::error_code RememberAndSkipFunctionBody();
586 std::error_code ParseFunctionBody(Function *F);
587 std::error_code GlobalCleanup();
588 std::error_code ResolveGlobalAndAliasInits();
589 std::error_code ParseMetadata();
590 std::error_code ParseMetadataAttachment();
591 llvm::ErrorOr<std::string> parseModuleTriple();
592 std::error_code InitStream();
593 std::error_code InitStreamFromBuffer();
594 std::error_code InitLazyStream();
595 };
596
597 } // end anonymous namespace
598
Error(DiagnosticHandlerFunction DiagnosticHandler,std::error_code EC,const Twine & Message)599 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
600 std::error_code EC, const Twine &Message) {
601 BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
602 DiagnosticHandler(DI);
603 return EC;
604 }
605
Error(DiagnosticHandlerFunction DiagnosticHandler,std::error_code EC)606 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
607 std::error_code EC) {
608 return Error(DiagnosticHandler, EC, EC.message());
609 }
610
Error(BitcodeError E,const Twine & Message)611 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
612 return ::Error(DiagnosticHandler, make_error_code(E), Message);
613 }
614
Error(const Twine & Message)615 std::error_code BitcodeReader::Error(const Twine &Message) {
616 return ::Error(DiagnosticHandler,
617 make_error_code(BitcodeError::CorruptedBitcode), Message);
618 }
619
Error(BitcodeError E)620 std::error_code BitcodeReader::Error(BitcodeError E) {
621 return ::Error(DiagnosticHandler, make_error_code(E));
622 }
623
getDiagHandler(DiagnosticHandlerFunction F,LLVMContext & C)624 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
625 LLVMContext &C) {
626 if (F)
627 return F;
628 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
629 }
630
BitcodeReader(MemoryBuffer * buffer,LLVMContext & C,DiagnosticHandlerFunction DiagnosticHandler)631 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
632 DiagnosticHandlerFunction DiagnosticHandler)
633 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
634 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
635 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
636 MDValueList(C), SeenFirstFunctionBody(false) {}
637
638
FreeState()639 void BitcodeReader::FreeState() {
640 Buffer = nullptr;
641 std::vector<Type*>().swap(TypeList);
642 ValueList.clear();
643 MDValueList.clear();
644
645 std::vector<AttributeSet>().swap(MAttributes);
646 std::vector<BasicBlock*>().swap(FunctionBBs);
647 std::vector<Function*>().swap(FunctionsWithBodies);
648 DeferredFunctionInfo.clear();
649 MDKindMap.clear();
650 }
651
652 //===----------------------------------------------------------------------===//
653 // Helper functions to implement forward reference resolution, etc.
654 //===----------------------------------------------------------------------===//
655
656 /// ConvertToString - Convert a string from a record into an std::string, return
657 /// true on failure.
658 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)659 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
660 StrTy &Result) {
661 if (Idx > Record.size())
662 return true;
663
664 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
665 Result += (char)Record[i];
666 return false;
667 }
668
getDecodedLinkage(unsigned Val)669 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
670 switch (Val) {
671 default: // Map unknown/new linkages to external
672 case 0:
673 return GlobalValue::ExternalLinkage;
674 case 1:
675 return GlobalValue::WeakAnyLinkage;
676 case 2:
677 return GlobalValue::AppendingLinkage;
678 case 3:
679 return GlobalValue::InternalLinkage;
680 case 4:
681 return GlobalValue::LinkOnceAnyLinkage;
682 case 5:
683 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
684 case 6:
685 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
686 case 7:
687 return GlobalValue::ExternalWeakLinkage;
688 case 8:
689 return GlobalValue::CommonLinkage;
690 case 9:
691 return GlobalValue::PrivateLinkage;
692 case 10:
693 return GlobalValue::WeakODRLinkage;
694 case 11:
695 return GlobalValue::LinkOnceODRLinkage;
696 case 12:
697 return GlobalValue::AvailableExternallyLinkage;
698 case 13:
699 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
700 case 14:
701 return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
702 //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
703 case 15:
704 return GlobalValue::LinkOnceODRLinkage;
705 }
706 }
707
GetDecodedVisibility(unsigned Val)708 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
709 switch (Val) {
710 default: // Map unknown visibilities to default.
711 case 0: return GlobalValue::DefaultVisibility;
712 case 1: return GlobalValue::HiddenVisibility;
713 case 2: return GlobalValue::ProtectedVisibility;
714 }
715 }
716
GetDecodedThreadLocalMode(unsigned Val)717 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
718 switch (Val) {
719 case 0: return GlobalVariable::NotThreadLocal;
720 default: // Map unknown non-zero value to general dynamic.
721 case 1: return GlobalVariable::GeneralDynamicTLSModel;
722 case 2: return GlobalVariable::LocalDynamicTLSModel;
723 case 3: return GlobalVariable::InitialExecTLSModel;
724 case 4: return GlobalVariable::LocalExecTLSModel;
725 }
726 }
727
GetDecodedCastOpcode(unsigned Val)728 static int GetDecodedCastOpcode(unsigned Val) {
729 switch (Val) {
730 default: return -1;
731 case bitc::CAST_TRUNC : return Instruction::Trunc;
732 case bitc::CAST_ZEXT : return Instruction::ZExt;
733 case bitc::CAST_SEXT : return Instruction::SExt;
734 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
735 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
736 case bitc::CAST_UITOFP : return Instruction::UIToFP;
737 case bitc::CAST_SITOFP : return Instruction::SIToFP;
738 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
739 case bitc::CAST_FPEXT : return Instruction::FPExt;
740 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
741 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
742 case bitc::CAST_BITCAST : return Instruction::BitCast;
743 }
744 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)745 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
746 switch (Val) {
747 default: return -1;
748 case bitc::BINOP_ADD:
749 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
750 case bitc::BINOP_SUB:
751 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
752 case bitc::BINOP_MUL:
753 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
754 case bitc::BINOP_UDIV: return Instruction::UDiv;
755 case bitc::BINOP_SDIV:
756 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
757 case bitc::BINOP_UREM: return Instruction::URem;
758 case bitc::BINOP_SREM:
759 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
760 case bitc::BINOP_SHL: return Instruction::Shl;
761 case bitc::BINOP_LSHR: return Instruction::LShr;
762 case bitc::BINOP_ASHR: return Instruction::AShr;
763 case bitc::BINOP_AND: return Instruction::And;
764 case bitc::BINOP_OR: return Instruction::Or;
765 case bitc::BINOP_XOR: return Instruction::Xor;
766 }
767 }
768
GetDecodedRMWOperation(unsigned Val)769 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
770 switch (Val) {
771 default: return AtomicRMWInst::BAD_BINOP;
772 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
773 case bitc::RMW_ADD: return AtomicRMWInst::Add;
774 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
775 case bitc::RMW_AND: return AtomicRMWInst::And;
776 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
777 case bitc::RMW_OR: return AtomicRMWInst::Or;
778 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
779 case bitc::RMW_MAX: return AtomicRMWInst::Max;
780 case bitc::RMW_MIN: return AtomicRMWInst::Min;
781 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
782 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
783 }
784 }
785
GetDecodedOrdering(unsigned Val)786 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
787 switch (Val) {
788 case bitc::ORDERING_NOTATOMIC: return NotAtomic;
789 case bitc::ORDERING_UNORDERED: return Unordered;
790 case bitc::ORDERING_MONOTONIC: return Monotonic;
791 case bitc::ORDERING_ACQUIRE: return Acquire;
792 case bitc::ORDERING_RELEASE: return Release;
793 case bitc::ORDERING_ACQREL: return AcquireRelease;
794 default: // Map unknown orderings to sequentially-consistent.
795 case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
796 }
797 }
798
GetDecodedSynchScope(unsigned Val)799 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
800 switch (Val) {
801 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
802 default: // Map unknown scopes to cross-thread.
803 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
804 }
805 }
806
807 namespace llvm {
808 namespace {
809 /// @brief A class for maintaining the slot number definition
810 /// as a placeholder for the actual definition for forward constants defs.
811 class ConstantPlaceHolder : public ConstantExpr {
812 void operator=(const ConstantPlaceHolder &) = delete;
813 public:
814 // allocate space for exactly one operand
operator new(size_t s)815 void *operator new(size_t s) {
816 return User::operator new(s, 1);
817 }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)818 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
819 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
820 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
821 }
822
823 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)824 static bool classof(const Value *V) {
825 return isa<ConstantExpr>(V) &&
826 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
827 }
828
829
830 /// Provide fast operand accessors
831 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
832 };
833 }
834
835 // FIXME: can we inherit this from ConstantExpr?
836 template <>
837 struct OperandTraits<ConstantPlaceHolder> :
838 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
839 };
840 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
841 }
842
843
AssignValue(Value * V,unsigned Idx)844 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
845 if (Idx == size()) {
846 push_back(V);
847 return;
848 }
849
850 if (Idx >= size())
851 resize(Idx+1);
852
853 WeakVH &OldV = ValuePtrs[Idx];
854 if (!OldV) {
855 OldV = V;
856 return;
857 }
858
859 // Handle constants and non-constants (e.g. instrs) differently for
860 // efficiency.
861 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
862 ResolveConstants.push_back(std::make_pair(PHC, Idx));
863 OldV = V;
864 } else {
865 // If there was a forward reference to this value, replace it.
866 Value *PrevVal = OldV;
867 OldV->replaceAllUsesWith(V);
868 delete PrevVal;
869 }
870 }
871
872
getConstantFwdRef(unsigned Idx,Type * Ty)873 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
874 Type *Ty) {
875 if (Idx >= size())
876 resize(Idx + 1);
877
878 if (Value *V = ValuePtrs[Idx]) {
879 assert(Ty == V->getType() && "Type mismatch in constant table!");
880 return cast<Constant>(V);
881 }
882
883 // Create and return a placeholder, which will later be RAUW'd.
884 Constant *C = new ConstantPlaceHolder(Ty, Context);
885 ValuePtrs[Idx] = C;
886 return C;
887 }
888
getValueFwdRef(unsigned Idx,Type * Ty)889 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
890 if (Idx >= size())
891 resize(Idx + 1);
892
893 if (Value *V = ValuePtrs[Idx]) {
894 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
895 return V;
896 }
897
898 // No type specified, must be invalid reference.
899 if (!Ty) return nullptr;
900
901 // Create and return a placeholder, which will later be RAUW'd.
902 Value *V = new Argument(Ty);
903 ValuePtrs[Idx] = V;
904 return V;
905 }
906
907 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
908 /// resolves any forward references. The idea behind this is that we sometimes
909 /// get constants (such as large arrays) which reference *many* forward ref
910 /// constants. Replacing each of these causes a lot of thrashing when
911 /// building/reuniquing the constant. Instead of doing this, we look at all the
912 /// uses and rewrite all the place holders at once for any constant that uses
913 /// a placeholder.
ResolveConstantForwardRefs()914 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
915 // Sort the values by-pointer so that they are efficient to look up with a
916 // binary search.
917 std::sort(ResolveConstants.begin(), ResolveConstants.end());
918
919 SmallVector<Constant*, 64> NewOps;
920
921 while (!ResolveConstants.empty()) {
922 Value *RealVal = operator[](ResolveConstants.back().second);
923 Constant *Placeholder = ResolveConstants.back().first;
924 ResolveConstants.pop_back();
925
926 // Loop over all users of the placeholder, updating them to reference the
927 // new value. If they reference more than one placeholder, update them all
928 // at once.
929 while (!Placeholder->use_empty()) {
930 auto UI = Placeholder->user_begin();
931 User *U = *UI;
932
933 // If the using object isn't uniqued, just update the operands. This
934 // handles instructions and initializers for global variables.
935 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
936 UI.getUse().set(RealVal);
937 continue;
938 }
939
940 // Otherwise, we have a constant that uses the placeholder. Replace that
941 // constant with a new constant that has *all* placeholder uses updated.
942 Constant *UserC = cast<Constant>(U);
943 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
944 I != E; ++I) {
945 Value *NewOp;
946 if (!isa<ConstantPlaceHolder>(*I)) {
947 // Not a placeholder reference.
948 NewOp = *I;
949 } else if (*I == Placeholder) {
950 // Common case is that it just references this one placeholder.
951 NewOp = RealVal;
952 } else {
953 // Otherwise, look up the placeholder in ResolveConstants.
954 ResolveConstantsTy::iterator It =
955 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
956 std::pair<Constant*, unsigned>(cast<Constant>(*I),
957 0));
958 assert(It != ResolveConstants.end() && It->first == *I);
959 NewOp = operator[](It->second);
960 }
961
962 NewOps.push_back(cast<Constant>(NewOp));
963 }
964
965 // Make the new constant.
966 Constant *NewC;
967 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
968 NewC = ConstantArray::get(UserCA->getType(), NewOps);
969 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
970 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
971 } else if (isa<ConstantVector>(UserC)) {
972 NewC = ConstantVector::get(NewOps);
973 } else {
974 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
975 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
976 }
977
978 UserC->replaceAllUsesWith(NewC);
979 UserC->destroyConstant();
980 NewOps.clear();
981 }
982
983 // Update all ValueHandles, they should be the only users at this point.
984 Placeholder->replaceAllUsesWith(RealVal);
985 delete Placeholder;
986 }
987 }
988
AssignValue(Metadata * MD,unsigned Idx)989 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
990 if (Idx == size()) {
991 push_back(MD);
992 return;
993 }
994
995 if (Idx >= size())
996 resize(Idx+1);
997
998 TrackingMDRef &OldMD = MDValuePtrs[Idx];
999 if (!OldMD) {
1000 OldMD.reset(MD);
1001 return;
1002 }
1003
1004 // If there was a forward reference to this value, replace it.
1005 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1006 PrevMD->replaceAllUsesWith(MD);
1007 --NumFwdRefs;
1008 }
1009
getValueFwdRef(unsigned Idx)1010 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1011 if (Idx >= size())
1012 resize(Idx + 1);
1013
1014 if (Metadata *MD = MDValuePtrs[Idx])
1015 return MD;
1016
1017 // Create and return a placeholder, which will later be RAUW'd.
1018 AnyFwdRefs = true;
1019 ++NumFwdRefs;
1020 Metadata *MD = MDNode::getTemporary(Context, None).release();
1021 MDValuePtrs[Idx].reset(MD);
1022 return MD;
1023 }
1024
tryToResolveCycles()1025 void BitcodeReaderMDValueList::tryToResolveCycles() {
1026 if (!AnyFwdRefs)
1027 // Nothing to do.
1028 return;
1029
1030 if (NumFwdRefs)
1031 // Still forward references... can't resolve cycles.
1032 return;
1033
1034 // Resolve any cycles.
1035 for (auto &MD : MDValuePtrs) {
1036 auto *N = dyn_cast_or_null<MDNode>(MD);
1037 if (!N)
1038 continue;
1039
1040 assert(!N->isTemporary() && "Unexpected forward reference");
1041 N->resolveCycles();
1042 }
1043 }
1044
getTypeByID(unsigned ID)1045 Type *BitcodeReader::getTypeByID(unsigned ID) {
1046 // The type table size is always specified correctly.
1047 if (ID >= TypeList.size())
1048 return nullptr;
1049
1050 if (Type *Ty = TypeList[ID])
1051 return Ty;
1052
1053 // If we have a forward reference, the only possible case is when it is to a
1054 // named struct. Just create a placeholder for now.
1055 return TypeList[ID] = createIdentifiedStructType(Context);
1056 }
1057
createIdentifiedStructType(LLVMContext & Context,StringRef Name)1058 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1059 StringRef Name) {
1060 auto *Ret = StructType::create(Context, Name);
1061 IdentifiedStructTypes.push_back(Ret);
1062 return Ret;
1063 }
1064
createIdentifiedStructType(LLVMContext & Context)1065 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1066 auto *Ret = StructType::create(Context);
1067 IdentifiedStructTypes.push_back(Ret);
1068 return Ret;
1069 }
1070
1071
1072 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)1073 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
1074 if (ID >= TypeList.size())
1075 TypeList.resize(ID+1);
1076
1077 return TypeList[ID];
1078 }
1079
1080 //===----------------------------------------------------------------------===//
1081 // Functions for parsing blocks from the bitcode file
1082 //===----------------------------------------------------------------------===//
1083
1084
1085 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1086 /// been decoded from the given integer. This function must stay in sync with
1087 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)1088 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1089 uint64_t EncodedAttrs) {
1090 // FIXME: Remove in 4.0.
1091
1092 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1093 // the bits above 31 down by 11 bits.
1094 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1095 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1096 "Alignment must be a power of two.");
1097
1098 if (Alignment)
1099 B.addAlignmentAttr(Alignment);
1100 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1101 (EncodedAttrs & 0xffff));
1102 }
1103
ParseAttributeBlock()1104 std::error_code BitcodeReader::ParseAttributeBlock() {
1105 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1106 return Error("Invalid record");
1107
1108 if (!MAttributes.empty())
1109 return Error("Invalid multiple blocks");
1110
1111 SmallVector<uint64_t, 64> Record;
1112
1113 SmallVector<AttributeSet, 8> Attrs;
1114
1115 // Read all the records.
1116 while (1) {
1117 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1118
1119 switch (Entry.Kind) {
1120 case BitstreamEntry::SubBlock: // Handled for us already.
1121 case BitstreamEntry::Error:
1122 return Error("Malformed block");
1123 case BitstreamEntry::EndBlock:
1124 return std::error_code();
1125 case BitstreamEntry::Record:
1126 // The interesting case.
1127 break;
1128 }
1129
1130 // Read a record.
1131 Record.clear();
1132 switch (Stream.readRecord(Entry.ID, Record)) {
1133 default: // Default behavior: ignore.
1134 break;
1135 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1136 // FIXME: Remove in 4.0.
1137 if (Record.size() & 1)
1138 return Error("Invalid record");
1139
1140 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1141 AttrBuilder B;
1142 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1143 Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1144 }
1145
1146 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1147 Attrs.clear();
1148 break;
1149 }
1150 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1151 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1152 Attrs.push_back(MAttributeGroups[Record[i]]);
1153
1154 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1155 Attrs.clear();
1156 break;
1157 }
1158 }
1159 }
1160 }
1161
1162
ParseTypeTable()1163 std::error_code BitcodeReader::ParseTypeTable() {
1164 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1165 return Error("Invalid record");
1166
1167 return ParseTypeTableBody();
1168 }
1169
ParseTypeTableBody()1170 std::error_code BitcodeReader::ParseTypeTableBody() {
1171 if (!TypeList.empty())
1172 return Error("Invalid multiple blocks");
1173
1174 SmallVector<uint64_t, 64> Record;
1175 unsigned NumRecords = 0;
1176
1177 SmallString<64> TypeName;
1178
1179 // Read all the records for this type table.
1180 while (1) {
1181 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1182
1183 switch (Entry.Kind) {
1184 case BitstreamEntry::SubBlock: // Handled for us already.
1185 case BitstreamEntry::Error:
1186 return Error("Malformed block");
1187 case BitstreamEntry::EndBlock:
1188 if (NumRecords != TypeList.size())
1189 return Error("Malformed block");
1190 return std::error_code();
1191 case BitstreamEntry::Record:
1192 // The interesting case.
1193 break;
1194 }
1195
1196 // Read a record.
1197 Record.clear();
1198 Type *ResultTy = nullptr;
1199 switch (Stream.readRecord(Entry.ID, Record)) {
1200 default:
1201 return Error("Invalid value");
1202 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1203 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1204 // type list. This allows us to reserve space.
1205 if (Record.size() < 1)
1206 return Error("Invalid record");
1207 TypeList.resize(Record[0]);
1208 continue;
1209 case bitc::TYPE_CODE_VOID: // VOID
1210 ResultTy = Type::getVoidTy(Context);
1211 break;
1212 case bitc::TYPE_CODE_HALF: // HALF
1213 ResultTy = Type::getHalfTy(Context);
1214 break;
1215 case bitc::TYPE_CODE_FLOAT: // FLOAT
1216 ResultTy = Type::getFloatTy(Context);
1217 break;
1218 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1219 ResultTy = Type::getDoubleTy(Context);
1220 break;
1221 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1222 ResultTy = Type::getX86_FP80Ty(Context);
1223 break;
1224 case bitc::TYPE_CODE_FP128: // FP128
1225 ResultTy = Type::getFP128Ty(Context);
1226 break;
1227 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1228 ResultTy = Type::getPPC_FP128Ty(Context);
1229 break;
1230 case bitc::TYPE_CODE_LABEL: // LABEL
1231 ResultTy = Type::getLabelTy(Context);
1232 break;
1233 case bitc::TYPE_CODE_METADATA: // METADATA
1234 ResultTy = Type::getMetadataTy(Context);
1235 break;
1236 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1237 ResultTy = Type::getX86_MMXTy(Context);
1238 break;
1239 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
1240 if (Record.size() < 1)
1241 return Error("Invalid record");
1242
1243 ResultTy = IntegerType::get(Context, Record[0]);
1244 break;
1245 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1246 // [pointee type, address space]
1247 if (Record.size() < 1)
1248 return Error("Invalid record");
1249 unsigned AddressSpace = 0;
1250 if (Record.size() == 2)
1251 AddressSpace = Record[1];
1252 ResultTy = getTypeByID(Record[0]);
1253 if (!ResultTy)
1254 return Error("Invalid type");
1255 ResultTy = PointerType::get(ResultTy, AddressSpace);
1256 break;
1257 }
1258 case bitc::TYPE_CODE_FUNCTION_OLD: {
1259 // FIXME: attrid is dead, remove it in LLVM 4.0
1260 // FUNCTION: [vararg, attrid, retty, paramty x N]
1261 if (Record.size() < 3)
1262 return Error("Invalid record");
1263 SmallVector<Type*, 8> ArgTys;
1264 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1265 if (Type *T = getTypeByID(Record[i]))
1266 ArgTys.push_back(T);
1267 else
1268 break;
1269 }
1270
1271 ResultTy = getTypeByID(Record[2]);
1272 if (!ResultTy || ArgTys.size() < Record.size()-3)
1273 return Error("Invalid type");
1274
1275 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1276 break;
1277 }
1278 case bitc::TYPE_CODE_FUNCTION: {
1279 // FUNCTION: [vararg, retty, paramty x N]
1280 if (Record.size() < 2)
1281 return Error("Invalid record");
1282 SmallVector<Type*, 8> ArgTys;
1283 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1284 if (Type *T = getTypeByID(Record[i]))
1285 ArgTys.push_back(T);
1286 else
1287 break;
1288 }
1289
1290 ResultTy = getTypeByID(Record[1]);
1291 if (!ResultTy || ArgTys.size() < Record.size()-2)
1292 return Error("Invalid type");
1293
1294 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1295 break;
1296 }
1297 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1298 if (Record.size() < 1)
1299 return Error("Invalid record");
1300 SmallVector<Type*, 8> EltTys;
1301 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1302 if (Type *T = getTypeByID(Record[i]))
1303 EltTys.push_back(T);
1304 else
1305 break;
1306 }
1307 if (EltTys.size() != Record.size()-1)
1308 return Error("Invalid type");
1309 ResultTy = StructType::get(Context, EltTys, Record[0]);
1310 break;
1311 }
1312 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1313 if (ConvertToString(Record, 0, TypeName))
1314 return Error("Invalid record");
1315 continue;
1316
1317 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1318 if (Record.size() < 1)
1319 return Error("Invalid record");
1320
1321 if (NumRecords >= TypeList.size())
1322 return Error("Invalid TYPE table");
1323
1324 // Check to see if this was forward referenced, if so fill in the temp.
1325 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1326 if (Res) {
1327 Res->setName(TypeName);
1328 TypeList[NumRecords] = nullptr;
1329 } else // Otherwise, create a new struct.
1330 Res = createIdentifiedStructType(Context, TypeName);
1331 TypeName.clear();
1332
1333 SmallVector<Type*, 8> EltTys;
1334 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1335 if (Type *T = getTypeByID(Record[i]))
1336 EltTys.push_back(T);
1337 else
1338 break;
1339 }
1340 if (EltTys.size() != Record.size()-1)
1341 return Error("Invalid record");
1342 Res->setBody(EltTys, Record[0]);
1343 ResultTy = Res;
1344 break;
1345 }
1346 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1347 if (Record.size() != 1)
1348 return Error("Invalid record");
1349
1350 if (NumRecords >= TypeList.size())
1351 return Error("Invalid TYPE table");
1352
1353 // Check to see if this was forward referenced, if so fill in the temp.
1354 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1355 if (Res) {
1356 Res->setName(TypeName);
1357 TypeList[NumRecords] = nullptr;
1358 } else // Otherwise, create a new struct with no body.
1359 Res = createIdentifiedStructType(Context, TypeName);
1360 TypeName.clear();
1361 ResultTy = Res;
1362 break;
1363 }
1364 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1365 if (Record.size() < 2)
1366 return Error("Invalid record");
1367 if ((ResultTy = getTypeByID(Record[1])))
1368 ResultTy = ArrayType::get(ResultTy, Record[0]);
1369 else
1370 return Error("Invalid type");
1371 break;
1372 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1373 if (Record.size() < 2)
1374 return Error("Invalid record");
1375 if ((ResultTy = getTypeByID(Record[1])))
1376 ResultTy = VectorType::get(ResultTy, Record[0]);
1377 else
1378 return Error("Invalid type");
1379 break;
1380 }
1381
1382 if (NumRecords >= TypeList.size())
1383 return Error("Invalid TYPE table");
1384 assert(ResultTy && "Didn't read a type?");
1385 assert(!TypeList[NumRecords] && "Already read type?");
1386 TypeList[NumRecords++] = ResultTy;
1387 }
1388 }
1389
1390 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()1391 std::error_code BitcodeReader::ParseOldTypeTable() {
1392 if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1393 return Error("Malformed block");
1394
1395 if (!TypeList.empty())
1396 return Error("Invalid TYPE table");
1397
1398
1399 // While horrible, we have no good ordering of types in the bc file. Just
1400 // iteratively parse types out of the bc file in multiple passes until we get
1401 // them all. Do this by saving a cursor for the start of the type block.
1402 BitstreamCursor StartOfTypeBlockCursor(Stream);
1403
1404 unsigned NumTypesRead = 0;
1405
1406 SmallVector<uint64_t, 64> Record;
1407 RestartScan:
1408 unsigned NextTypeID = 0;
1409 bool ReadAnyTypes = false;
1410
1411 // Read all the records for this type table.
1412 while (1) {
1413 unsigned Code = Stream.ReadCode();
1414 if (Code == bitc::END_BLOCK) {
1415 if (NextTypeID != TypeList.size())
1416 return Error("Invalid TYPE table");
1417
1418 // If we haven't read all of the types yet, iterate again.
1419 if (NumTypesRead != TypeList.size()) {
1420 // If we didn't successfully read any types in this pass, then we must
1421 // have an unhandled forward reference.
1422 if (!ReadAnyTypes)
1423 return Error("Invalid TYPE table");
1424
1425 Stream = StartOfTypeBlockCursor;
1426 goto RestartScan;
1427 }
1428
1429 if (Stream.ReadBlockEnd())
1430 return Error("Invalid TYPE table");
1431 return std::error_code();
1432 }
1433
1434 if (Code == bitc::ENTER_SUBBLOCK) {
1435 // No known subblocks, always skip them.
1436 Stream.ReadSubBlockID();
1437 if (Stream.SkipBlock())
1438 return Error("Malformed block");
1439 continue;
1440 }
1441
1442 if (Code == bitc::DEFINE_ABBREV) {
1443 Stream.ReadAbbrevRecord();
1444 continue;
1445 }
1446
1447 // Read a record.
1448 Record.clear();
1449 Type *ResultTy = nullptr;
1450 switch (Stream.readRecord(Code, Record)) {
1451 default: return Error("Invalid TYPE table");
1452 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1453 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1454 // type list. This allows us to reserve space.
1455 if (Record.size() < 1)
1456 return Error("Invalid TYPE table");
1457 TypeList.resize(Record[0]);
1458 continue;
1459 case bitc::TYPE_CODE_VOID: // VOID
1460 ResultTy = Type::getVoidTy(Context);
1461 break;
1462 case bitc::TYPE_CODE_FLOAT: // FLOAT
1463 ResultTy = Type::getFloatTy(Context);
1464 break;
1465 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1466 ResultTy = Type::getDoubleTy(Context);
1467 break;
1468 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1469 ResultTy = Type::getX86_FP80Ty(Context);
1470 break;
1471 case bitc::TYPE_CODE_FP128: // FP128
1472 ResultTy = Type::getFP128Ty(Context);
1473 break;
1474 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1475 ResultTy = Type::getPPC_FP128Ty(Context);
1476 break;
1477 case bitc::TYPE_CODE_LABEL: // LABEL
1478 ResultTy = Type::getLabelTy(Context);
1479 break;
1480 case bitc::TYPE_CODE_METADATA: // METADATA
1481 ResultTy = Type::getMetadataTy(Context);
1482 break;
1483 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1484 ResultTy = Type::getX86_MMXTy(Context);
1485 break;
1486 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
1487 if (Record.size() < 1)
1488 return Error("Invalid TYPE table");
1489 ResultTy = IntegerType::get(Context, Record[0]);
1490 break;
1491 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
1492 if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1493 ResultTy = StructType::create(Context, "");
1494 break;
1495 case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1496 if (NextTypeID >= TypeList.size()) break;
1497 // If we already read it, don't reprocess.
1498 if (TypeList[NextTypeID] &&
1499 !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1500 break;
1501
1502 // Set a type.
1503 if (TypeList[NextTypeID] == 0)
1504 TypeList[NextTypeID] = StructType::create(Context, "");
1505
1506 std::vector<Type*> EltTys;
1507 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1508 if (Type *Elt = getTypeByIDOrNull(Record[i]))
1509 EltTys.push_back(Elt);
1510 else
1511 break;
1512 }
1513
1514 if (EltTys.size() != Record.size()-1)
1515 break; // Not all elements are ready.
1516
1517 cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1518 ResultTy = TypeList[NextTypeID];
1519 TypeList[NextTypeID] = 0;
1520 break;
1521 }
1522 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1523 // [pointee type, address space]
1524 if (Record.size() < 1)
1525 return Error("Invalid TYPE table");
1526 unsigned AddressSpace = 0;
1527 if (Record.size() == 2)
1528 AddressSpace = Record[1];
1529 if ((ResultTy = getTypeByIDOrNull(Record[0])))
1530 ResultTy = PointerType::get(ResultTy, AddressSpace);
1531 break;
1532 }
1533 case bitc::TYPE_CODE_FUNCTION_OLD: {
1534 // FIXME: attrid is dead, remove it in LLVM 3.0
1535 // FUNCTION: [vararg, attrid, retty, paramty x N]
1536 if (Record.size() < 3)
1537 return Error("Invalid TYPE table");
1538 std::vector<Type*> ArgTys;
1539 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1540 if (Type *Elt = getTypeByIDOrNull(Record[i]))
1541 ArgTys.push_back(Elt);
1542 else
1543 break;
1544 }
1545 if (ArgTys.size()+3 != Record.size())
1546 break; // Something was null.
1547 if ((ResultTy = getTypeByIDOrNull(Record[2])))
1548 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1549 break;
1550 }
1551 case bitc::TYPE_CODE_FUNCTION: {
1552 // FUNCTION: [vararg, retty, paramty x N]
1553 if (Record.size() < 2)
1554 return Error("Invalid TYPE table");
1555 std::vector<Type*> ArgTys;
1556 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1557 if (Type *Elt = getTypeByIDOrNull(Record[i]))
1558 ArgTys.push_back(Elt);
1559 else
1560 break;
1561 }
1562 if (ArgTys.size()+2 != Record.size())
1563 break; // Something was null.
1564 if ((ResultTy = getTypeByIDOrNull(Record[1])))
1565 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1566 break;
1567 }
1568 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1569 if (Record.size() < 2)
1570 return Error("Invalid TYPE table");
1571 if ((ResultTy = getTypeByIDOrNull(Record[1])))
1572 ResultTy = ArrayType::get(ResultTy, Record[0]);
1573 break;
1574 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1575 if (Record.size() < 2)
1576 return Error("Invalid TYPE table");
1577 if ((ResultTy = getTypeByIDOrNull(Record[1])))
1578 ResultTy = VectorType::get(ResultTy, Record[0]);
1579 break;
1580 }
1581
1582 if (NextTypeID >= TypeList.size())
1583 return Error("Invalid TYPE table");
1584
1585 if (ResultTy && TypeList[NextTypeID] == 0) {
1586 ++NumTypesRead;
1587 ReadAnyTypes = true;
1588
1589 TypeList[NextTypeID] = ResultTy;
1590 }
1591
1592 ++NextTypeID;
1593 }
1594 }
1595
1596
ParseOldTypeSymbolTable()1597 std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1598 if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1599 return Error("Malformed block");
1600
1601 SmallVector<uint64_t, 64> Record;
1602
1603 // Read all the records for this type table.
1604 std::string TypeName;
1605 while (1) {
1606 unsigned Code = Stream.ReadCode();
1607 if (Code == bitc::END_BLOCK) {
1608 if (Stream.ReadBlockEnd())
1609 return Error("Malformed block");
1610 return std::error_code();
1611 }
1612
1613 if (Code == bitc::ENTER_SUBBLOCK) {
1614 // No known subblocks, always skip them.
1615 Stream.ReadSubBlockID();
1616 if (Stream.SkipBlock())
1617 return Error("Malformed block");
1618 continue;
1619 }
1620
1621 if (Code == bitc::DEFINE_ABBREV) {
1622 Stream.ReadAbbrevRecord();
1623 continue;
1624 }
1625
1626 // Read a record.
1627 Record.clear();
1628 switch (Stream.readRecord(Code, Record)) {
1629 default: // Default behavior: unknown type.
1630 break;
1631 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
1632 if (ConvertToString(Record, 1, TypeName))
1633 return Error("Invalid record");
1634 unsigned TypeID = Record[0];
1635 if (TypeID >= TypeList.size())
1636 return Error("Invalid record");
1637
1638 // Only apply the type name to a struct type with no name.
1639 if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1640 if (!STy->isLiteral() && !STy->hasName())
1641 STy->setName(TypeName);
1642 TypeName.clear();
1643 break;
1644 }
1645 }
1646 }
1647
ParseValueSymbolTable()1648 std::error_code BitcodeReader::ParseValueSymbolTable() {
1649 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1650 return Error("Invalid record");
1651
1652 SmallVector<uint64_t, 64> Record;
1653
1654 // Read all the records for this value table.
1655 SmallString<128> ValueName;
1656 while (1) {
1657 unsigned Code = Stream.ReadCode();
1658 if (Code == bitc::END_BLOCK) {
1659 if (Stream.ReadBlockEnd())
1660 return Error("Malformed block");
1661 return std::error_code();
1662 }
1663 if (Code == bitc::ENTER_SUBBLOCK) {
1664 // No known subblocks, always skip them.
1665 Stream.ReadSubBlockID();
1666 if (Stream.SkipBlock())
1667 return Error("Malformed block");
1668 continue;
1669 }
1670
1671 if (Code == bitc::DEFINE_ABBREV) {
1672 Stream.ReadAbbrevRecord();
1673 continue;
1674 }
1675
1676 // Read a record.
1677 Record.clear();
1678 switch (Stream.readRecord(Code, Record)) {
1679 default: // Default behavior: unknown type.
1680 break;
1681 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
1682 if (ConvertToString(Record, 1, ValueName))
1683 return Error("Invalid record");
1684 unsigned ValueID = Record[0];
1685 if (ValueID >= ValueList.size())
1686 return Error("Invalid record");
1687 Value *V = ValueList[ValueID];
1688
1689 V->setName(StringRef(ValueName.data(), ValueName.size()));
1690 ValueName.clear();
1691 break;
1692 }
1693 case bitc::VST_CODE_BBENTRY: {
1694 if (ConvertToString(Record, 1, ValueName))
1695 return Error("Invalid record");
1696 BasicBlock *BB = getBasicBlock(Record[0]);
1697 if (!BB)
1698 return Error("Invalid record");
1699
1700 BB->setName(StringRef(ValueName.data(), ValueName.size()));
1701 ValueName.clear();
1702 break;
1703 }
1704 }
1705 }
1706 }
1707
ParseMetadata()1708 std::error_code BitcodeReader::ParseMetadata() {
1709 unsigned NextMDValueNo = MDValueList.size();
1710
1711 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1712 return Error("Invalid record");
1713
1714 SmallVector<uint64_t, 64> Record;
1715
1716 // Read all the records.
1717 while (1) {
1718 unsigned Code = Stream.ReadCode();
1719 if (Code == bitc::END_BLOCK) {
1720 if (Stream.ReadBlockEnd())
1721 return Error("Malformed block");
1722 return std::error_code();
1723 }
1724
1725 if (Code == bitc::ENTER_SUBBLOCK) {
1726 // No known subblocks, always skip them.
1727 Stream.ReadSubBlockID();
1728 if (Stream.SkipBlock())
1729 return Error("Malformed block");
1730 continue;
1731 }
1732
1733 if (Code == bitc::DEFINE_ABBREV) {
1734 Stream.ReadAbbrevRecord();
1735 continue;
1736 }
1737
1738 bool IsFunctionLocal = false;
1739 // Read a record.
1740 Record.clear();
1741 Code = Stream.readRecord(Code, Record);
1742 switch (Code) {
1743 default: // Default behavior: ignore.
1744 break;
1745 case bitc::METADATA_NAME: {
1746 // Read name of the named metadata.
1747 SmallString<8> Name(Record.begin(), Record.end());
1748 Record.clear();
1749 Code = Stream.ReadCode();
1750
1751 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1752 unsigned NextBitCode = Stream.readRecord(Code, Record);
1753 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1754
1755 // Read named metadata elements.
1756 unsigned Size = Record.size();
1757 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1758 for (unsigned i = 0; i != Size; ++i) {
1759 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1760 if (!MD)
1761 return Error("Invalid record");
1762 NMD->addOperand(MD);
1763 }
1764 break;
1765 }
1766 case bitc::METADATA_OLD_FN_NODE:
1767 IsFunctionLocal = true;
1768 // fall-through
1769 case bitc::METADATA_OLD_NODE: {
1770 if (Record.size() % 2 == 1)
1771 return Error("Invalid record");
1772
1773 unsigned Size = Record.size();
1774 SmallVector<Metadata *, 8> Elts;
1775 for (unsigned i = 0; i != Size; i += 2) {
1776 Type *Ty = getTypeByID(Record[i]);
1777 if (!Ty)
1778 return Error("Invalid record");
1779 if (Ty->isMetadataTy())
1780 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1781 else if (!Ty->isVoidTy()) {
1782 auto *MD =
1783 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1784 assert(isa<ConstantAsMetadata>(MD) &&
1785 "Expected non-function-local metadata");
1786 Elts.push_back(MD);
1787 } else
1788 Elts.push_back(nullptr);
1789 }
1790 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1791 break;
1792 }
1793 case bitc::METADATA_STRING: {
1794 std::string String(Record.begin(), Record.end());
1795 llvm::UpgradeMDStringConstant(String);
1796 Metadata *MD = MDString::get(Context, String);
1797 MDValueList.AssignValue(MD, NextMDValueNo++);
1798 break;
1799 }
1800 case bitc::METADATA_KIND: {
1801 if (Record.size() < 2)
1802 return Error("Invalid record");
1803
1804 unsigned Kind = Record[0];
1805 SmallString<8> Name(Record.begin()+1, Record.end());
1806
1807 unsigned NewKind = TheModule->getMDKindID(Name.str());
1808 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1809 return Error("Conflicting METADATA_KIND records");
1810 break;
1811 }
1812 }
1813 }
1814 }
1815
1816 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1817 /// the LSB for dense VBR encoding.
decodeSignRotatedValue(uint64_t V)1818 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1819 if ((V & 1) == 0)
1820 return V >> 1;
1821 if (V != 1)
1822 return -(V >> 1);
1823 // There is no such thing as -0 with integers. "-0" really means MININT.
1824 return 1ULL << 63;
1825 }
1826
1827 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1828 // GlobalObject.
1829 static GlobalObject &
getGlobalObjectInExpr(const DenseMap<GlobalAlias *,Constant * > & Map,Constant & C)1830 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1831 Constant &C) {
1832 auto *GO = dyn_cast<GlobalObject>(&C);
1833 if (GO)
1834 return *GO;
1835
1836 auto *GA = dyn_cast<GlobalAlias>(&C);
1837 if (GA)
1838 return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1839
1840 auto &CE = cast<ConstantExpr>(C);
1841 assert(CE.getOpcode() == Instruction::BitCast ||
1842 CE.getOpcode() == Instruction::GetElementPtr ||
1843 CE.getOpcode() == Instruction::AddrSpaceCast);
1844 if (CE.getOpcode() == Instruction::GetElementPtr)
1845 assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1846 return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1847 }
1848
1849 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1850 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1851 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1852 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1853 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1854
1855 GlobalInitWorklist.swap(GlobalInits);
1856 AliasInitWorklist.swap(AliasInits);
1857
1858 while (!GlobalInitWorklist.empty()) {
1859 unsigned ValID = GlobalInitWorklist.back().second;
1860 if (ValID >= ValueList.size()) {
1861 // Not ready to resolve this yet, it requires something later in the file.
1862 GlobalInits.push_back(GlobalInitWorklist.back());
1863 } else {
1864 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1865 GlobalInitWorklist.back().first->setInitializer(C);
1866 else
1867 return Error("Expected a constant");
1868 }
1869 GlobalInitWorklist.pop_back();
1870 }
1871
1872 // FIXME: Delete this in LLVM 4.0
1873 // Older versions of llvm could write an alias pointing to another. We cannot
1874 // construct those aliases, so we first collect an alias to aliasee expression
1875 // and then compute the actual aliasee.
1876 DenseMap<GlobalAlias *, Constant *> AliasInit;
1877
1878 while (!AliasInitWorklist.empty()) {
1879 unsigned ValID = AliasInitWorklist.back().second;
1880 if (ValID >= ValueList.size()) {
1881 AliasInits.push_back(AliasInitWorklist.back());
1882 } else {
1883 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1884 AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1885 else
1886 return Error("Expected a constant");
1887 }
1888 AliasInitWorklist.pop_back();
1889 }
1890
1891 for (auto &Pair : AliasInit) {
1892 auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1893 Pair.first->setAliasee(&GO);
1894 }
1895
1896 return std::error_code();
1897 }
1898
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)1899 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1900 SmallVector<uint64_t, 8> Words(Vals.size());
1901 std::transform(Vals.begin(), Vals.end(), Words.begin(),
1902 BitcodeReader::decodeSignRotatedValue);
1903
1904 return APInt(TypeBits, Words);
1905 }
1906
ParseConstants()1907 std::error_code BitcodeReader::ParseConstants() {
1908 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1909 return Error("Invalid record");
1910
1911 SmallVector<uint64_t, 64> Record;
1912
1913 // Read all the records for this value table.
1914 Type *CurTy = Type::getInt32Ty(Context);
1915 unsigned NextCstNo = ValueList.size();
1916 while (1) {
1917 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1918
1919 switch (Entry.Kind) {
1920 case BitstreamEntry::SubBlock: // Handled for us already.
1921 case BitstreamEntry::Error:
1922 return Error("Malformed block");
1923 case BitstreamEntry::EndBlock:
1924 if (NextCstNo != ValueList.size())
1925 return Error("Invalid constant reference");
1926
1927 // Once all the constants have been read, go through and resolve forward
1928 // references.
1929 ValueList.ResolveConstantForwardRefs();
1930 return std::error_code();
1931 case BitstreamEntry::Record:
1932 // The interesting case.
1933 break;
1934 }
1935
1936 // Read a record.
1937 Record.clear();
1938 Value *V = nullptr;
1939 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1940 switch (BitCode) {
1941 default: // Default behavior: unknown constant
1942 case bitc::CST_CODE_UNDEF: // UNDEF
1943 V = UndefValue::get(CurTy);
1944 break;
1945 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
1946 if (Record.empty())
1947 return Error("Invalid record");
1948 if (Record[0] >= TypeList.size())
1949 return Error("Invalid record");
1950 CurTy = TypeList[Record[0]];
1951 continue; // Skip the ValueList manipulation.
1952 case bitc::CST_CODE_NULL: // NULL
1953 V = Constant::getNullValue(CurTy);
1954 break;
1955 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
1956 if (!CurTy->isIntegerTy() || Record.empty())
1957 return Error("Invalid record");
1958 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1959 break;
1960 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1961 if (!CurTy->isIntegerTy() || Record.empty())
1962 return Error("Invalid record");
1963
1964 APInt VInt = ReadWideAPInt(Record,
1965 cast<IntegerType>(CurTy)->getBitWidth());
1966 V = ConstantInt::get(Context, VInt);
1967
1968 break;
1969 }
1970 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
1971 if (Record.empty())
1972 return Error("Invalid record");
1973 if (CurTy->isHalfTy())
1974 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1975 APInt(16, (uint16_t)Record[0])));
1976 else if (CurTy->isFloatTy())
1977 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1978 APInt(32, (uint32_t)Record[0])));
1979 else if (CurTy->isDoubleTy())
1980 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1981 APInt(64, Record[0])));
1982 else if (CurTy->isX86_FP80Ty()) {
1983 // Bits are not stored the same way as a normal i80 APInt, compensate.
1984 uint64_t Rearrange[2];
1985 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1986 Rearrange[1] = Record[0] >> 48;
1987 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1988 APInt(80, Rearrange)));
1989 } else if (CurTy->isFP128Ty())
1990 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1991 APInt(128, Record)));
1992 else if (CurTy->isPPC_FP128Ty())
1993 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1994 APInt(128, Record)));
1995 else
1996 V = UndefValue::get(CurTy);
1997 break;
1998 }
1999
2000 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2001 if (Record.empty())
2002 return Error("Invalid record");
2003
2004 unsigned Size = Record.size();
2005 SmallVector<Constant*, 16> Elts;
2006
2007 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2008 for (unsigned i = 0; i != Size; ++i)
2009 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2010 STy->getElementType(i)));
2011 V = ConstantStruct::get(STy, Elts);
2012 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2013 Type *EltTy = ATy->getElementType();
2014 for (unsigned i = 0; i != Size; ++i)
2015 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2016 V = ConstantArray::get(ATy, Elts);
2017 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2018 Type *EltTy = VTy->getElementType();
2019 for (unsigned i = 0; i != Size; ++i)
2020 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2021 V = ConstantVector::get(Elts);
2022 } else {
2023 V = UndefValue::get(CurTy);
2024 }
2025 break;
2026 }
2027 case bitc::CST_CODE_STRING: { // STRING: [values]
2028 if (Record.empty())
2029 return Error("Invalid record");
2030
2031 ArrayType *ATy = cast<ArrayType>(CurTy);
2032 Type *EltTy = ATy->getElementType();
2033
2034 unsigned Size = Record.size();
2035 std::vector<Constant*> Elts;
2036 for (unsigned i = 0; i != Size; ++i)
2037 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2038 V = ConstantArray::get(ATy, Elts);
2039 break;
2040 }
2041 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2042 if (Record.empty())
2043 return Error("Invalid record");
2044
2045 ArrayType *ATy = cast<ArrayType>(CurTy);
2046 Type *EltTy = ATy->getElementType();
2047
2048 unsigned Size = Record.size();
2049 std::vector<Constant*> Elts;
2050 for (unsigned i = 0; i != Size; ++i)
2051 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2052 Elts.push_back(Constant::getNullValue(EltTy));
2053 V = ConstantArray::get(ATy, Elts);
2054 break;
2055 }
2056 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2057 if (Record.size() < 3)
2058 return Error("Invalid record");
2059 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
2060 if (Opc < 0) {
2061 V = UndefValue::get(CurTy); // Unknown binop.
2062 } else {
2063 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2064 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2065 unsigned Flags = 0;
2066 if (Record.size() >= 4) {
2067 if (Opc == Instruction::Add ||
2068 Opc == Instruction::Sub ||
2069 Opc == Instruction::Mul ||
2070 Opc == Instruction::Shl) {
2071 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2072 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2073 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2074 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2075 } else if (Opc == Instruction::SDiv ||
2076 Opc == Instruction::UDiv ||
2077 Opc == Instruction::LShr ||
2078 Opc == Instruction::AShr) {
2079 if (Record[3] & (1 << bitc::PEO_EXACT))
2080 Flags |= SDivOperator::IsExact;
2081 }
2082 }
2083 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2084 }
2085 break;
2086 }
2087 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2088 if (Record.size() < 3)
2089 return Error("Invalid record");
2090 int Opc = GetDecodedCastOpcode(Record[0]);
2091 if (Opc < 0) {
2092 V = UndefValue::get(CurTy); // Unknown cast.
2093 } else {
2094 Type *OpTy = getTypeByID(Record[1]);
2095 if (!OpTy)
2096 return Error("Invalid record");
2097 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2098 V = ConstantExpr::getCast(Opc, Op, CurTy);
2099 }
2100 break;
2101 }
2102 case bitc::CST_CODE_CE_INBOUNDS_GEP:
2103 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
2104 Type *PointeeType = nullptr;
2105 if (Record.size() & 1)
2106 return Error("Invalid record");
2107 SmallVector<Constant*, 16> Elts;
2108 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2109 Type *ElTy = getTypeByID(Record[i]);
2110 if (!ElTy)
2111 return Error("Invalid record");
2112 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
2113 }
2114 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2115 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2116 BitCode ==
2117 bitc::CST_CODE_CE_INBOUNDS_GEP);
2118 break;
2119 }
2120 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
2121 if (Record.size() < 3)
2122 return Error("Invalid record");
2123 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2124 Type::getInt1Ty(Context)),
2125 ValueList.getConstantFwdRef(Record[1],CurTy),
2126 ValueList.getConstantFwdRef(Record[2],CurTy));
2127 break;
2128 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
2129 if (Record.size() < 3)
2130 return Error("Invalid record");
2131 VectorType *OpTy =
2132 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2133 if (!OpTy)
2134 return Error("Invalid record");
2135 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2136 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2137 V = ConstantExpr::getExtractElement(Op0, Op1);
2138 break;
2139 }
2140 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
2141 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2142 if (Record.size() < 3 || !OpTy)
2143 return Error("Invalid record");
2144 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2145 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2146 OpTy->getElementType());
2147 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2148 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2149 break;
2150 }
2151 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2152 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2153 if (Record.size() < 3 || !OpTy)
2154 return Error("Invalid record");
2155 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2156 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2157 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2158 OpTy->getNumElements());
2159 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2160 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2161 break;
2162 }
2163 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2164 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2165 VectorType *OpTy =
2166 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2167 if (Record.size() < 4 || !RTy || !OpTy)
2168 return Error("Invalid record");
2169 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2170 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2171 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2172 RTy->getNumElements());
2173 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2174 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2175 break;
2176 }
2177 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2178 if (Record.size() < 4)
2179 return Error("Invalid record");
2180 Type *OpTy = getTypeByID(Record[0]);
2181 if (!OpTy)
2182 return Error("Invalid record");
2183 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2184 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2185
2186 if (OpTy->isFPOrFPVectorTy())
2187 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2188 else
2189 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2190 break;
2191 }
2192 case bitc::CST_CODE_INLINEASM:
2193 case bitc::CST_CODE_INLINEASM_OLD: {
2194 if (Record.size() < 2)
2195 return Error("Invalid record");
2196 std::string AsmStr, ConstrStr;
2197 bool HasSideEffects = Record[0] & 1;
2198 bool IsAlignStack = Record[0] >> 1;
2199 unsigned AsmStrSize = Record[1];
2200 if (2+AsmStrSize >= Record.size())
2201 return Error("Invalid record");
2202 unsigned ConstStrSize = Record[2+AsmStrSize];
2203 if (3+AsmStrSize+ConstStrSize > Record.size())
2204 return Error("Invalid record");
2205
2206 for (unsigned i = 0; i != AsmStrSize; ++i)
2207 AsmStr += (char)Record[2+i];
2208 for (unsigned i = 0; i != ConstStrSize; ++i)
2209 ConstrStr += (char)Record[3+AsmStrSize+i];
2210 PointerType *PTy = cast<PointerType>(CurTy);
2211 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2212 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2213 break;
2214 }
2215 case bitc::CST_CODE_BLOCKADDRESS:{
2216 if (Record.size() < 3)
2217 return Error("Invalid record");
2218 Type *FnTy = getTypeByID(Record[0]);
2219 if (!FnTy)
2220 return Error("Invalid record");
2221 Function *Fn =
2222 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2223 if (!Fn)
2224 return Error("Invalid record");
2225
2226 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
2227 Type::getInt8Ty(Context),
2228 false, GlobalValue::InternalLinkage,
2229 0, "");
2230 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
2231 V = FwdRef;
2232 break;
2233 }
2234 }
2235
2236 ValueList.AssignValue(V, NextCstNo);
2237 ++NextCstNo;
2238 }
2239
2240 if (NextCstNo != ValueList.size())
2241 return Error("Invalid constant reference");
2242
2243 if (Stream.ReadBlockEnd())
2244 return Error("Expected a constant");
2245
2246 // Once all the constants have been read, go through and resolve forward
2247 // references.
2248 ValueList.ResolveConstantForwardRefs();
2249 return std::error_code();
2250 }
2251
materializeMetadata()2252 std::error_code BitcodeReader::materializeMetadata() {
2253 return std::error_code();
2254 }
2255
setStripDebugInfo()2256 void BitcodeReader::setStripDebugInfo() { }
2257
2258 /// RememberAndSkipFunctionBody - When we see the block for a function body,
2259 /// remember where it is and then skip it. This lets us lazily deserialize the
2260 /// functions.
RememberAndSkipFunctionBody()2261 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
2262 // Get the function we are talking about.
2263 if (FunctionsWithBodies.empty())
2264 return Error("Insufficient function protos");
2265
2266 Function *Fn = FunctionsWithBodies.back();
2267 FunctionsWithBodies.pop_back();
2268
2269 // Save the current stream state.
2270 uint64_t CurBit = Stream.GetCurrentBitNo();
2271 DeferredFunctionInfo[Fn] = CurBit;
2272
2273 // Skip over the function block for now.
2274 if (Stream.SkipBlock())
2275 return Error("Invalid record");
2276 return std::error_code();
2277 }
2278
GlobalCleanup()2279 std::error_code BitcodeReader::GlobalCleanup() {
2280 // Patch the initializers for globals and aliases up.
2281 ResolveGlobalAndAliasInits();
2282 if (!GlobalInits.empty() || !AliasInits.empty())
2283 return Error("Malformed global initializer set");
2284
2285 // Look for intrinsic functions which need to be upgraded at some point
2286 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2287 FI != FE; ++FI) {
2288 Function *NewFn;
2289 if (UpgradeIntrinsicFunction(FI, NewFn))
2290 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
2291 }
2292
2293 // Look for global variables which need to be renamed.
2294 for (Module::global_iterator
2295 GI = TheModule->global_begin(), GE = TheModule->global_end();
2296 GI != GE;) {
2297 GlobalVariable *GV = GI++;
2298 UpgradeGlobalVariable(GV);
2299 }
2300
2301 // Force deallocation of memory for these vectors to favor the client that
2302 // want lazy deserialization.
2303 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2304 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2305 return std::error_code();
2306 }
2307
ParseModule(bool Resume)2308 std::error_code BitcodeReader::ParseModule(bool Resume) {
2309 if (Resume)
2310 Stream.JumpToBit(NextUnreadBit);
2311 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2312 return Error("Invalid record");
2313
2314 SmallVector<uint64_t, 64> Record;
2315 std::vector<std::string> SectionTable;
2316 std::vector<std::string> GCTable;
2317
2318 // Read all the records for this module.
2319 while (1) {
2320 BitstreamEntry Entry = Stream.advance();
2321
2322 switch (Entry.Kind) {
2323 case BitstreamEntry::Error:
2324 return Error("Malformed block");
2325 case BitstreamEntry::EndBlock:
2326 return GlobalCleanup();
2327
2328 case BitstreamEntry::SubBlock:
2329 switch (Entry.ID) {
2330 default: // Skip unknown content.
2331 if (Stream.SkipBlock())
2332 return Error("Invalid record");
2333 break;
2334 case bitc::BLOCKINFO_BLOCK_ID:
2335 if (Stream.ReadBlockInfoBlock())
2336 return Error("Malformed block");
2337 break;
2338 case bitc::PARAMATTR_BLOCK_ID:
2339 if (std::error_code EC = ParseAttributeBlock())
2340 return EC;
2341 break;
2342 case bitc::TYPE_BLOCK_ID_NEW:
2343 if (std::error_code EC = ParseTypeTable())
2344 return EC;
2345 break;
2346 case TYPE_BLOCK_ID_OLD_3_0:
2347 if (std::error_code EC = ParseOldTypeTable())
2348 return EC;
2349 break;
2350 case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2351 if (std::error_code EC = ParseOldTypeSymbolTable())
2352 return EC;
2353 break;
2354 case bitc::VALUE_SYMTAB_BLOCK_ID:
2355 if (std::error_code EC = ParseValueSymbolTable())
2356 return EC;
2357 SeenValueSymbolTable = true;
2358 break;
2359 case bitc::CONSTANTS_BLOCK_ID:
2360 if (std::error_code EC = ParseConstants())
2361 return EC;
2362 if (std::error_code EC = ResolveGlobalAndAliasInits())
2363 return EC;
2364 break;
2365 case bitc::METADATA_BLOCK_ID:
2366 if (std::error_code EC = ParseMetadata())
2367 return EC;
2368 break;
2369 case bitc::FUNCTION_BLOCK_ID:
2370 // If this is the first function body we've seen, reverse the
2371 // FunctionsWithBodies list.
2372 if (!SeenFirstFunctionBody) {
2373 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2374 if (std::error_code EC = GlobalCleanup())
2375 return EC;
2376 SeenFirstFunctionBody = true;
2377 }
2378
2379 if (std::error_code EC = RememberAndSkipFunctionBody())
2380 return EC;
2381 // For streaming bitcode, suspend parsing when we reach the function
2382 // bodies. Subsequent materialization calls will resume it when
2383 // necessary. For streaming, the function bodies must be at the end of
2384 // the bitcode. If the bitcode file is old, the symbol table will be
2385 // at the end instead and will not have been seen yet. In this case,
2386 // just finish the parse now.
2387 if (LazyStreamer && SeenValueSymbolTable) {
2388 NextUnreadBit = Stream.GetCurrentBitNo();
2389 return std::error_code();
2390 }
2391 break;
2392 break;
2393 }
2394 continue;
2395
2396 case BitstreamEntry::Record:
2397 // The interesting case.
2398 break;
2399 }
2400
2401
2402 // Read a record.
2403 switch (Stream.readRecord(Entry.ID, Record)) {
2404 default: break; // Default behavior, ignore unknown content.
2405 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
2406 if (Record.size() < 1)
2407 return Error("Invalid record");
2408 // Only version #0 is supported so far.
2409 if (Record[0] != 0)
2410 return Error("Invalid value");
2411 break;
2412 }
2413 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
2414 std::string S;
2415 if (ConvertToString(Record, 0, S))
2416 return Error("Invalid record");
2417 TheModule->setTargetTriple(S);
2418 break;
2419 }
2420 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
2421 std::string S;
2422 if (ConvertToString(Record, 0, S))
2423 return Error("Invalid record");
2424 TheModule->setDataLayout(S);
2425 break;
2426 }
2427 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
2428 std::string S;
2429 if (ConvertToString(Record, 0, S))
2430 return Error("Invalid record");
2431 TheModule->setModuleInlineAsm(S);
2432 break;
2433 }
2434 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
2435 std::string S;
2436 if (ConvertToString(Record, 0, S))
2437 return Error("Invalid record");
2438 // ANDROID: Ignore value, since we never used it anyways.
2439 // TheModule->addLibrary(S);
2440 break;
2441 }
2442 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
2443 std::string S;
2444 if (ConvertToString(Record, 0, S))
2445 return Error("Invalid record");
2446 SectionTable.push_back(S);
2447 break;
2448 }
2449 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
2450 std::string S;
2451 if (ConvertToString(Record, 0, S))
2452 return Error("Invalid record");
2453 GCTable.push_back(S);
2454 break;
2455 }
2456 // GLOBALVAR: [pointer type, isconst, initid,
2457 // linkage, alignment, section, visibility, threadlocal,
2458 // unnamed_addr]
2459 case bitc::MODULE_CODE_GLOBALVAR: {
2460 if (Record.size() < 6)
2461 return Error("Invalid record");
2462 Type *Ty = getTypeByID(Record[0]);
2463 if (!Ty)
2464 return Error("Invalid record");
2465 if (!Ty->isPointerTy())
2466 return Error("Invalid type for value");
2467 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2468 Ty = cast<PointerType>(Ty)->getElementType();
2469
2470 bool isConstant = Record[1];
2471 uint64_t RawLinkage = Record[3];
2472 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2473 unsigned Alignment = (1 << Record[4]) >> 1;
2474 std::string Section;
2475 if (Record[5]) {
2476 if (Record[5]-1 >= SectionTable.size())
2477 return Error("Invalid ID");
2478 Section = SectionTable[Record[5]-1];
2479 }
2480 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2481 if (Record.size() > 6)
2482 Visibility = GetDecodedVisibility(Record[6]);
2483
2484 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2485 if (Record.size() > 7)
2486 TLM = GetDecodedThreadLocalMode(Record[7]);
2487
2488 bool UnnamedAddr = false;
2489 if (Record.size() > 8)
2490 UnnamedAddr = Record[8];
2491
2492 GlobalVariable *NewGV =
2493 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2494 TLM, AddressSpace);
2495 NewGV->setAlignment(Alignment);
2496 if (!Section.empty())
2497 NewGV->setSection(Section);
2498 NewGV->setVisibility(Visibility);
2499 NewGV->setUnnamedAddr(UnnamedAddr);
2500
2501 ValueList.push_back(NewGV);
2502
2503 // Remember which value to use for the global initializer.
2504 if (unsigned InitID = Record[2])
2505 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2506 break;
2507 }
2508 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
2509 // alignment, section, visibility, gc, unnamed_addr]
2510 case bitc::MODULE_CODE_FUNCTION: {
2511 if (Record.size() < 8)
2512 return Error("Invalid record");
2513 Type *Ty = getTypeByID(Record[0]);
2514 if (!Ty)
2515 return Error("Invalid record");
2516 if (!Ty->isPointerTy())
2517 return Error("Invalid type for value");
2518 FunctionType *FTy =
2519 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2520 if (!FTy)
2521 return Error("Invalid type for value");
2522
2523 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2524 "", TheModule);
2525
2526 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2527 bool isProto = Record[2];
2528 uint64_t RawLinkage = Record[3];
2529 Func->setLinkage(getDecodedLinkage(RawLinkage));
2530 Func->setAttributes(getAttributes(Record[4]));
2531
2532 Func->setAlignment((1 << Record[5]) >> 1);
2533 if (Record[6]) {
2534 if (Record[6]-1 >= SectionTable.size())
2535 return Error("Invalid ID");
2536 Func->setSection(SectionTable[Record[6]-1]);
2537 }
2538 Func->setVisibility(GetDecodedVisibility(Record[7]));
2539 if (Record.size() > 8 && Record[8]) {
2540 if (Record[8]-1 > GCTable.size())
2541 return Error("Invalid ID");
2542 Func->setGC(GCTable[Record[8]-1].c_str());
2543 }
2544 bool UnnamedAddr = false;
2545 if (Record.size() > 9)
2546 UnnamedAddr = Record[9];
2547 Func->setUnnamedAddr(UnnamedAddr);
2548 ValueList.push_back(Func);
2549
2550 // If this is a function with a body, remember the prototype we are
2551 // creating now, so that we can match up the body with them later.
2552 if (!isProto) {
2553 Func->setIsMaterializable(true);
2554 FunctionsWithBodies.push_back(Func);
2555 if (LazyStreamer)
2556 DeferredFunctionInfo[Func] = 0;
2557 }
2558 break;
2559 }
2560 // ALIAS: [alias type, aliasee val#, linkage]
2561 // ALIAS: [alias type, aliasee val#, linkage, visibility]
2562 case bitc::MODULE_CODE_ALIAS: {
2563 if (Record.size() < 3)
2564 return Error("Invalid record");
2565 Type *Ty = getTypeByID(Record[0]);
2566 if (!Ty)
2567 return Error("Invalid record");
2568 auto *PTy = dyn_cast<PointerType>(Ty);
2569 if (!PTy)
2570 return Error("Invalid type for value");
2571
2572 auto *NewGA =
2573 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2574 getDecodedLinkage(Record[2]), "", TheModule);
2575 // Old bitcode files didn't have visibility field.
2576 if (Record.size() > 3)
2577 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2578 ValueList.push_back(NewGA);
2579 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2580 break;
2581 }
2582 /// MODULE_CODE_PURGEVALS: [numvals]
2583 case bitc::MODULE_CODE_PURGEVALS:
2584 // Trim down the value list to the specified size.
2585 if (Record.size() < 1 || Record[0] > ValueList.size())
2586 return Error("Invalid record");
2587 ValueList.shrinkTo(Record[0]);
2588 break;
2589 }
2590 Record.clear();
2591 }
2592 }
2593
ParseBitcodeInto(Module * M)2594 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2595 TheModule = nullptr;
2596
2597 if (std::error_code EC = InitStream())
2598 return EC;
2599
2600 // Sniff for the signature.
2601 if (Stream.Read(8) != 'B' ||
2602 Stream.Read(8) != 'C' ||
2603 Stream.Read(4) != 0x0 ||
2604 Stream.Read(4) != 0xC ||
2605 Stream.Read(4) != 0xE ||
2606 Stream.Read(4) != 0xD)
2607 return Error("Invalid bitcode signature");
2608
2609 // We expect a number of well-defined blocks, though we don't necessarily
2610 // need to understand them all.
2611 while (1) {
2612 if (Stream.AtEndOfStream())
2613 return std::error_code();
2614
2615 BitstreamEntry Entry =
2616 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2617
2618 switch (Entry.Kind) {
2619 case BitstreamEntry::Error:
2620 return Error("Malformed block");
2621 case BitstreamEntry::EndBlock:
2622 return std::error_code();
2623
2624 case BitstreamEntry::SubBlock:
2625 switch (Entry.ID) {
2626 case bitc::BLOCKINFO_BLOCK_ID:
2627 if (Stream.ReadBlockInfoBlock())
2628 return Error("Malformed block");
2629 break;
2630 case bitc::MODULE_BLOCK_ID:
2631 // Reject multiple MODULE_BLOCK's in a single bitstream.
2632 if (TheModule)
2633 return Error("Invalid multiple blocks");
2634 TheModule = M;
2635 if (std::error_code EC = ParseModule(false))
2636 return EC;
2637 if (LazyStreamer)
2638 return std::error_code();
2639 break;
2640 default:
2641 if (Stream.SkipBlock())
2642 return Error("Invalid record");
2643 break;
2644 }
2645 continue;
2646 case BitstreamEntry::Record:
2647 // There should be no records in the top-level of blocks.
2648
2649 // The ranlib in Xcode 4 will align archive members by appending newlines
2650 // to the end of them. If this file size is a multiple of 4 but not 8, we
2651 // have to read and ignore these final 4 bytes :-(
2652 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2653 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2654 Stream.AtEndOfStream())
2655 return std::error_code();
2656
2657 return Error("Invalid record");
2658 }
2659 }
2660 }
2661
parseModuleTriple()2662 llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2663 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2664 return Error("Invalid record");
2665
2666 SmallVector<uint64_t, 64> Record;
2667
2668 std::string Triple;
2669 // Read all the records for this module.
2670 while (1) {
2671 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2672
2673 switch (Entry.Kind) {
2674 case BitstreamEntry::SubBlock: // Handled for us already.
2675 case BitstreamEntry::Error:
2676 return Error("Malformed block");
2677 case BitstreamEntry::EndBlock:
2678 return Triple;
2679 case BitstreamEntry::Record:
2680 // The interesting case.
2681 break;
2682 }
2683
2684 // Read a record.
2685 switch (Stream.readRecord(Entry.ID, Record)) {
2686 default: break; // Default behavior, ignore unknown content.
2687 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
2688 if (Record.size() < 1)
2689 return Error("Invalid record");
2690 // Only version #0 is supported so far.
2691 if (Record[0] != 0)
2692 return Error("Invalid record");
2693 break;
2694 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
2695 std::string S;
2696 if (ConvertToString(Record, 0, S))
2697 return Error("Invalid record");
2698 Triple = S;
2699 break;
2700 }
2701 }
2702 Record.clear();
2703 }
2704
2705 return Error("Invalid bitcode signature");
2706 }
2707
parseTriple()2708 llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2709 if (std::error_code EC = InitStream())
2710 return EC;
2711
2712 // Sniff for the signature.
2713 if (Stream.Read(8) != 'B' ||
2714 Stream.Read(8) != 'C' ||
2715 Stream.Read(4) != 0x0 ||
2716 Stream.Read(4) != 0xC ||
2717 Stream.Read(4) != 0xE ||
2718 Stream.Read(4) != 0xD)
2719 return Error("Invalid bitcode signature");
2720
2721 // We expect a number of well-defined blocks, though we don't necessarily
2722 // need to understand them all.
2723 while (1) {
2724 BitstreamEntry Entry = Stream.advance();
2725
2726 switch (Entry.Kind) {
2727 case BitstreamEntry::Error:
2728 return Error("Malformed block");
2729 case BitstreamEntry::EndBlock:
2730 return std::error_code();
2731
2732 case BitstreamEntry::SubBlock:
2733 if (Entry.ID == bitc::MODULE_BLOCK_ID)
2734 return parseModuleTriple();
2735
2736 // Ignore other sub-blocks.
2737 if (Stream.SkipBlock())
2738 return Error("Malformed block");
2739 continue;
2740
2741 case BitstreamEntry::Record:
2742 Stream.skipRecord(Entry.ID);
2743 continue;
2744 }
2745 }
2746 }
2747
2748 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2749 std::error_code BitcodeReader::ParseMetadataAttachment() {
2750 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2751 return Error("Invalid record");
2752
2753 SmallVector<uint64_t, 64> Record;
2754 while (1) {
2755 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2756
2757 switch (Entry.Kind) {
2758 case BitstreamEntry::SubBlock: // Handled for us already.
2759 case BitstreamEntry::Error:
2760 return Error("Malformed block");
2761 case BitstreamEntry::EndBlock:
2762 return std::error_code();
2763 case BitstreamEntry::Record:
2764 // The interesting case.
2765 break;
2766 }
2767
2768 // Read a metadata attachment record.
2769 Record.clear();
2770 switch (Stream.readRecord(Entry.ID, Record)) {
2771 default: // Default behavior: ignore.
2772 break;
2773 case bitc::METADATA_ATTACHMENT: {
2774 unsigned RecordLength = Record.size();
2775 if (Record.empty() || (RecordLength - 1) % 2 == 1)
2776 return Error("Invalid record");
2777 Instruction *Inst = InstructionList[Record[0]];
2778 for (unsigned i = 1; i != RecordLength; i = i+2) {
2779 unsigned Kind = Record[i];
2780 DenseMap<unsigned, unsigned>::iterator I =
2781 MDKindMap.find(Kind);
2782 if (I == MDKindMap.end())
2783 return Error("Invalid ID");
2784 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2785 Inst->setMetadata(I->second, cast<MDNode>(Node));
2786 }
2787 break;
2788 }
2789 }
2790 }
2791 }
2792
2793 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2794 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2795 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2796 return Error("Invalid record");
2797
2798 InstructionList.clear();
2799 unsigned ModuleValueListSize = ValueList.size();
2800 unsigned ModuleMDValueListSize = MDValueList.size();
2801
2802 // Add all the function arguments to the value table.
2803 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2804 ValueList.push_back(I);
2805
2806 unsigned NextValueNo = ValueList.size();
2807 BasicBlock *CurBB = nullptr;
2808 unsigned CurBBNo = 0;
2809
2810 DebugLoc LastLoc;
2811
2812 // Read all the records.
2813 SmallVector<uint64_t, 64> Record;
2814 while (1) {
2815 unsigned Code = Stream.ReadCode();
2816 if (Code == bitc::END_BLOCK) {
2817 if (Stream.ReadBlockEnd())
2818 return Error("Malformed block");
2819 break;
2820 }
2821
2822 if (Code == bitc::ENTER_SUBBLOCK) {
2823 switch (Stream.ReadSubBlockID()) {
2824 default: // Skip unknown content.
2825 if (Stream.SkipBlock())
2826 return Error("Invalid record");
2827 break;
2828 case bitc::CONSTANTS_BLOCK_ID:
2829 if (std::error_code EC = ParseConstants())
2830 return EC;
2831 NextValueNo = ValueList.size();
2832 break;
2833 case bitc::VALUE_SYMTAB_BLOCK_ID:
2834 if (std::error_code EC = ParseValueSymbolTable())
2835 return EC;
2836 break;
2837 case bitc::METADATA_ATTACHMENT_ID:
2838 if (std::error_code EC = ParseMetadataAttachment())
2839 return EC;
2840 break;
2841 case bitc::METADATA_BLOCK_ID:
2842 if (std::error_code EC = ParseMetadata())
2843 return EC;
2844 break;
2845 }
2846 continue;
2847 }
2848
2849 if (Code == bitc::DEFINE_ABBREV) {
2850 Stream.ReadAbbrevRecord();
2851 continue;
2852 }
2853
2854 // Read a record.
2855 Record.clear();
2856 Instruction *I = nullptr;
2857 unsigned BitCode = Stream.readRecord(Code, Record);
2858 switch (BitCode) {
2859 default: // Default behavior: reject
2860 return Error("Invalid value");
2861 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
2862 if (Record.size() < 1 || Record[0] == 0)
2863 return Error("Invalid record");
2864 // Create all the basic blocks for the function.
2865 FunctionBBs.resize(Record[0]);
2866 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2867 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2868 CurBB = FunctionBBs[0];
2869 continue;
2870
2871 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
2872 // This record indicates that the last instruction is at the same
2873 // location as the previous instruction with a location.
2874 I = nullptr;
2875
2876 // Get the last instruction emitted.
2877 if (CurBB && !CurBB->empty())
2878 I = &CurBB->back();
2879 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2880 !FunctionBBs[CurBBNo-1]->empty())
2881 I = &FunctionBBs[CurBBNo-1]->back();
2882
2883 if (!I)
2884 return Error("Invalid record");
2885 I->setDebugLoc(LastLoc);
2886 I = nullptr;
2887 continue;
2888
2889 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
2890 I = nullptr; // Get the last instruction emitted.
2891 if (CurBB && !CurBB->empty())
2892 I = &CurBB->back();
2893 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2894 !FunctionBBs[CurBBNo-1]->empty())
2895 I = &FunctionBBs[CurBBNo-1]->back();
2896 if (!I || Record.size() < 4)
2897 return Error("Invalid record");
2898
2899 unsigned Line = Record[0], Col = Record[1];
2900 unsigned ScopeID = Record[2], IAID = Record[3];
2901
2902 MDNode *Scope = nullptr, *IA = nullptr;
2903 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2904 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2905 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2906 I->setDebugLoc(LastLoc);
2907 I = nullptr;
2908 continue;
2909 }
2910
2911 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
2912 unsigned OpNum = 0;
2913 Value *LHS, *RHS;
2914 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2915 getValue(Record, OpNum, LHS->getType(), RHS) ||
2916 OpNum+1 > Record.size())
2917 return Error("Invalid record");
2918
2919 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2920 if (Opc == -1)
2921 return Error("Invalid record");
2922 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2923 InstructionList.push_back(I);
2924 if (OpNum < Record.size()) {
2925 if (Opc == Instruction::Add ||
2926 Opc == Instruction::Sub ||
2927 Opc == Instruction::Mul ||
2928 Opc == Instruction::Shl) {
2929 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2930 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2931 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2932 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2933 } else if (Opc == Instruction::SDiv ||
2934 Opc == Instruction::UDiv ||
2935 Opc == Instruction::LShr ||
2936 Opc == Instruction::AShr) {
2937 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2938 cast<BinaryOperator>(I)->setIsExact(true);
2939 }
2940 }
2941 break;
2942 }
2943 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
2944 unsigned OpNum = 0;
2945 Value *Op;
2946 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2947 OpNum+2 != Record.size())
2948 return Error("Invalid record");
2949
2950 Type *ResTy = getTypeByID(Record[OpNum]);
2951 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2952 if (Opc == -1 || !ResTy)
2953 return Error("Invalid record");
2954 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2955 InstructionList.push_back(I);
2956 break;
2957 }
2958 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2959 case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2960 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2961 unsigned OpNum = 0;
2962
2963 Type *Ty;
2964 bool InBounds;
2965
2966 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2967 InBounds = Record[OpNum++];
2968 Ty = getTypeByID(Record[OpNum++]);
2969 } else {
2970 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2971 Ty = nullptr;
2972 }
2973
2974 Value *BasePtr;
2975 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2976 return Error("Invalid record");
2977
2978 if (Ty &&
2979 Ty !=
2980 cast<SequentialType>(BasePtr->getType()->getScalarType())
2981 ->getElementType())
2982 return Error(
2983 "Explicit gep type does not match pointee type of pointer operand");
2984
2985 SmallVector<Value*, 16> GEPIdx;
2986 while (OpNum != Record.size()) {
2987 Value *Op;
2988 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2989 return Error("Invalid record");
2990 GEPIdx.push_back(Op);
2991 }
2992
2993 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
2994
2995 InstructionList.push_back(I);
2996 if (InBounds)
2997 cast<GetElementPtrInst>(I)->setIsInBounds(true);
2998 break;
2999 }
3000
3001 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3002 // EXTRACTVAL: [opty, opval, n x indices]
3003 unsigned OpNum = 0;
3004 Value *Agg;
3005 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3006 return Error("Invalid record");
3007
3008 SmallVector<unsigned, 4> EXTRACTVALIdx;
3009 for (unsigned RecSize = Record.size();
3010 OpNum != RecSize; ++OpNum) {
3011 uint64_t Index = Record[OpNum];
3012 if ((unsigned)Index != Index)
3013 return Error("Invalid value");
3014 EXTRACTVALIdx.push_back((unsigned)Index);
3015 }
3016
3017 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3018 InstructionList.push_back(I);
3019 break;
3020 }
3021
3022 case bitc::FUNC_CODE_INST_INSERTVAL: {
3023 // INSERTVAL: [opty, opval, opty, opval, n x indices]
3024 unsigned OpNum = 0;
3025 Value *Agg;
3026 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3027 return Error("Invalid record");
3028 Value *Val;
3029 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3030 return Error("Invalid record");
3031
3032 SmallVector<unsigned, 4> INSERTVALIdx;
3033 for (unsigned RecSize = Record.size();
3034 OpNum != RecSize; ++OpNum) {
3035 uint64_t Index = Record[OpNum];
3036 if ((unsigned)Index != Index)
3037 return Error("Invalid value");
3038 INSERTVALIdx.push_back((unsigned)Index);
3039 }
3040
3041 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3042 InstructionList.push_back(I);
3043 break;
3044 }
3045
3046 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3047 // obsolete form of select
3048 // handles select i1 ... in old bitcode
3049 unsigned OpNum = 0;
3050 Value *TrueVal, *FalseVal, *Cond;
3051 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3052 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3053 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
3054 return Error("Invalid record");
3055
3056 I = SelectInst::Create(Cond, TrueVal, FalseVal);
3057 InstructionList.push_back(I);
3058 break;
3059 }
3060
3061 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3062 // new form of select
3063 // handles select i1 or select [N x i1]
3064 unsigned OpNum = 0;
3065 Value *TrueVal, *FalseVal, *Cond;
3066 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3067 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3068 getValueTypePair(Record, OpNum, NextValueNo, Cond))
3069 return Error("Invalid record");
3070
3071 // select condition can be either i1 or [N x i1]
3072 if (VectorType* vector_type =
3073 dyn_cast<VectorType>(Cond->getType())) {
3074 // expect <n x i1>
3075 if (vector_type->getElementType() != Type::getInt1Ty(Context))
3076 return Error("Invalid type for value");
3077 } else {
3078 // expect i1
3079 if (Cond->getType() != Type::getInt1Ty(Context))
3080 return Error("Invalid type for value");
3081 }
3082
3083 I = SelectInst::Create(Cond, TrueVal, FalseVal);
3084 InstructionList.push_back(I);
3085 break;
3086 }
3087
3088 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3089 unsigned OpNum = 0;
3090 Value *Vec, *Idx;
3091 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3092 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3093 return Error("Invalid record");
3094 I = ExtractElementInst::Create(Vec, Idx);
3095 InstructionList.push_back(I);
3096 break;
3097 }
3098
3099 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3100 unsigned OpNum = 0;
3101 Value *Vec, *Elt, *Idx;
3102 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3103 getValue(Record, OpNum,
3104 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3105 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3106 return Error("Invalid record");
3107 I = InsertElementInst::Create(Vec, Elt, Idx);
3108 InstructionList.push_back(I);
3109 break;
3110 }
3111
3112 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3113 unsigned OpNum = 0;
3114 Value *Vec1, *Vec2, *Mask;
3115 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3116 getValue(Record, OpNum, Vec1->getType(), Vec2))
3117 return Error("Invalid record");
3118
3119 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3120 return Error("Invalid record");
3121 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3122 InstructionList.push_back(I);
3123 break;
3124 }
3125
3126 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3127 // Old form of ICmp/FCmp returning bool
3128 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3129 // both legal on vectors but had different behaviour.
3130 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3131 // FCmp/ICmp returning bool or vector of bool
3132
3133 unsigned OpNum = 0;
3134 Value *LHS, *RHS;
3135 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3136 getValue(Record, OpNum, LHS->getType(), RHS) ||
3137 OpNum+1 != Record.size())
3138 return Error("Invalid record");
3139
3140 if (LHS->getType()->isFPOrFPVectorTy())
3141 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
3142 else
3143 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
3144 InstructionList.push_back(I);
3145 break;
3146 }
3147
3148 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3149 {
3150 unsigned Size = Record.size();
3151 if (Size == 0) {
3152 I = ReturnInst::Create(Context);
3153 InstructionList.push_back(I);
3154 break;
3155 }
3156
3157 unsigned OpNum = 0;
3158 Value *Op = nullptr;
3159 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3160 return Error("Invalid record");
3161 if (OpNum != Record.size())
3162 return Error("Invalid record");
3163
3164 I = ReturnInst::Create(Context, Op);
3165 InstructionList.push_back(I);
3166 break;
3167 }
3168 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3169 if (Record.size() != 1 && Record.size() != 3)
3170 return Error("Invalid record");
3171 BasicBlock *TrueDest = getBasicBlock(Record[0]);
3172 if (!TrueDest)
3173 return Error("Invalid record");
3174
3175 if (Record.size() == 1) {
3176 I = BranchInst::Create(TrueDest);
3177 InstructionList.push_back(I);
3178 }
3179 else {
3180 BasicBlock *FalseDest = getBasicBlock(Record[1]);
3181 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
3182 if (!FalseDest || !Cond)
3183 return Error("Invalid record");
3184 I = BranchInst::Create(TrueDest, FalseDest, Cond);
3185 InstructionList.push_back(I);
3186 }
3187 break;
3188 }
3189 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3190 if (Record.size() < 3 || (Record.size() & 1) == 0)
3191 return Error("Invalid record");
3192 Type *OpTy = getTypeByID(Record[0]);
3193 Value *Cond = getFnValueByID(Record[1], OpTy);
3194 BasicBlock *Default = getBasicBlock(Record[2]);
3195 if (!OpTy || !Cond || !Default)
3196 return Error("Invalid record");
3197 unsigned NumCases = (Record.size()-3)/2;
3198 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3199 InstructionList.push_back(SI);
3200 for (unsigned i = 0, e = NumCases; i != e; ++i) {
3201 ConstantInt *CaseVal =
3202 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3203 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3204 if (!CaseVal || !DestBB) {
3205 delete SI;
3206 return Error("Invalid record");
3207 }
3208 SI->addCase(CaseVal, DestBB);
3209 }
3210 I = SI;
3211 break;
3212 }
3213 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3214 if (Record.size() < 2)
3215 return Error("Invalid record");
3216 Type *OpTy = getTypeByID(Record[0]);
3217 Value *Address = getFnValueByID(Record[1], OpTy);
3218 if (!OpTy || !Address)
3219 return Error("Invalid record");
3220 unsigned NumDests = Record.size()-2;
3221 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3222 InstructionList.push_back(IBI);
3223 for (unsigned i = 0, e = NumDests; i != e; ++i) {
3224 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3225 IBI->addDestination(DestBB);
3226 } else {
3227 delete IBI;
3228 return Error("Invalid record");
3229 }
3230 }
3231 I = IBI;
3232 break;
3233 }
3234
3235 case bitc::FUNC_CODE_INST_INVOKE: {
3236 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3237 if (Record.size() < 4)
3238 return Error("Invalid record");
3239 AttributeSet PAL = getAttributes(Record[0]);
3240 unsigned CCInfo = Record[1];
3241 BasicBlock *NormalBB = getBasicBlock(Record[2]);
3242 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3243
3244 unsigned OpNum = 4;
3245 Value *Callee;
3246 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3247 return Error("Invalid record");
3248
3249 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3250 FunctionType *FTy = !CalleeTy ? nullptr :
3251 dyn_cast<FunctionType>(CalleeTy->getElementType());
3252
3253 // Check that the right number of fixed parameters are here.
3254 if (!FTy || !NormalBB || !UnwindBB ||
3255 Record.size() < OpNum+FTy->getNumParams())
3256 return Error("Invalid record");
3257
3258 SmallVector<Value*, 16> Ops;
3259 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3260 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3261 if (!Ops.back())
3262 return Error("Invalid record");
3263 }
3264
3265 if (!FTy->isVarArg()) {
3266 if (Record.size() != OpNum)
3267 return Error("Invalid record");
3268 } else {
3269 // Read type/value pairs for varargs params.
3270 while (OpNum != Record.size()) {
3271 Value *Op;
3272 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3273 return Error("Invalid record");
3274 Ops.push_back(Op);
3275 }
3276 }
3277
3278 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3279 InstructionList.push_back(I);
3280 cast<InvokeInst>(I)->setCallingConv(
3281 static_cast<CallingConv::ID>(CCInfo));
3282 cast<InvokeInst>(I)->setAttributes(PAL);
3283 break;
3284 }
3285 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3286 unsigned Idx = 0;
3287 Value *Val = nullptr;
3288 if (getValueTypePair(Record, Idx, NextValueNo, Val))
3289 return Error("Invalid record");
3290 I = ResumeInst::Create(Val);
3291 InstructionList.push_back(I);
3292 break;
3293 }
3294 case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3295 // 'unwind' instruction has been removed in LLVM 3.1
3296 // Replace 'unwind' with 'landingpad' and 'resume'.
3297 Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3298 Type::getInt32Ty(Context), nullptr);
3299 Constant *PersFn =
3300 F->getParent()->
3301 getOrInsertFunction("__gcc_personality_v0",
3302 FunctionType::get(Type::getInt32Ty(Context), true));
3303
3304 LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
3305 LP->setCleanup(true);
3306
3307 CurBB->getInstList().push_back(LP);
3308 I = ResumeInst::Create(LP);
3309 InstructionList.push_back(I);
3310 break;
3311 }
3312 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3313 I = new UnreachableInst(Context);
3314 InstructionList.push_back(I);
3315 break;
3316 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3317 if (Record.size() < 1 || ((Record.size()-1)&1))
3318 return Error("Invalid record");
3319 Type *Ty = getTypeByID(Record[0]);
3320 if (!Ty)
3321 return Error("Invalid record");
3322
3323 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3324 InstructionList.push_back(PN);
3325
3326 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3327 Value *V = getFnValueByID(Record[1+i], Ty);
3328 BasicBlock *BB = getBasicBlock(Record[2+i]);
3329 if (!V || !BB)
3330 return Error("Invalid record");
3331 PN->addIncoming(V, BB);
3332 }
3333 I = PN;
3334 break;
3335 }
3336
3337 case bitc::FUNC_CODE_INST_LANDINGPAD: {
3338 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3339 unsigned Idx = 0;
3340 if (Record.size() < 4)
3341 return Error("Invalid record");
3342 Type *Ty = getTypeByID(Record[Idx++]);
3343 if (!Ty)
3344 return Error("Invalid record");
3345 Value *PersFn = nullptr;
3346 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3347 return Error("Invalid record");
3348
3349 bool IsCleanup = !!Record[Idx++];
3350 unsigned NumClauses = Record[Idx++];
3351 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
3352 LP->setCleanup(IsCleanup);
3353 for (unsigned J = 0; J != NumClauses; ++J) {
3354 LandingPadInst::ClauseType CT =
3355 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3356 Value *Val;
3357
3358 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3359 delete LP;
3360 return Error("Invalid record");
3361 }
3362
3363 assert((CT != LandingPadInst::Catch ||
3364 !isa<ArrayType>(Val->getType())) &&
3365 "Catch clause has a invalid type!");
3366 assert((CT != LandingPadInst::Filter ||
3367 isa<ArrayType>(Val->getType())) &&
3368 "Filter clause has invalid type!");
3369 LP->addClause(cast<Constant>(Val));
3370 }
3371
3372 I = LP;
3373 InstructionList.push_back(I);
3374 break;
3375 }
3376
3377 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3378 if (Record.size() != 4)
3379 return Error("Invalid record");
3380 PointerType *Ty =
3381 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3382 Type *OpTy = getTypeByID(Record[1]);
3383 Value *Size = getFnValueByID(Record[2], OpTy);
3384 unsigned Align = Record[3];
3385 if (!Ty || !Size)
3386 return Error("Invalid record");
3387 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3388 InstructionList.push_back(I);
3389 break;
3390 }
3391 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3392 unsigned OpNum = 0;
3393 Value *Op;
3394 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3395 OpNum+2 != Record.size())
3396 return Error("Invalid record");
3397
3398 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3399 InstructionList.push_back(I);
3400 break;
3401 }
3402 case bitc::FUNC_CODE_INST_LOADATOMIC: {
3403 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
3404 unsigned OpNum = 0;
3405 Value *Op;
3406 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3407 OpNum+4 != Record.size())
3408 return Error("Invalid record");
3409
3410 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3411 if (Ordering == NotAtomic || Ordering == Release ||
3412 Ordering == AcquireRelease)
3413 return Error("Invalid record");
3414 if (Ordering != NotAtomic && Record[OpNum] == 0)
3415 return Error("Invalid record");
3416 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3417
3418 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3419 Ordering, SynchScope);
3420 InstructionList.push_back(I);
3421 break;
3422 }
3423 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
3424 unsigned OpNum = 0;
3425 Value *Val, *Ptr;
3426 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3427 getValue(Record, OpNum,
3428 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3429 OpNum+2 != Record.size())
3430 return Error("Invalid record");
3431
3432 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3433 InstructionList.push_back(I);
3434 break;
3435 }
3436 case bitc::FUNC_CODE_INST_STOREATOMIC: {
3437 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
3438 unsigned OpNum = 0;
3439 Value *Val, *Ptr;
3440 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3441 getValue(Record, OpNum,
3442 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3443 OpNum+4 != Record.size())
3444 return Error("Invalid record");
3445
3446 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3447 if (Ordering == NotAtomic || Ordering == Acquire ||
3448 Ordering == AcquireRelease)
3449 return Error("Invalid record");
3450 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3451 if (Ordering != NotAtomic && Record[OpNum] == 0)
3452 return Error("Invalid record");
3453
3454 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3455 Ordering, SynchScope);
3456 InstructionList.push_back(I);
3457 break;
3458 }
3459 case bitc::FUNC_CODE_INST_CMPXCHG: {
3460 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
3461 unsigned OpNum = 0;
3462 Value *Ptr, *Cmp, *New;
3463 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3464 getValue(Record, OpNum,
3465 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
3466 getValue(Record, OpNum,
3467 cast<PointerType>(Ptr->getType())->getElementType(), New) ||
3468 OpNum+3 != Record.size())
3469 return Error("Invalid record");
3470 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
3471 if (Ordering == NotAtomic || Ordering == Unordered)
3472 return Error("Invalid record");
3473 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
3474 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Ordering, SynchScope);
3475 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
3476 InstructionList.push_back(I);
3477 break;
3478 }
3479 case bitc::FUNC_CODE_INST_ATOMICRMW: {
3480 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
3481 unsigned OpNum = 0;
3482 Value *Ptr, *Val;
3483 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3484 getValue(Record, OpNum,
3485 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3486 OpNum+4 != Record.size())
3487 return Error("Invalid record");
3488 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
3489 if (Operation < AtomicRMWInst::FIRST_BINOP ||
3490 Operation > AtomicRMWInst::LAST_BINOP)
3491 return Error("Invalid record");
3492 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3493 if (Ordering == NotAtomic || Ordering == Unordered)
3494 return Error("Invalid record");
3495 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3496 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
3497 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
3498 InstructionList.push_back(I);
3499 break;
3500 }
3501 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
3502 if (2 != Record.size())
3503 return Error("Invalid record");
3504 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
3505 if (Ordering == NotAtomic || Ordering == Unordered ||
3506 Ordering == Monotonic)
3507 return Error("Invalid record");
3508 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
3509 I = new FenceInst(Context, Ordering, SynchScope);
3510 InstructionList.push_back(I);
3511 break;
3512 }
3513 case bitc::FUNC_CODE_INST_CALL: {
3514 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3515 if (Record.size() < 3)
3516 return Error("Invalid record");
3517
3518 AttributeSet PAL = getAttributes(Record[0]);
3519 unsigned CCInfo = Record[1];
3520
3521 unsigned OpNum = 2;
3522 Value *Callee;
3523 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3524 return Error("Invalid record");
3525
3526 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3527 FunctionType *FTy = nullptr;
3528 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3529 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3530 return Error("Invalid record");
3531
3532 SmallVector<Value*, 16> Args;
3533 // Read the fixed params.
3534 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3535 if (FTy->getParamType(i)->isLabelTy())
3536 Args.push_back(getBasicBlock(Record[OpNum]));
3537 else
3538 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3539 if (!Args.back())
3540 return Error("Invalid record");
3541 }
3542
3543 // Read type/value pairs for varargs params.
3544 if (!FTy->isVarArg()) {
3545 if (OpNum != Record.size())
3546 return Error("Invalid record");
3547 } else {
3548 while (OpNum != Record.size()) {
3549 Value *Op;
3550 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3551 return Error("Invalid record");
3552 Args.push_back(Op);
3553 }
3554 }
3555
3556 I = CallInst::Create(Callee, Args);
3557 InstructionList.push_back(I);
3558 cast<CallInst>(I)->setCallingConv(
3559 static_cast<CallingConv::ID>(CCInfo>>1));
3560 cast<CallInst>(I)->setTailCall(CCInfo & 1);
3561 cast<CallInst>(I)->setAttributes(PAL);
3562 break;
3563 }
3564 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3565 if (Record.size() < 3)
3566 return Error("Invalid record");
3567 Type *OpTy = getTypeByID(Record[0]);
3568 Value *Op = getFnValueByID(Record[1], OpTy);
3569 Type *ResTy = getTypeByID(Record[2]);
3570 if (!OpTy || !Op || !ResTy)
3571 return Error("Invalid record");
3572 I = new VAArgInst(Op, ResTy);
3573 InstructionList.push_back(I);
3574 break;
3575 }
3576 }
3577
3578 // Add instruction to end of current BB. If there is no current BB, reject
3579 // this file.
3580 if (!CurBB) {
3581 delete I;
3582 return Error("Invalid instruction with no BB");
3583 }
3584 CurBB->getInstList().push_back(I);
3585
3586 // If this was a terminator instruction, move to the next block.
3587 if (isa<TerminatorInst>(I)) {
3588 ++CurBBNo;
3589 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3590 }
3591
3592 // Non-void values get registered in the value table for future use.
3593 if (I && !I->getType()->isVoidTy())
3594 ValueList.AssignValue(I, NextValueNo++);
3595 }
3596
3597 // Check the function list for unresolved values.
3598 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3599 if (!A->getParent()) {
3600 // We found at least one unresolved value. Nuke them all to avoid leaks.
3601 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3602 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3603 A->replaceAllUsesWith(UndefValue::get(A->getType()));
3604 delete A;
3605 }
3606 }
3607 return Error("Never resolved value found in function");
3608 }
3609 }
3610
3611 // FIXME: Check for unresolved forward-declared metadata references
3612 // and clean up leaks.
3613
3614 // See if anything took the address of blocks in this function. If so,
3615 // resolve them now.
3616 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3617 BlockAddrFwdRefs.find(F);
3618 if (BAFRI != BlockAddrFwdRefs.end()) {
3619 std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3620 for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3621 unsigned BlockIdx = RefList[i].first;
3622 if (BlockIdx >= FunctionBBs.size())
3623 return Error("Invalid ID");
3624
3625 GlobalVariable *FwdRef = RefList[i].second;
3626 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3627 FwdRef->eraseFromParent();
3628 }
3629
3630 BlockAddrFwdRefs.erase(BAFRI);
3631 }
3632
3633 // Trim the value list down to the size it was before we parsed this function.
3634 ValueList.shrinkTo(ModuleValueListSize);
3635 MDValueList.shrinkTo(ModuleMDValueListSize);
3636 std::vector<BasicBlock*>().swap(FunctionBBs);
3637 return std::error_code();
3638 }
3639
3640 //===----------------------------------------------------------------------===//
3641 // GVMaterializer implementation
3642 //===----------------------------------------------------------------------===//
3643
releaseBuffer()3644 void BitcodeReader::releaseBuffer() { Buffer.release(); }
3645
materialize(GlobalValue * GV)3646 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3647 if (std::error_code EC = materializeMetadata())
3648 return EC;
3649
3650 Function *F = dyn_cast<Function>(GV);
3651 // If it's not a function or is already material, ignore the request.
3652 if (!F || !F->isMaterializable())
3653 return std::error_code();
3654
3655 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3656 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3657
3658 // Move the bit stream to the saved position of the deferred function body.
3659 Stream.JumpToBit(DFII->second);
3660
3661 if (std::error_code EC = ParseFunctionBody(F))
3662 return EC;
3663 F->setIsMaterializable(false);
3664
3665 // Upgrade any old intrinsic calls in the function.
3666 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3667 E = UpgradedIntrinsics.end(); I != E; ++I) {
3668 if (I->first != I->second) {
3669 for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3670 UI != UE;) {
3671 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3672 UpgradeIntrinsicCall(CI, I->second);
3673 }
3674 }
3675 }
3676
3677 return std::error_code();
3678 }
3679
isDematerializable(const GlobalValue * GV) const3680 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3681 const Function *F = dyn_cast<Function>(GV);
3682 if (!F || F->isDeclaration())
3683 return false;
3684 return DeferredFunctionInfo.count(const_cast<Function*>(F));
3685 }
3686
Dematerialize(GlobalValue * GV)3687 void BitcodeReader::Dematerialize(GlobalValue *GV) {
3688 Function *F = dyn_cast<Function>(GV);
3689 // If this function isn't dematerializable, this is a noop.
3690 if (!F || !isDematerializable(F))
3691 return;
3692
3693 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3694
3695 // Just forget the function body, we can remat it later.
3696 F->deleteBody();
3697 F->setIsMaterializable(true);
3698 }
3699
MaterializeModule(Module * M)3700 std::error_code BitcodeReader::MaterializeModule(Module *M) {
3701 assert(M == TheModule &&
3702 "Can only Materialize the Module this BitcodeReader is attached to.");
3703 // Iterate over the module, deserializing any functions that are still on
3704 // disk.
3705 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3706 F != E; ++F) {
3707 if (std::error_code EC = materialize(F))
3708 return EC;
3709 }
3710 // At this point, if there are any function bodies, the current bit is
3711 // pointing to the END_BLOCK record after them. Now make sure the rest
3712 // of the bits in the module have been read.
3713 if (NextUnreadBit)
3714 ParseModule(true);
3715
3716 // Upgrade any intrinsic calls that slipped through (should not happen!) and
3717 // delete the old functions to clean up. We can't do this unless the entire
3718 // module is materialized because there could always be another function body
3719 // with calls to the old function.
3720 for (std::vector<std::pair<Function*, Function*> >::iterator I =
3721 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3722 if (I->first != I->second) {
3723 for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3724 UI != UE;) {
3725 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3726 UpgradeIntrinsicCall(CI, I->second);
3727 }
3728 if (!I->first->use_empty())
3729 I->first->replaceAllUsesWith(I->second);
3730 I->first->eraseFromParent();
3731 }
3732 }
3733 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3734
3735 // Upgrade to new EH scheme. N.B. This will go away in 3.1.
3736 UpgradeExceptionHandling(M);
3737
3738 // Check debug info intrinsics.
3739 CheckDebugInfoIntrinsics(TheModule);
3740
3741 return std::error_code();
3742 }
3743
getIdentifiedStructTypes() const3744 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3745 return IdentifiedStructTypes;
3746 }
3747
InitStream()3748 std::error_code BitcodeReader::InitStream() {
3749 if (LazyStreamer)
3750 return InitLazyStream();
3751 return InitStreamFromBuffer();
3752 }
3753
InitStreamFromBuffer()3754 std::error_code BitcodeReader::InitStreamFromBuffer() {
3755 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3756 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3757
3758 if (Buffer->getBufferSize() & 3)
3759 return Error("Invalid bitcode signature");
3760
3761 // If we have a wrapper header, parse it and ignore the non-bc file contents.
3762 // The magic number is 0x0B17C0DE stored in little endian.
3763 if (isBitcodeWrapper(BufPtr, BufEnd))
3764 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3765 return Error("Invalid bitcode wrapper header");
3766
3767 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3768 Stream.init(&*StreamFile);
3769
3770 return std::error_code();
3771 }
3772
InitLazyStream()3773 std::error_code BitcodeReader::InitLazyStream() {
3774 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3775 // see it.
3776 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
3777 StreamingMemoryObject &Bytes = *OwnedBytes;
3778 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3779 Stream.init(&*StreamFile);
3780
3781 unsigned char buf[16];
3782 if (Bytes.readBytes(buf, 16, 0) != 16)
3783 return Error("Invalid bitcode signature");
3784
3785 if (!isBitcode(buf, buf + 16))
3786 return Error("Invalid bitcode signature");
3787
3788 if (isBitcodeWrapper(buf, buf + 4)) {
3789 const unsigned char *bitcodeStart = buf;
3790 const unsigned char *bitcodeEnd = buf + 16;
3791 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3792 Bytes.dropLeadingBytes(bitcodeStart - buf);
3793 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3794 }
3795 return std::error_code();
3796 }
3797
3798 namespace {
3799 class BitcodeErrorCategoryType : public std::error_category {
name() const3800 const char *name() const LLVM_NOEXCEPT override {
3801 return "llvm.bitcode";
3802 }
message(int IE) const3803 std::string message(int IE) const override {
3804 BitcodeError E = static_cast<BitcodeError>(IE);
3805 switch (E) {
3806 case BitcodeError::InvalidBitcodeSignature:
3807 return "Invalid bitcode signature";
3808 case BitcodeError::CorruptedBitcode:
3809 return "Corrupted bitcode";
3810 }
3811 llvm_unreachable("Unknown error type!");
3812 }
3813 };
3814 }
3815
3816 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3817
BitcodeErrorCategory()3818 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3819 return *ErrorCategory;
3820 }
3821
3822 //===----------------------------------------------------------------------===//
3823 // External interface
3824 //===----------------------------------------------------------------------===//
3825
3826 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3827 ///
3828 static llvm::ErrorOr<llvm::Module *>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool WillMaterializeAll,DiagnosticHandlerFunction DiagnosticHandler)3829 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3830 LLVMContext &Context, bool WillMaterializeAll,
3831 DiagnosticHandlerFunction DiagnosticHandler) {
3832 Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3833 BitcodeReader *R =
3834 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3835 M->setMaterializer(R);
3836
3837 auto cleanupOnError = [&](std::error_code EC) {
3838 R->releaseBuffer(); // Never take ownership on error.
3839 delete M; // Also deletes R.
3840 return EC;
3841 };
3842
3843 if (std::error_code EC = R->ParseBitcodeInto(M))
3844 return cleanupOnError(EC);
3845
3846 Buffer.release(); // The BitcodeReader owns it now.
3847 return M;
3848 }
3849
3850 llvm::ErrorOr<Module *>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3851 llvm_3_0::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3852 LLVMContext &Context,
3853 DiagnosticHandlerFunction DiagnosticHandler) {
3854 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3855 DiagnosticHandler);
3856 }
3857
3858 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3859 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3860 llvm::ErrorOr<llvm::Module *>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3861 llvm_3_0::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3862 DiagnosticHandlerFunction DiagnosticHandler) {
3863 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3864 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3865 std::move(Buf), Context, true, DiagnosticHandler);
3866 if (!ModuleOrErr)
3867 return ModuleOrErr;
3868 Module *M = ModuleOrErr.get();
3869 // Read in the entire module, and destroy the BitcodeReader.
3870 if (std::error_code EC = M->materializeAllPermanently()) {
3871 delete M;
3872 return EC;
3873 }
3874
3875 return M;
3876 }
3877
3878 std::string
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3879 llvm_3_0::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3880 DiagnosticHandlerFunction DiagnosticHandler) {
3881 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3882 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3883 DiagnosticHandler);
3884 ErrorOr<std::string> Triple = R->parseTriple();
3885 if (Triple.getError())
3886 return "";
3887 return Triple.get();
3888 }
3889