1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //
18 // This file contains the MulticlassPA class which implements a simple
19 // linear multi-class classifier based on the multi-prototype version of
20 // passive aggressive.
21
22 #include "native/multiclass_pa.h"
23
24 #include <stdlib.h>
25
26 using std::vector;
27 using std::pair;
28
29 namespace learningfw {
30
RandFloat()31 float RandFloat() {
32 return static_cast<float>(rand()) / RAND_MAX;
33 }
34
MulticlassPA(int num_classes,int num_dimensions,float aggressiveness)35 MulticlassPA::MulticlassPA(int num_classes,
36 int num_dimensions,
37 float aggressiveness)
38 : num_classes_(num_classes),
39 num_dimensions_(num_dimensions),
40 aggressiveness_(aggressiveness) {
41 InitializeParameters();
42 }
43
~MulticlassPA()44 MulticlassPA::~MulticlassPA() {
45 }
46
InitializeParameters()47 void MulticlassPA::InitializeParameters() {
48 parameters_.resize(num_classes_);
49 for (int i = 0; i < num_classes_; ++i) {
50 parameters_[i].resize(num_dimensions_);
51 for (int j = 0; j < num_dimensions_; ++j) {
52 parameters_[i][j] = 0.0;
53 }
54 }
55 }
56
PickAClassExcept(int target)57 int MulticlassPA::PickAClassExcept(int target) {
58 int picked;
59 do {
60 picked = static_cast<int>(RandFloat() * num_classes_);
61 // picked = static_cast<int>(random_.RandFloat() * num_classes_);
62 } while (target == picked);
63 return picked;
64 }
65
PickAnExample(int num_examples)66 int MulticlassPA::PickAnExample(int num_examples) {
67 return static_cast<int>(RandFloat() * num_examples);
68 }
69
Score(const vector<float> & inputs,const vector<float> & parameters) const70 float MulticlassPA::Score(const vector<float>& inputs,
71 const vector<float>& parameters) const {
72 // CHECK_EQ(inputs.size(), parameters.size());
73 float result = 0.0;
74 for (int i = 0; i < static_cast<int>(inputs.size()); ++i) {
75 result += inputs[i] * parameters[i];
76 }
77 return result;
78 }
79
SparseScore(const vector<pair<int,float>> & inputs,const vector<float> & parameters) const80 float MulticlassPA::SparseScore(const vector<pair<int, float> >& inputs,
81 const vector<float>& parameters) const {
82 float result = 0.0;
83 for (int i = 0; i < static_cast<int>(inputs.size()); ++i) {
84 //DCHECK_GE(inputs[i].first, 0);
85 //DCHECK_LT(inputs[i].first, parameters.size());
86 result += inputs[i].second * parameters[inputs[i].first];
87 }
88 return result;
89 }
90
L2NormSquare(const vector<float> & inputs) const91 float MulticlassPA::L2NormSquare(const vector<float>& inputs) const {
92 float norm = 0;
93 for (int i = 0; i < static_cast<int>(inputs.size()); ++i) {
94 norm += inputs[i] * inputs[i];
95 }
96 return norm;
97 }
98
SparseL2NormSquare(const vector<pair<int,float>> & inputs) const99 float MulticlassPA::SparseL2NormSquare(
100 const vector<pair<int, float> >& inputs) const {
101 float norm = 0;
102 for (int i = 0; i < static_cast<int>(inputs.size()); ++i) {
103 norm += inputs[i].second * inputs[i].second;
104 }
105 return norm;
106 }
107
TrainOneExample(const vector<float> & inputs,int target)108 float MulticlassPA::TrainOneExample(const vector<float>& inputs, int target) {
109 //CHECK_GE(target, 0);
110 //CHECK_LT(target, num_classes_);
111 float target_class_score = Score(inputs, parameters_[target]);
112 // VLOG(1) << "target class " << target << " score " << target_class_score;
113 int other_class = PickAClassExcept(target);
114 float other_class_score = Score(inputs, parameters_[other_class]);
115 // VLOG(1) << "other class " << other_class << " score " << other_class_score;
116 float loss = 1.0 - target_class_score + other_class_score;
117 if (loss > 0.0) {
118 // Compute the learning rate according to PA-I.
119 float twice_norm_square = L2NormSquare(inputs) * 2.0;
120 if (twice_norm_square == 0.0) {
121 twice_norm_square = kEpsilon;
122 }
123 float rate = loss / twice_norm_square;
124 if (rate > aggressiveness_) {
125 rate = aggressiveness_;
126 }
127 // VLOG(1) << "loss = " << loss << " rate = " << rate;
128 // Modify the parameter vectors of the correct and wrong classes
129 for (int i = 0; i < static_cast<int>(inputs.size()); ++i) {
130 // First modify the parameter value of the correct class
131 parameters_[target][i] += rate * inputs[i];
132 // Then modify the parameter value of the wrong class
133 parameters_[other_class][i] -= rate * inputs[i];
134 }
135 return loss;
136 }
137 return 0.0;
138 }
139
SparseTrainOneExample(const vector<pair<int,float>> & inputs,int target)140 float MulticlassPA::SparseTrainOneExample(
141 const vector<pair<int, float> >& inputs, int target) {
142 // CHECK_GE(target, 0);
143 // CHECK_LT(target, num_classes_);
144 float target_class_score = SparseScore(inputs, parameters_[target]);
145 // VLOG(1) << "target class " << target << " score " << target_class_score;
146 int other_class = PickAClassExcept(target);
147 float other_class_score = SparseScore(inputs, parameters_[other_class]);
148 // VLOG(1) << "other class " << other_class << " score " << other_class_score;
149 float loss = 1.0 - target_class_score + other_class_score;
150 if (loss > 0.0) {
151 // Compute the learning rate according to PA-I.
152 float twice_norm_square = SparseL2NormSquare(inputs) * 2.0;
153 if (twice_norm_square == 0.0) {
154 twice_norm_square = kEpsilon;
155 }
156 float rate = loss / twice_norm_square;
157 if (rate > aggressiveness_) {
158 rate = aggressiveness_;
159 }
160 // VLOG(1) << "loss = " << loss << " rate = " << rate;
161 // Modify the parameter vectors of the correct and wrong classes
162 for (int i = 0; i < static_cast<int>(inputs.size()); ++i) {
163 // First modify the parameter value of the correct class
164 parameters_[target][inputs[i].first] += rate * inputs[i].second;
165 // Then modify the parameter value of the wrong class
166 parameters_[other_class][inputs[i].first] -= rate * inputs[i].second;
167 }
168 return loss;
169 }
170 return 0.0;
171 }
172
Train(const vector<pair<vector<float>,int>> & data,int num_iterations)173 float MulticlassPA::Train(const vector<pair<vector<float>, int> >& data,
174 int num_iterations) {
175 int num_examples = data.size();
176 float total_loss = 0.0;
177 for (int t = 0; t < num_iterations; ++t) {
178 int index = PickAnExample(num_examples);
179 float loss_t = TrainOneExample(data[index].first, data[index].second);
180 total_loss += loss_t;
181 }
182 return total_loss / static_cast<float>(num_iterations);
183 }
184
SparseTrain(const vector<pair<vector<pair<int,float>>,int>> & data,int num_iterations)185 float MulticlassPA::SparseTrain(
186 const vector<pair<vector<pair<int, float> >, int> >& data,
187 int num_iterations) {
188 int num_examples = data.size();
189 float total_loss = 0.0;
190 for (int t = 0; t < num_iterations; ++t) {
191 int index = PickAnExample(num_examples);
192 float loss_t = SparseTrainOneExample(data[index].first, data[index].second);
193 total_loss += loss_t;
194 }
195 return total_loss / static_cast<float>(num_iterations);
196 }
197
GetClass(const vector<float> & inputs)198 int MulticlassPA::GetClass(const vector<float>& inputs) {
199 int best_class = -1;
200 float best_score = -10000.0;
201 // float best_score = -MathLimits<float>::kMax;
202 for (int i = 0; i < num_classes_; ++i) {
203 float score_i = Score(inputs, parameters_[i]);
204 if (score_i > best_score) {
205 best_score = score_i;
206 best_class = i;
207 }
208 }
209 return best_class;
210 }
211
SparseGetClass(const vector<pair<int,float>> & inputs)212 int MulticlassPA::SparseGetClass(const vector<pair<int, float> >& inputs) {
213 int best_class = -1;
214 float best_score = -10000.0;
215 //float best_score = -MathLimits<float>::kMax;
216 for (int i = 0; i < num_classes_; ++i) {
217 float score_i = SparseScore(inputs, parameters_[i]);
218 if (score_i > best_score) {
219 best_score = score_i;
220 best_class = i;
221 }
222 }
223 return best_class;
224 }
225
Test(const vector<pair<vector<float>,int>> & data)226 float MulticlassPA::Test(const vector<pair<vector<float>, int> >& data) {
227 int num_examples = data.size();
228 float total_error = 0.0;
229 for (int t = 0; t < num_examples; ++t) {
230 int best_class = GetClass(data[t].first);
231 if (best_class != data[t].second) {
232 ++total_error;
233 }
234 }
235 return total_error / num_examples;
236 }
237
SparseTest(const vector<pair<vector<pair<int,float>>,int>> & data)238 float MulticlassPA::SparseTest(
239 const vector<pair<vector<pair<int, float> >, int> >& data) {
240 int num_examples = data.size();
241 float total_error = 0.0;
242 for (int t = 0; t < num_examples; ++t) {
243 int best_class = SparseGetClass(data[t].first);
244 if (best_class != data[t].second) {
245 ++total_error;
246 }
247 }
248 return total_error / num_examples;
249 }
250 } // namespace learningfw
251