1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 /*
19 * Hardware Composer Commit Points
20 *
21 * Synopsis
22 * hwcCommit [options] graphicFormat ...
23 * options:
24 * -s [width, height] - Starting dimension
25 * -v - Verbose
26 *
27 * graphic formats:
28 * RGBA8888 (reference frame default)
29 * RGBX8888
30 * RGB888
31 * RGB565
32 * BGRA8888
33 * RGBA5551
34 * RGBA4444
35 * YV12
36 *
37 * Description
38 * The Hardware Composer (HWC) Commit test is a benchmark that
39 * discovers the points at which the HWC will commit to rendering an
40 * overlay(s). Before rendering a set of overlays, the HWC is shown
41 * the list through a prepare call. During the prepare call the HWC
42 * is able to examine the list and specify which overlays it is able
43 * to handle. The overlays that it can't handle are typically composited
44 * by a higher level (e.g. Surface Flinger) and then the original list
45 * plus a composit of what HWC passed on are provided back to the HWC
46 * for rendering.
47 *
48 * Once an implementation of the HWC has been shipped, a regression would
49 * likely occur if a latter implementation started passing on conditions
50 * that it used to commit to. The primary purpose of this benchmark
51 * is the automated discovery of the commit points, where an implementation
52 * is on the edge between committing and not committing. These are commonly
53 * referred to as commit points. Between implementations changes to the
54 * commit points are allowed, as long as they improve what the HWC commits
55 * to. Once an implementation of the HWC is shipped, the commit points are
56 * not allowed to regress in future implementations.
57 *
58 * This benchmark takes a sampling and then adjusts until it finds a
59 * commit point. It doesn't exhaustively check all possible conditions,
60 * which do to the number of combinations would be impossible. Instead
61 * it starts its search from a starting dimension, that can be changed
62 * via the -s option. The search is also bounded by a set of search
63 * limits, that are hard-coded into a structure of constants named
64 * searchLimits. Results that happen to reach a searchLimit are prefixed
65 * with >=, so that it is known that the value could possibly be larger.
66 *
67 * Measurements are made for each of the graphic formats specified as
68 * positional parameters on the command-line. If no graphic formats
69 * are specified on the command line, then by default measurements are
70 * made and reported for each of the known graphic format.
71 */
72
73 #include <algorithm>
74 #include <assert.h>
75 #include <cerrno>
76 #include <cmath>
77 #include <cstdlib>
78 #include <ctime>
79 #include <iomanip>
80 #include <istream>
81 #include <libgen.h>
82 #include <list>
83 #include <sched.h>
84 #include <sstream>
85 #include <stdint.h>
86 #include <string.h>
87 #include <unistd.h>
88 #include <vector>
89
90 #include <sys/syscall.h>
91 #include <sys/types.h>
92 #include <sys/wait.h>
93
94 #include <EGL/egl.h>
95 #include <EGL/eglext.h>
96 #include <GLES2/gl2.h>
97 #include <GLES2/gl2ext.h>
98
99 #include <ui/GraphicBuffer.h>
100
101 #define LOG_TAG "hwcCommitTest"
102 #include <utils/Log.h>
103 #include <testUtil.h>
104
105 #include <hardware/hwcomposer.h>
106
107 #include <glTestLib.h>
108 #include "hwcTestLib.h"
109
110 using namespace std;
111 using namespace android;
112
113 // Defaults
114 const HwcTestDim defaultStartDim = HwcTestDim(100, 100);
115 const bool defaultVerbose = false;
116
117 const uint32_t defaultFormat = HAL_PIXEL_FORMAT_RGBA_8888;
118 const int32_t defaultTransform = 0;
119 const uint32_t defaultBlend = HWC_BLENDING_NONE;
120 const ColorFract defaultColor(0.5, 0.5, 0.5);
121 const float defaultAlpha = 1.0; // Opaque
122 const HwcTestDim defaultSourceDim(1, 1);
123 const struct hwc_rect defaultSourceCrop = {0, 0, 1, 1};
124 const struct hwc_rect defaultDisplayFrame = {0, 0, 100, 100};
125
126 // Global Constants
127 const uint32_t printFieldWidth = 2;
128 const struct searchLimits {
129 uint32_t numOverlays;
130 HwcTestDim sourceCrop;
131 } searchLimits = {
132 10,
133 HwcTestDim(3000, 2000),
134 };
135 const struct transformType {
136 const char *desc;
137 uint32_t id;
138 } transformType[] = {
139 {"fliph", HWC_TRANSFORM_FLIP_H},
140 {"flipv", HWC_TRANSFORM_FLIP_V},
141 {"rot90", HWC_TRANSFORM_ROT_90},
142 {"rot180", HWC_TRANSFORM_ROT_180},
143 {"rot270", HWC_TRANSFORM_ROT_270},
144 };
145 const struct blendType {
146 const char *desc;
147 uint32_t id;
148 } blendType[] = {
149 {"none", HWC_BLENDING_NONE},
150 {"premult", HWC_BLENDING_PREMULT},
151 {"coverage", HWC_BLENDING_COVERAGE},
152 };
153
154 // Defines
155 #define MAXCMD 200
156 #define CMD_STOP_FRAMEWORK "stop 2>&1"
157 #define CMD_START_FRAMEWORK "start 2>&1"
158
159 // Macros
160 #define NUMA(a) (sizeof(a) / sizeof(a [0])) // Num elements in an array
161
162 // Local types
163 class Rectangle {
164 public:
165 Rectangle(uint32_t graphicFormat = defaultFormat,
166 HwcTestDim dfDim = HwcTestDim(1, 1),
167 HwcTestDim sDim = HwcTestDim(1, 1));
168 void setSourceDim(HwcTestDim dim);
169
170 uint32_t format;
171 uint32_t transform;
172 int32_t blend;
173 ColorFract color;
174 float alpha;
175 HwcTestDim sourceDim;
176 struct hwc_rect sourceCrop;
177 struct hwc_rect displayFrame;
178 };
179
180 class Range {
181 public:
Range(void)182 Range(void) : _l(0), _u(0) {}
Range(uint32_t lower,uint32_t upper)183 Range(uint32_t lower, uint32_t upper) : _l(lower), _u(upper) {}
lower(void)184 uint32_t lower(void) { return _l; }
upper(void)185 uint32_t upper(void) { return _u; }
186
187 operator string();
188
189 private:
190 uint32_t _l; // lower
191 uint32_t _u; // upper
192 };
193
operator string()194 Range::operator string()
195 {
196 ostringstream out;
197
198 out << '[' << _l << ", " << _u << ']';
199
200 return out.str();
201 }
202
203 class Rational {
204 public:
Rational(void)205 Rational(void) : _n(0), _d(1) {}
Rational(uint32_t n,uint32_t d)206 Rational(uint32_t n, uint32_t d) : _n(n), _d(d) {}
numerator(void)207 uint32_t numerator(void) { return _n; }
denominator(void)208 uint32_t denominator(void) { return _d; }
setNumerator(uint32_t numerator)209 void setNumerator(uint32_t numerator) { _n = numerator; }
210
211 bool operator==(const Rational& other) const;
operator !=(const Rational & other) const212 bool operator!=(const Rational& other) const { return !(*this == other); }
213 bool operator<(const Rational& other) const;
operator >(const Rational & other) const214 bool operator>(const Rational& other) const {
215 return (!(*this == other) && !(*this < other));
216 }
217 static void double2Rational(double f, Range nRange, Range dRange,
218 Rational& lower, Rational& upper);
219
220 operator string() const;
operator double() const221 operator double() const { return (double) _n / (double) _d; }
222
223
224 private:
225 uint32_t _n;
226 uint32_t _d;
227 };
228
229 // Globals
230 static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
231 GraphicBuffer::USAGE_SW_WRITE_RARELY;
232 static hwc_composer_device_1_t *hwcDevice;
233 static EGLDisplay dpy;
234 static EGLSurface surface;
235 static EGLint width, height;
236 static size_t maxHeadingLen;
237 static vector<string> formats;
238
239 // Measurements
240 struct meas {
241 uint32_t format;
242 uint32_t startDimOverlays;
243 uint32_t maxNonOverlapping;
244 uint32_t maxOverlapping;
245 list<uint32_t> transforms;
246 list<uint32_t> blends;
247 struct displayFrame {
248 uint32_t minWidth;
249 uint32_t minHeight;
250 HwcTestDim minDim;
251 uint32_t maxWidth;
252 uint32_t maxHeight;
253 HwcTestDim maxDim;
254 } df;
255 struct sourceCrop {
256 uint32_t minWidth;
257 uint32_t minHeight;
258 HwcTestDim minDim;
259 uint32_t maxWidth;
260 uint32_t maxHeight;
261 HwcTestDim maxDim;
262 Rational hScale;
263 HwcTestDim hScaleBestDf;
264 HwcTestDim hScaleBestSc;
265 Rational vScale;
266 HwcTestDim vScaleBestDf;
267 HwcTestDim vScaleBestSc;
268 } sc;
269 vector<uint32_t> overlapBlendNone;
270 vector<uint32_t> overlapBlendPremult;
271 vector<uint32_t> overlapBlendCoverage;
272 };
273 vector<meas> measurements;
274
275 // Function prototypes
276 uint32_t numOverlays(list<Rectangle>& rectList);
277 uint32_t maxOverlays(uint32_t format, bool allowOverlap);
278 list<uint32_t> supportedTransforms(uint32_t format);
279 list<uint32_t> supportedBlends(uint32_t format);
280 uint32_t dfMinWidth(uint32_t format);
281 uint32_t dfMinHeight(uint32_t format);
282 uint32_t dfMaxWidth(uint32_t format);
283 uint32_t dfMaxHeight(uint32_t format);
284 HwcTestDim dfMinDim(uint32_t format);
285 HwcTestDim dfMaxDim(uint32_t format);
286 uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim);
287 uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim);
288 uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim);
289 uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim);
290 HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim);
291 HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim);
292 Rational scHScale(uint32_t format,
293 const HwcTestDim& dfMin, const HwcTestDim& dfMax,
294 const HwcTestDim& scMin, const HwcTestDim& scMax,
295 HwcTestDim& outBestDf, HwcTestDim& outBestSc);
296 Rational scVScale(uint32_t format,
297 const HwcTestDim& dfMin, const HwcTestDim& dfMax,
298 const HwcTestDim& scMin, const HwcTestDim& scMax,
299 HwcTestDim& outBestDf, HwcTestDim& outBestSc);
300 uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat,
301 uint32_t backgroundBlend, uint32_t foregroundBlend);
302 string transformList2str(const list<uint32_t>& transformList);
303 string blendList2str(const list<uint32_t>& blendList);
304 void init(void);
305 void printFormatHeadings(size_t indent);
306 void printOverlapLine(size_t indent, const string formatStr,
307 const vector<uint32_t>& results);
308 void printSyntax(const char *cmd);
309
310 // Command-line option settings
311 static bool verbose = defaultVerbose;
312 static HwcTestDim startDim = defaultStartDim;
313
314 /*
315 * Main
316 *
317 * Performs the following high-level sequence of operations:
318 *
319 * 1. Command-line parsing
320 *
321 * 2. Form a list of command-line specified graphic formats. If
322 * no formats are specified, then form a list of all known formats.
323 *
324 * 3. Stop framework
325 * Only one user at a time is allowed to use the HWC. Surface
326 * Flinger uses the HWC and is part of the framework. Need to
327 * stop the framework so that Surface Flinger will stop using
328 * the HWC.
329 *
330 * 4. Initialization
331 *
332 * 5. For each graphic format in the previously formed list perform
333 * measurements on that format and report the results.
334 *
335 * 6. Start framework
336 */
337 int
main(int argc,char * argv[])338 main(int argc, char *argv[])
339 {
340 int rv, opt;
341 bool error;
342 string str;
343 char cmd[MAXCMD];
344 list<Rectangle> rectList;
345
346 testSetLogCatTag(LOG_TAG);
347
348 // Parse command line arguments
349 while ((opt = getopt(argc, argv, "s:v?h")) != -1) {
350 switch (opt) {
351
352 case 's': // Start Dimension
353 // Use arguments until next starts with a dash
354 // or current ends with a > or ]
355 str = optarg;
356 while (optind < argc) {
357 if (*argv[optind] == '-') { break; }
358 char endChar = (str.length() > 1) ? str[str.length() - 1] : 0;
359 if ((endChar == '>') || (endChar == ']')) { break; }
360 str += " " + string(argv[optind++]);
361 }
362 {
363 istringstream in(str);
364 startDim = hwcTestParseDim(in, error);
365 // Any parse error or characters not used by parser
366 if (error
367 || (((unsigned int) in.tellg() != in.str().length())
368 && (in.tellg() != (streampos) -1))) {
369 testPrintE("Invalid command-line specified start "
370 "dimension of: %s", str.c_str());
371 exit(8);
372 }
373 }
374 break;
375
376 case 'v': // Verbose
377 verbose = true;
378 break;
379
380 case 'h': // Help
381 case '?':
382 default:
383 printSyntax(basename(argv[0]));
384 exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
385 }
386 }
387
388 // Positional parameters
389 // Positional parameters provide the names of graphic formats that
390 // measurements are to be made on. Measurements are made on all
391 // known graphic formats when no positional parameters are provided.
392 if (optind == argc) {
393 // No command-line specified graphic formats
394 // Add all graphic formats to the list of formats to be measured
395 for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
396 formats.push_back(hwcTestGraphicFormat[n1].desc);
397 }
398 } else {
399 // Add names of command-line specified graphic formats to the
400 // list of formats to be tested
401 for (; argv[optind] != NULL; optind++) {
402 formats.push_back(argv[optind]);
403 }
404 }
405
406 // Determine length of longest specified graphic format.
407 // This value is used for output formating
408 for (vector<string>::iterator it = formats.begin();
409 it != formats.end(); ++it) {
410 maxHeadingLen = max(maxHeadingLen, it->length());
411 }
412
413 // Stop framework
414 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
415 if (rv >= (signed) sizeof(cmd) - 1) {
416 testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
417 exit(14);
418 }
419 testExecCmd(cmd);
420 testDelay(1.0); // TODO - needs means to query whether asynchronous stop
421 // framework operation has completed. For now, just wait
422 // a long time.
423
424 testPrintI("startDim: %s", ((string) startDim).c_str());
425
426 init();
427
428 // For each of the graphic formats
429 for (vector<string>::iterator itFormat = formats.begin();
430 itFormat != formats.end(); ++itFormat) {
431
432 // Locate hwcTestLib structure that describes this format
433 const struct hwcTestGraphicFormat *format;
434 format = hwcTestGraphicFormatLookup((*itFormat).c_str());
435 if (format == NULL) {
436 testPrintE("Unknown graphic format of: %s", (*itFormat).c_str());
437 exit(1);
438 }
439
440 // Display format header
441 testPrintI("format: %s", format->desc);
442
443 // Create area to hold the measurements
444 struct meas meas;
445 struct meas *measPtr;
446 meas.format = format->format;
447 measurements.push_back(meas);
448 measPtr = &measurements[measurements.size() - 1];
449
450 // Start dimension num overlays
451 Rectangle rect(format->format, startDim);
452 rectList.clear();
453 rectList.push_back(rect);
454 measPtr->startDimOverlays = numOverlays(rectList);
455 testPrintI(" startDimOverlays: %u", measPtr->startDimOverlays);
456
457 // Skip the rest of the measurements, when the start dimension
458 // doesn't produce an overlay
459 if (measPtr->startDimOverlays == 0) { continue; }
460
461 // Max Overlays
462 measPtr->maxNonOverlapping = maxOverlays(format->format, false);
463 testPrintI(" max nonOverlapping overlays: %s%u",
464 (measPtr->maxNonOverlapping == searchLimits.numOverlays)
465 ? ">= " : "",
466 measPtr->maxNonOverlapping);
467 measPtr->maxOverlapping = maxOverlays(format->format, true);
468 testPrintI(" max Overlapping overlays: %s%u",
469 (measPtr->maxOverlapping == searchLimits.numOverlays)
470 ? ">= " : "",
471 measPtr->maxOverlapping);
472
473 // Transforms and blends
474 measPtr->transforms = supportedTransforms(format->format);
475 testPrintI(" transforms: %s",
476 transformList2str(measPtr->transforms).c_str());
477 measPtr->blends = supportedBlends(format->format);
478 testPrintI(" blends: %s",
479 blendList2str(measPtr->blends).c_str());
480
481 // Display frame measurements
482 measPtr->df.minWidth = dfMinWidth(format->format);
483 testPrintI(" dfMinWidth: %u", measPtr->df.minWidth);
484
485 measPtr->df.minHeight = dfMinHeight(format->format);
486 testPrintI(" dfMinHeight: %u", measPtr->df.minHeight);
487
488 measPtr->df.maxWidth = dfMaxWidth(format->format);
489 testPrintI(" dfMaxWidth: %u", measPtr->df.maxWidth);
490
491 measPtr->df.maxHeight = dfMaxHeight(format->format);
492 testPrintI(" dfMaxHeight: %u", measPtr->df.maxHeight);
493
494 measPtr->df.minDim = dfMinDim(format->format);
495 testPrintI(" dfMinDim: %s", ((string) measPtr->df.minDim).c_str());
496
497 measPtr->df.maxDim = dfMaxDim(format->format);
498 testPrintI(" dfMaxDim: %s", ((string) measPtr->df.maxDim).c_str());
499
500 // Source crop measurements
501 measPtr->sc.minWidth = scMinWidth(format->format, measPtr->df.minDim);
502 testPrintI(" scMinWidth: %u", measPtr->sc.minWidth);
503
504 measPtr->sc.minHeight = scMinHeight(format->format, measPtr->df.minDim);
505 testPrintI(" scMinHeight: %u", measPtr->sc.minHeight);
506
507 measPtr->sc.maxWidth = scMaxWidth(format->format, measPtr->df.maxDim);
508 testPrintI(" scMaxWidth: %s%u", (measPtr->sc.maxWidth
509 == searchLimits.sourceCrop.width()) ? ">= " : "",
510 measPtr->sc.maxWidth);
511
512 measPtr->sc.maxHeight = scMaxHeight(format->format, measPtr->df.maxDim);
513 testPrintI(" scMaxHeight: %s%u", (measPtr->sc.maxHeight
514 == searchLimits.sourceCrop.height()) ? ">= " : "",
515 measPtr->sc.maxHeight);
516
517 measPtr->sc.minDim = scMinDim(format->format, measPtr->df.minDim);
518 testPrintI(" scMinDim: %s", ((string) measPtr->sc.minDim).c_str());
519
520 measPtr->sc.maxDim = scMaxDim(format->format, measPtr->df.maxDim);
521 testPrintI(" scMaxDim: %s%s", ((measPtr->sc.maxDim.width()
522 >= searchLimits.sourceCrop.width())
523 || (measPtr->sc.maxDim.width() >=
524 searchLimits.sourceCrop.height())) ? ">= " : "",
525 ((string) measPtr->sc.maxDim).c_str());
526
527 measPtr->sc.hScale = scHScale(format->format,
528 measPtr->df.minDim, measPtr->df.maxDim,
529 measPtr->sc.minDim, measPtr->sc.maxDim,
530 measPtr->sc.hScaleBestDf,
531 measPtr->sc.hScaleBestSc);
532 testPrintI(" scHScale: %s%f",
533 (measPtr->sc.hScale
534 >= Rational(searchLimits.sourceCrop.width(),
535 measPtr->df.minDim.width())) ? ">= " : "",
536 (double) measPtr->sc.hScale);
537 testPrintI(" HScale Best Display Frame: %s",
538 ((string) measPtr->sc.hScaleBestDf).c_str());
539 testPrintI(" HScale Best Source Crop: %s",
540 ((string) measPtr->sc.hScaleBestSc).c_str());
541
542 measPtr->sc.vScale = scVScale(format->format,
543 measPtr->df.minDim, measPtr->df.maxDim,
544 measPtr->sc.minDim, measPtr->sc.maxDim,
545 measPtr->sc.vScaleBestDf,
546 measPtr->sc.vScaleBestSc);
547 testPrintI(" scVScale: %s%f",
548 (measPtr->sc.vScale
549 >= Rational(searchLimits.sourceCrop.height(),
550 measPtr->df.minDim.height())) ? ">= " : "",
551 (double) measPtr->sc.vScale);
552 testPrintI(" VScale Best Display Frame: %s",
553 ((string) measPtr->sc.vScaleBestDf).c_str());
554 testPrintI(" VScale Best Source Crop: %s",
555 ((string) measPtr->sc.vScaleBestSc).c_str());
556
557 // Overlap two graphic formats and different blends
558 // Results displayed after all overlap measurments with
559 // current format in the foreground
560 // TODO: make measurments with background blend other than
561 // none. All of these measurements are done with a
562 // background blend of HWC_BLENDING_NONE, with the
563 // blend type of the foregound being varied.
564 uint32_t foregroundFormat = format->format;
565 for (vector<string>::iterator it = formats.begin();
566 it != formats.end(); ++it) {
567 uint32_t num;
568
569 const struct hwcTestGraphicFormat *backgroundFormatPtr
570 = hwcTestGraphicFormatLookup((*it).c_str());
571 uint32_t backgroundFormat = backgroundFormatPtr->format;
572
573 num = numOverlapping(backgroundFormat, foregroundFormat,
574 HWC_BLENDING_NONE, HWC_BLENDING_NONE);
575 measPtr->overlapBlendNone.push_back(num);
576
577 num = numOverlapping(backgroundFormat, foregroundFormat,
578 HWC_BLENDING_NONE, HWC_BLENDING_PREMULT);
579 measPtr->overlapBlendPremult.push_back(num);
580
581 num = numOverlapping(backgroundFormat, foregroundFormat,
582 HWC_BLENDING_NONE, HWC_BLENDING_COVERAGE);
583 measPtr->overlapBlendCoverage.push_back(num);
584 }
585
586 }
587
588 // Display overlap results
589 size_t indent = 2;
590 testPrintI("overlapping blend: none");
591 printFormatHeadings(indent);
592 for (vector<string>::iterator it = formats.begin();
593 it != formats.end(); ++it) {
594 printOverlapLine(indent, *it, measurements[it
595 - formats.begin()].overlapBlendNone);
596 }
597 testPrintI("");
598
599 testPrintI("overlapping blend: premult");
600 printFormatHeadings(indent);
601 for (vector<string>::iterator it = formats.begin();
602 it != formats.end(); ++it) {
603 printOverlapLine(indent, *it, measurements[it
604 - formats.begin()].overlapBlendPremult);
605 }
606 testPrintI("");
607
608 testPrintI("overlapping blend: coverage");
609 printFormatHeadings(indent);
610 for (vector<string>::iterator it = formats.begin();
611 it != formats.end(); ++it) {
612 printOverlapLine(indent, *it, measurements[it
613 - formats.begin()].overlapBlendCoverage);
614 }
615 testPrintI("");
616
617 // Start framework
618 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
619 if (rv >= (signed) sizeof(cmd) - 1) {
620 testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
621 exit(21);
622 }
623 testExecCmd(cmd);
624
625 return 0;
626 }
627
628 // Determine the maximum number of overlays that are all of the same format
629 // that the HWC will commit to. If allowOverlap is true, then the rectangles
630 // are laid out on a diagonal starting from the upper left corner. With
631 // each rectangle adjust one pixel to the right and one pixel down.
632 // When allowOverlap is false, the rectangles are tiled in column major
633 // order. Note, column major ordering is used so that the initial rectangles
634 // are all on different horizontal scan rows. It is common that hardware
635 // has limits on the number of objects it can handle on any single row.
maxOverlays(uint32_t format,bool allowOverlap)636 uint32_t maxOverlays(uint32_t format, bool allowOverlap)
637 {
638 unsigned int max = 0;
639
640 for (unsigned int numRects = 1; numRects <= searchLimits.numOverlays;
641 numRects++) {
642 list<Rectangle> rectList;
643
644 for (unsigned int x = 0;
645 (x + startDim.width()) < (unsigned int) width;
646 x += (allowOverlap) ? 1 : startDim.width()) {
647 for (unsigned int y = 0;
648 (y + startDim.height()) < (unsigned int) height;
649 y += (allowOverlap) ? 1 : startDim.height()) {
650 Rectangle rect(format, startDim, startDim);
651 rect.displayFrame.left = x;
652 rect.displayFrame.top = y;
653 rect.displayFrame.right = x + startDim.width();
654 rect.displayFrame.bottom = y + startDim.height();
655
656 rectList.push_back(rect);
657
658 if (rectList.size() >= numRects) { break; }
659 }
660 if (rectList.size() >= numRects) { break; }
661 }
662
663 uint32_t num = numOverlays(rectList);
664 if (num > max) { max = num; }
665 }
666
667 return max;
668 }
669
670 // Measures what transforms (i.e. flip horizontal, rotate 180) are
671 // supported by the specified format
supportedTransforms(uint32_t format)672 list<uint32_t> supportedTransforms(uint32_t format)
673 {
674 list<uint32_t> rv;
675 list<Rectangle> rectList;
676 Rectangle rect(format, startDim);
677
678 // For each of the transform types
679 for (unsigned int idx = 0; idx < NUMA(transformType); idx++) {
680 unsigned int id = transformType[idx].id;
681
682 rect.transform = id;
683 rectList.clear();
684 rectList.push_back(rect);
685 uint32_t num = numOverlays(rectList);
686
687 if (num == 1) {
688 rv.push_back(id);
689 }
690 }
691
692 return rv;
693 }
694
695 // Determines which types of blends (i.e. none, premult, coverage) are
696 // supported by the specified format
supportedBlends(uint32_t format)697 list<uint32_t> supportedBlends(uint32_t format)
698 {
699 list<uint32_t> rv;
700 list<Rectangle> rectList;
701 Rectangle rect(format, startDim);
702
703 // For each of the blend types
704 for (unsigned int idx = 0; idx < NUMA(blendType); idx++) {
705 unsigned int id = blendType[idx].id;
706
707 rect.blend = id;
708 rectList.clear();
709 rectList.push_back(rect);
710 uint32_t num = numOverlays(rectList);
711
712 if (num == 1) {
713 rv.push_back(id);
714 }
715 }
716
717 return rv;
718 }
719
720 // Determines the minimum width of any display frame of the given format
721 // that the HWC will commit to.
dfMinWidth(uint32_t format)722 uint32_t dfMinWidth(uint32_t format)
723 {
724 uint32_t w;
725 list<Rectangle> rectList;
726
727 for (w = 1; w <= startDim.width(); w++) {
728 HwcTestDim dim(w, startDim.height());
729 Rectangle rect(format, dim);
730 rectList.clear();
731 rectList.push_back(rect);
732 uint32_t num = numOverlays(rectList);
733 if (num > 0) {
734 return w;
735 }
736 }
737 if (w > startDim.width()) {
738 testPrintE("Failed to locate display frame min width");
739 exit(33);
740 }
741
742 return w;
743 }
744
745 // Display frame minimum height
dfMinHeight(uint32_t format)746 uint32_t dfMinHeight(uint32_t format)
747 {
748 uint32_t h;
749 list<Rectangle> rectList;
750
751 for (h = 1; h <= startDim.height(); h++) {
752 HwcTestDim dim(startDim.width(), h);
753 Rectangle rect(format, dim);
754 rectList.clear();
755 rectList.push_back(rect);
756 uint32_t num = numOverlays(rectList);
757 if (num > 0) {
758 return h;
759 }
760 }
761 if (h > startDim.height()) {
762 testPrintE("Failed to locate display frame min height");
763 exit(34);
764 }
765
766 return h;
767 }
768
769 // Display frame maximum width
dfMaxWidth(uint32_t format)770 uint32_t dfMaxWidth(uint32_t format)
771 {
772 uint32_t w;
773 list<Rectangle> rectList;
774
775 for (w = width; w >= startDim.width(); w--) {
776 HwcTestDim dim(w, startDim.height());
777 Rectangle rect(format, dim);
778 rectList.clear();
779 rectList.push_back(rect);
780 uint32_t num = numOverlays(rectList);
781 if (num > 0) {
782 return w;
783 }
784 }
785 if (w < startDim.width()) {
786 testPrintE("Failed to locate display frame max width");
787 exit(35);
788 }
789
790 return w;
791 }
792
793 // Display frame maximum height
dfMaxHeight(uint32_t format)794 uint32_t dfMaxHeight(uint32_t format)
795 {
796 uint32_t h;
797
798 for (h = height; h >= startDim.height(); h--) {
799 HwcTestDim dim(startDim.width(), h);
800 Rectangle rect(format, dim);
801 list<Rectangle> rectList;
802 rectList.push_back(rect);
803 uint32_t num = numOverlays(rectList);
804 if (num > 0) {
805 return h;
806 }
807 }
808 if (h < startDim.height()) {
809 testPrintE("Failed to locate display frame max height");
810 exit(36);
811 }
812
813 return h;
814 }
815
816 // Determine the minimum number of pixels that the HWC will ever commit to.
817 // Note, this might be different that dfMinWidth * dfMinHeight, in that this
818 // function adjusts both the width and height from the starting dimension.
dfMinDim(uint32_t format)819 HwcTestDim dfMinDim(uint32_t format)
820 {
821 uint64_t bestMinPixels = 0;
822 HwcTestDim bestDim;
823 bool bestSet = false; // True when value has been assigned to
824 // bestMinPixels and bestDim
825
826 bool origVerbose = verbose; // Temporarily turn off verbose
827 verbose = false;
828 for (uint32_t w = 1; w <= startDim.width(); w++) {
829 for (uint32_t h = 1; h <= startDim.height(); h++) {
830 if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) {
831 break;
832 }
833
834 HwcTestDim dim(w, h);
835 Rectangle rect(format, dim);
836 list<Rectangle> rectList;
837 rectList.push_back(rect);
838 uint32_t num = numOverlays(rectList);
839 if (num > 0) {
840 uint64_t pixels = dim.width() * dim.height();
841 if (!bestSet || (pixels < bestMinPixels)) {
842 bestMinPixels = pixels;
843 bestDim = dim;
844 bestSet = true;
845 }
846 }
847 }
848 }
849 verbose = origVerbose;
850
851 if (!bestSet) {
852 testPrintE("Unable to locate display frame min dimension");
853 exit(20);
854 }
855
856 return bestDim;
857 }
858
859 // Display frame maximum dimension
dfMaxDim(uint32_t format)860 HwcTestDim dfMaxDim(uint32_t format)
861 {
862 uint64_t bestMaxPixels = 0;
863 HwcTestDim bestDim;
864 bool bestSet = false; // True when value has been assigned to
865 // bestMaxPixels and bestDim;
866
867 // Potentially increase benchmark performance by first checking
868 // for the common case of supporting a full display frame.
869 HwcTestDim dim(width, height);
870 Rectangle rect(format, dim);
871 list<Rectangle> rectList;
872 rectList.push_back(rect);
873 uint32_t num = numOverlays(rectList);
874 if (num == 1) { return dim; }
875
876 // TODO: Use a binary search
877 bool origVerbose = verbose; // Temporarily turn off verbose
878 verbose = false;
879 for (uint32_t w = startDim.width(); w <= (uint32_t) width; w++) {
880 for (uint32_t h = startDim.height(); h <= (uint32_t) height; h++) {
881 if (bestSet && ((w * h) <= bestMaxPixels)) { continue; }
882
883 HwcTestDim dim(w, h);
884 Rectangle rect(format, dim);
885 list<Rectangle> rectList;
886 rectList.push_back(rect);
887 uint32_t num = numOverlays(rectList);
888 if (num > 0) {
889 uint64_t pixels = dim.width() * dim.height();
890 if (!bestSet || (pixels > bestMaxPixels)) {
891 bestMaxPixels = pixels;
892 bestDim = dim;
893 bestSet = true;
894 }
895 }
896 }
897 }
898 verbose = origVerbose;
899
900 if (!bestSet) {
901 testPrintE("Unable to locate display frame max dimension");
902 exit(21);
903 }
904
905 return bestDim;
906 }
907
908 // Source crop minimum width
scMinWidth(uint32_t format,const HwcTestDim & dfDim)909 uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim)
910 {
911 uint32_t w;
912 list<Rectangle> rectList;
913
914 // Source crop frame min width
915 for (w = 1; w <= dfDim.width(); w++) {
916 Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height()));
917 rectList.clear();
918 rectList.push_back(rect);
919 uint32_t num = numOverlays(rectList);
920 if (num > 0) {
921 return w;
922 }
923 }
924 testPrintE("Failed to locate source crop min width");
925 exit(35);
926 }
927
928 // Source crop minimum height
scMinHeight(uint32_t format,const HwcTestDim & dfDim)929 uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim)
930 {
931 uint32_t h;
932 list<Rectangle> rectList;
933
934 for (h = 1; h <= dfDim.height(); h++) {
935 Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h));
936 rectList.clear();
937 rectList.push_back(rect);
938 uint32_t num = numOverlays(rectList);
939 if (num > 0) {
940 return h;
941 }
942 }
943 testPrintE("Failed to locate source crop min height");
944 exit(36);
945 }
946
947 // Source crop maximum width
scMaxWidth(uint32_t format,const HwcTestDim & dfDim)948 uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim)
949 {
950 uint32_t w;
951 list<Rectangle> rectList;
952
953 for (w = searchLimits.sourceCrop.width(); w >= dfDim.width(); w--) {
954 Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height()));
955 rectList.clear();
956 rectList.push_back(rect);
957 uint32_t num = numOverlays(rectList);
958 if (num > 0) {
959 return w;
960 }
961 }
962 testPrintE("Failed to locate source crop max width");
963 exit(35);
964 }
965
966 // Source crop maximum height
scMaxHeight(uint32_t format,const HwcTestDim & dfDim)967 uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim)
968 {
969 uint32_t h;
970 list<Rectangle> rectList;
971
972 for (h = searchLimits.sourceCrop.height(); h >= dfDim.height(); h--) {
973 Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h));
974 rectList.clear();
975 rectList.push_back(rect);
976 uint32_t num = numOverlays(rectList);
977 if (num > 0) {
978 return h;
979 }
980 }
981 testPrintE("Failed to locate source crop max height");
982 exit(36);
983 }
984
985 // Source crop minimum dimension
986 // Discovers the source crop with the least number of pixels that the
987 // HWC will commit to. Note, this may be different from scMinWidth
988 // * scMinHeight, in that this function searches for a combination of
989 // width and height. While the other routines always keep one of the
990 // dimensions equal to the corresponding start dimension.
scMinDim(uint32_t format,const HwcTestDim & dfDim)991 HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim)
992 {
993 uint64_t bestMinPixels = 0;
994 HwcTestDim bestDim;
995 bool bestSet = false; // True when value has been assigned to
996 // bestMinPixels and bestDim
997
998 bool origVerbose = verbose; // Temporarily turn off verbose
999 verbose = false;
1000 for (uint32_t w = 1; w <= dfDim.width(); w++) {
1001 for (uint32_t h = 1; h <= dfDim.height(); h++) {
1002 if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) {
1003 break;
1004 }
1005
1006 HwcTestDim dim(w, h);
1007 Rectangle rect(format, dfDim, HwcTestDim(w, h));
1008 list<Rectangle> rectList;
1009 rectList.push_back(rect);
1010 uint32_t num = numOverlays(rectList);
1011 if (num > 0) {
1012 uint64_t pixels = dim.width() * dim.height();
1013 if (!bestSet || (pixels < bestMinPixels)) {
1014 bestMinPixels = pixels;
1015 bestDim = dim;
1016 bestSet = true;
1017 }
1018 }
1019 }
1020 }
1021 verbose = origVerbose;
1022
1023 if (!bestSet) {
1024 testPrintE("Unable to locate source crop min dimension");
1025 exit(20);
1026 }
1027
1028 return bestDim;
1029 }
1030
1031 // Source crop maximum dimension
scMaxDim(uint32_t format,const HwcTestDim & dfDim)1032 HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim)
1033 {
1034 uint64_t bestMaxPixels = 0;
1035 HwcTestDim bestDim;
1036 bool bestSet = false; // True when value has been assigned to
1037 // bestMaxPixels and bestDim;
1038
1039 // Potentially increase benchmark performance by first checking
1040 // for the common case of supporting the maximum checked source size
1041 HwcTestDim dim = searchLimits.sourceCrop;
1042 Rectangle rect(format, dfDim, searchLimits.sourceCrop);
1043 list<Rectangle> rectList;
1044 rectList.push_back(rect);
1045 uint32_t num = numOverlays(rectList);
1046 if (num == 1) { return dim; }
1047
1048 // TODO: Use a binary search
1049 bool origVerbose = verbose; // Temporarily turn off verbose
1050 verbose = false;
1051 for (uint32_t w = dfDim.width();
1052 w <= searchLimits.sourceCrop.width(); w++) {
1053 for (uint32_t h = dfDim.height();
1054 h <= searchLimits.sourceCrop.height(); h++) {
1055 if (bestSet && ((w * h) <= bestMaxPixels)) { continue; }
1056
1057 HwcTestDim dim(w, h);
1058 Rectangle rect(format, dfDim, dim);
1059 list<Rectangle> rectList;
1060 rectList.push_back(rect);
1061 uint32_t num = numOverlays(rectList);
1062 if (num > 0) {
1063 uint64_t pixels = dim.width() * dim.height();
1064 if (!bestSet || (pixels > bestMaxPixels)) {
1065 bestMaxPixels = pixels;
1066 bestDim = dim;
1067 bestSet = true;
1068 }
1069 }
1070 }
1071 }
1072 verbose = origVerbose;
1073
1074 if (!bestSet) {
1075 testPrintE("Unable to locate source crop max dimension");
1076 exit(21);
1077 }
1078
1079 return bestDim;
1080 }
1081
1082 // Source crop horizontal scale
1083 // Determines the maximum factor by which the source crop can be larger
1084 // that the display frame. The commit point is discovered through a
1085 // binary search of rational numbers. The numerator in each of the
1086 // rational numbers contains the dimension for the source crop, while
1087 // the denominator specifies the dimension for the display frame. On
1088 // each pass of the binary search the mid-point between the greatest
1089 // point committed to (best) and the smallest point in which a commit
1090 // has failed is calculated. This mid-point is then passed to a function
1091 // named double2Rational, which determines the closest rational numbers
1092 // just below and above the mid-point. By default the lower rational
1093 // number is used for the scale factor on the next pass of the binary
1094 // search. The upper value is only used when best is already equal
1095 // to the lower value. This only occurs when the lower value has already
1096 // been tried.
scHScale(uint32_t format,const HwcTestDim & dfMin,const HwcTestDim & dfMax,const HwcTestDim & scMin,const HwcTestDim & scMax,HwcTestDim & outBestDf,HwcTestDim & outBestSc)1097 Rational scHScale(uint32_t format,
1098 const HwcTestDim& dfMin, const HwcTestDim& dfMax,
1099 const HwcTestDim& scMin, const HwcTestDim& scMax,
1100 HwcTestDim& outBestDf, HwcTestDim& outBestSc)
1101 {
1102 HwcTestDim scDim, dfDim; // Source crop and display frame dimension
1103 Rational best(0, 1), minBad; // Current bounds for a binary search
1104 // MinGood is set below the lowest
1105 // possible scale. The value of minBad,
1106 // will be set by the first pass
1107 // of the binary search.
1108
1109 // Perform the passes of the binary search
1110 bool firstPass = true;
1111 do {
1112 // On first pass try the maximum scale within the search limits
1113 if (firstPass) {
1114 // Try the maximum possible scale, within the search limits
1115 scDim = HwcTestDim(searchLimits.sourceCrop.width(), scMin.height());
1116 dfDim = dfMin;
1117 } else {
1118 // Subsequent pass
1119 // Halve the difference between best and minBad.
1120 Rational lower, upper, selected;
1121
1122 // Try the closest ratio halfway between minBood and minBad;
1123 // TODO: Avoid rounding issue by using Rational type for
1124 // midpoint. For now will use double, which should
1125 // have more than sufficient resolution.
1126 double mid = (double) best
1127 + ((double) minBad - (double) best) / 2.0;
1128 Rational::double2Rational(mid,
1129 Range(scMin.width(), scMax.width()),
1130 Range(dfMin.width(), dfMax.width()),
1131 lower, upper);
1132 if (((lower == best) && (upper == minBad))) {
1133 return best;
1134 }
1135
1136 // Use lower value unless its already been tried
1137 selected = (lower != best) ? lower : upper;
1138
1139 // Assign the size of the source crop and display frame
1140 // from the selected ratio of source crop to display frame.
1141 scDim = HwcTestDim(selected.numerator(), scMin.height());
1142 dfDim = HwcTestDim(selected.denominator(), dfMin.height());
1143 }
1144
1145 // See if the HWC will commit to this combination
1146 Rectangle rect(format, dfDim, scDim);
1147 list<Rectangle> rectList;
1148 rectList.push_back(rect);
1149 uint32_t num = numOverlays(rectList);
1150
1151 if (verbose) {
1152 testPrintI(" scHscale num: %u scale: %f dfDim: %s scDim: %s",
1153 num, (float) Rational(scDim.width(), dfDim.width()),
1154 ((string) dfDim).c_str(), ((string) scDim).c_str());
1155 }
1156 if (num == 1) {
1157 // HWC committed to the combination
1158 // This is the best scale factor seen so far. Report the
1159 // dimensions to the caller, in case nothing better is seen.
1160 outBestDf = dfDim;
1161 outBestSc = scDim;
1162
1163 // Success on the first pass means the largest possible scale
1164 // is supported, in which case no need to search any further.
1165 if (firstPass) { return Rational(scDim.width(), dfDim.width()); }
1166
1167 // Update the lower bound of the binary search
1168 best = Rational(scDim.width(), dfDim.width());
1169 } else {
1170 // HWC didn't commit to this combination, so update the
1171 // upper bound of the binary search.
1172 minBad = Rational(scDim.width(), dfDim.width());
1173 }
1174
1175 firstPass = false;
1176 } while (best != minBad);
1177
1178 return best;
1179 }
1180
1181 // Source crop vertical scale
1182 // Determines the maximum factor by which the source crop can be larger
1183 // that the display frame. The commit point is discovered through a
1184 // binary search of rational numbers. The numerator in each of the
1185 // rational numbers contains the dimension for the source crop, while
1186 // the denominator specifies the dimension for the display frame. On
1187 // each pass of the binary search the mid-point between the greatest
1188 // point committed to (best) and the smallest point in which a commit
1189 // has failed is calculated. This mid-point is then passed to a function
1190 // named double2Rational, which determines the closest rational numbers
1191 // just below and above the mid-point. By default the lower rational
1192 // number is used for the scale factor on the next pass of the binary
1193 // search. The upper value is only used when best is already equal
1194 // to the lower value. This only occurs when the lower value has already
1195 // been tried.
scVScale(uint32_t format,const HwcTestDim & dfMin,const HwcTestDim & dfMax,const HwcTestDim & scMin,const HwcTestDim & scMax,HwcTestDim & outBestDf,HwcTestDim & outBestSc)1196 Rational scVScale(uint32_t format,
1197 const HwcTestDim& dfMin, const HwcTestDim& dfMax,
1198 const HwcTestDim& scMin, const HwcTestDim& scMax,
1199 HwcTestDim& outBestDf, HwcTestDim& outBestSc)
1200 {
1201 HwcTestDim scDim, dfDim; // Source crop and display frame dimension
1202 Rational best(0, 1), minBad; // Current bounds for a binary search
1203 // MinGood is set below the lowest
1204 // possible scale. The value of minBad,
1205 // will be set by the first pass
1206 // of the binary search.
1207
1208 // Perform the passes of the binary search
1209 bool firstPass = true;
1210 do {
1211 // On first pass try the maximum scale within the search limits
1212 if (firstPass) {
1213 // Try the maximum possible scale, within the search limits
1214 scDim = HwcTestDim(scMin.width(), searchLimits.sourceCrop.height());
1215 dfDim = dfMin;
1216 } else {
1217 // Subsequent pass
1218 // Halve the difference between best and minBad.
1219 Rational lower, upper, selected;
1220
1221 // Try the closest ratio halfway between minBood and minBad;
1222 // TODO: Avoid rounding issue by using Rational type for
1223 // midpoint. For now will use double, which should
1224 // have more than sufficient resolution.
1225 double mid = (double) best
1226 + ((double) minBad - (double) best) / 2.0;
1227 Rational::double2Rational(mid,
1228 Range(scMin.height(), scMax.height()),
1229 Range(dfMin.height(), dfMax.height()),
1230 lower, upper);
1231 if (((lower == best) && (upper == minBad))) {
1232 return best;
1233 }
1234
1235 // Use lower value unless its already been tried
1236 selected = (lower != best) ? lower : upper;
1237
1238 // Assign the size of the source crop and display frame
1239 // from the selected ratio of source crop to display frame.
1240 scDim = HwcTestDim(scMin.width(), selected.numerator());
1241 dfDim = HwcTestDim(dfMin.width(), selected.denominator());
1242 }
1243
1244 // See if the HWC will commit to this combination
1245 Rectangle rect(format, dfDim, scDim);
1246 list<Rectangle> rectList;
1247 rectList.push_back(rect);
1248 uint32_t num = numOverlays(rectList);
1249
1250 if (verbose) {
1251 testPrintI(" scHscale num: %u scale: %f dfDim: %s scDim: %s",
1252 num, (float) Rational(scDim.height(), dfDim.height()),
1253 ((string) dfDim).c_str(), ((string) scDim).c_str());
1254 }
1255 if (num == 1) {
1256 // HWC committed to the combination
1257 // This is the best scale factor seen so far. Report the
1258 // dimensions to the caller, in case nothing better is seen.
1259 outBestDf = dfDim;
1260 outBestSc = scDim;
1261
1262 // Success on the first pass means the largest possible scale
1263 // is supported, in which case no need to search any further.
1264 if (firstPass) { return Rational(scDim.height(), dfDim.height()); }
1265
1266 // Update the lower bound of the binary search
1267 best = Rational(scDim.height(), dfDim.height());
1268 } else {
1269 // HWC didn't commit to this combination, so update the
1270 // upper bound of the binary search.
1271 minBad = Rational(scDim.height(), dfDim.height());
1272 }
1273
1274 firstPass = false;
1275 } while (best != minBad);
1276
1277 return best;
1278 }
1279
numOverlapping(uint32_t backgroundFormat,uint32_t foregroundFormat,uint32_t backgroundBlend,uint32_t foregroundBlend)1280 uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat,
1281 uint32_t backgroundBlend, uint32_t foregroundBlend)
1282 {
1283 list<Rectangle> rectList;
1284
1285 Rectangle background(backgroundFormat, startDim, startDim);
1286 background.blend = backgroundBlend;
1287 rectList.push_back(background);
1288
1289 // TODO: Handle cases where startDim is so small that adding 5
1290 // causes frames not to overlap.
1291 // TODO: Handle cases where startDim is so large that adding 5
1292 // cause a portion or all of the foreground displayFrame
1293 // to be off the display.
1294 Rectangle foreground(foregroundFormat, startDim, startDim);
1295 foreground.displayFrame.left += 5;
1296 foreground.displayFrame.top += 5;
1297 foreground.displayFrame.right += 5;
1298 foreground.displayFrame.bottom += 5;
1299 background.blend = foregroundBlend;
1300 rectList.push_back(foreground);
1301
1302 uint32_t num = numOverlays(rectList);
1303
1304 return num;
1305 }
1306
Rectangle(uint32_t graphicFormat,HwcTestDim dfDim,HwcTestDim sDim)1307 Rectangle::Rectangle(uint32_t graphicFormat, HwcTestDim dfDim,
1308 HwcTestDim sDim) :
1309 format(graphicFormat), transform(defaultTransform),
1310 blend(defaultBlend), color(defaultColor), alpha(defaultAlpha),
1311 sourceCrop(sDim), displayFrame(dfDim)
1312 {
1313 // Set source dimension
1314 // Can't use a base initializer, because the setting of format
1315 // must be done before setting the sourceDimension.
1316 setSourceDim(sDim);
1317 }
1318
setSourceDim(HwcTestDim dim)1319 void Rectangle::setSourceDim(HwcTestDim dim)
1320 {
1321 this->sourceDim = dim;
1322
1323 const struct hwcTestGraphicFormat *attrib;
1324 attrib = hwcTestGraphicFormatLookup(this->format);
1325 if (attrib != NULL) {
1326 if (sourceDim.width() % attrib->wMod) {
1327 sourceDim.setWidth(sourceDim.width() + attrib->wMod
1328 - (sourceDim.width() % attrib->wMod));
1329 }
1330 if (sourceDim.height() % attrib->hMod) {
1331 sourceDim.setHeight(sourceDim.height() + attrib->hMod
1332 - (sourceDim.height() % attrib->hMod));
1333 }
1334 }
1335 }
1336
1337 // Rational member functions
operator ==(const Rational & other) const1338 bool Rational::operator==(const Rational& other) const
1339 {
1340 if (((uint64_t) _n * other._d)
1341 == ((uint64_t) _d * other._n)) { return true; }
1342
1343 return false;
1344 }
1345
operator <(const Rational & other) const1346 bool Rational::operator<(const Rational& other) const
1347 {
1348 if (((uint64_t) _n * other._d)
1349 < ((uint64_t) _d * other._n)) { return true; }
1350
1351 return false;
1352 }
1353
operator string() const1354 Rational::operator string() const
1355 {
1356 ostringstream out;
1357
1358 out << _n << '/' << _d;
1359
1360 return out.str();
1361 }
1362
double2Rational(double f,Range nRange,Range dRange,Rational & lower,Rational & upper)1363 void Rational::double2Rational(double f, Range nRange, Range dRange,
1364 Rational& lower, Rational& upper)
1365 {
1366 Rational bestLower(nRange.lower(), dRange.upper());
1367 Rational bestUpper(nRange.upper(), dRange.lower());
1368
1369 // Search for a better solution
1370 for (uint32_t d = dRange.lower(); d <= dRange.upper(); d++) {
1371 Rational val(d * f, d); // Lower, because double to int cast truncates
1372
1373 if ((val.numerator() < nRange.lower())
1374 || (val.numerator() > nRange.upper())) { continue; }
1375
1376 if (((double) val > (double) bestLower) && ((double) val <= f)) {
1377 bestLower = val;
1378 }
1379
1380 val.setNumerator(val.numerator() + 1);
1381 if (val.numerator() > nRange.upper()) { continue; }
1382
1383 if (((double) val < (double) bestUpper) && ((double) val >= f)) {
1384 bestUpper = val;
1385 }
1386 }
1387
1388 lower = bestLower;
1389 upper = bestUpper;
1390 }
1391
1392 // Local functions
1393
1394 // Num Overlays
1395 // Given a list of rectangles, determine how many HWC will commit to render
numOverlays(list<Rectangle> & rectList)1396 uint32_t numOverlays(list<Rectangle>& rectList)
1397 {
1398 hwc_display_contents_1_t *hwcList;
1399 list<sp<GraphicBuffer> > buffers;
1400
1401 hwcList = hwcTestCreateLayerList(rectList.size());
1402 if (hwcList == NULL) {
1403 testPrintE("numOverlays create hwcList failed");
1404 exit(30);
1405 }
1406
1407 hwc_layer_1_t *layer = &hwcList->hwLayers[0];
1408 for (std::list<Rectangle>::iterator it = rectList.begin();
1409 it != rectList.end(); ++it, ++layer) {
1410 // Allocate the texture for the source frame
1411 // and push it onto the buffers list, so that it
1412 // stays in scope until a return from this function.
1413 sp<GraphicBuffer> texture;
1414 texture = new GraphicBuffer(it->sourceDim.width(),
1415 it->sourceDim.height(),
1416 it->format, texUsage);
1417 buffers.push_back(texture);
1418
1419 layer->handle = texture->handle;
1420 layer->blending = it->blend;
1421 layer->transform = it->transform;
1422 layer->sourceCrop = it->sourceCrop;
1423 layer->displayFrame = it->displayFrame;
1424
1425 layer->visibleRegionScreen.numRects = 1;
1426 layer->visibleRegionScreen.rects = &layer->displayFrame;
1427 }
1428
1429 // Perform prepare operation
1430 if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(hwcList); }
1431 hwcDevice->prepare(hwcDevice, 1, &hwcList);
1432 if (verbose) {
1433 testPrintI("Post Prepare:");
1434 hwcTestDisplayListPrepareModifiable(hwcList);
1435 }
1436
1437 // Count the number of overlays
1438 uint32_t total = 0;
1439 for (unsigned int n1 = 0; n1 < hwcList->numHwLayers; n1++) {
1440 if (hwcList->hwLayers[n1].compositionType == HWC_OVERLAY) {
1441 total++;
1442 }
1443 }
1444
1445 // Free the layer list and graphic buffers
1446 hwcTestFreeLayerList(hwcList);
1447
1448 return total;
1449 }
1450
transformList2str(const list<uint32_t> & transformList)1451 string transformList2str(const list<uint32_t>& transformList)
1452 {
1453 ostringstream out;
1454
1455 for (list<uint32_t>::const_iterator it = transformList.begin();
1456 it != transformList.end(); ++it) {
1457 uint32_t id = *it;
1458
1459 if (it != transformList.begin()) {
1460 out << ", ";
1461 }
1462 out << id;
1463
1464 for (unsigned int idx = 0; idx < NUMA(transformType); idx++) {
1465 if (id == transformType[idx].id) {
1466 out << " (" << transformType[idx].desc << ')';
1467 break;
1468 }
1469 }
1470 }
1471
1472 return out.str();
1473 }
1474
blendList2str(const list<uint32_t> & blendList)1475 string blendList2str(const list<uint32_t>& blendList)
1476 {
1477 ostringstream out;
1478
1479 for (list<uint32_t>::const_iterator it = blendList.begin();
1480 it != blendList.end(); ++it) {
1481 uint32_t id = *it;
1482
1483 if (it != blendList.begin()) {
1484 out << ", ";
1485 }
1486 out << id;
1487
1488 for (unsigned int idx = 0; idx < NUMA(blendType); idx++) {
1489 if (id == blendType[idx].id) {
1490 out << " (" << blendType[idx].desc << ')';
1491 break;
1492 }
1493 }
1494 }
1495
1496 return out.str();
1497 }
1498
init(void)1499 void init(void)
1500 {
1501 srand48(0);
1502
1503 hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
1504
1505 hwcTestOpenHwc(&hwcDevice);
1506 }
1507
printFormatHeadings(size_t indent)1508 void printFormatHeadings(size_t indent)
1509 {
1510 for (size_t row = 0; row <= maxHeadingLen; row++) {
1511 ostringstream line;
1512 for(vector<string>::iterator it = formats.begin();
1513 it != formats.end(); ++it) {
1514 if ((maxHeadingLen - row) <= it->length()) {
1515 if (row != maxHeadingLen) {
1516 char ch = (*it)[it->length() - (maxHeadingLen - row)];
1517 line << ' ' << setw(printFieldWidth) << ch;
1518 } else {
1519 line << ' ' << string(printFieldWidth, '-');
1520 }
1521 } else {
1522 line << ' ' << setw(printFieldWidth) << "";
1523 }
1524 }
1525 testPrintI("%*s%s", indent + maxHeadingLen, "",
1526 line.str().c_str());
1527 }
1528 }
1529
printOverlapLine(size_t indent,const string formatStr,const vector<uint32_t> & results)1530 void printOverlapLine(size_t indent, const string formatStr,
1531 const vector<uint32_t>& results)
1532 {
1533 ostringstream line;
1534
1535 line << setw(indent + maxHeadingLen - formatStr.length()) << "";
1536
1537 line << formatStr;
1538
1539 for (vector<uint32_t>::const_iterator it = results.begin();
1540 it != results.end(); ++it) {
1541 line << ' ' << setw(printFieldWidth) << *it;
1542 }
1543
1544 testPrintI("%s", line.str().c_str());
1545 }
1546
printSyntax(const char * cmd)1547 void printSyntax(const char *cmd)
1548 {
1549 testPrintE(" %s [options] [graphicFormat] ...",
1550 cmd);
1551 testPrintE(" options:");
1552 testPrintE(" -s [width, height] - start dimension");
1553 testPrintE(" -v - Verbose");
1554 testPrintE("");
1555 testPrintE(" graphic formats:");
1556 for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
1557 testPrintE(" %s", hwcTestGraphicFormat[n1].desc);
1558 }
1559 }
1560