1 /******************************************************************************
2  *
3  *  Copyright (C) 2014 The Android Open Source Project
4  *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved.
5  *
6  *  Licensed under the Apache License, Version 2.0 (the "License");
7  *  you may not use this file except in compliance with the License.
8  *  You may obtain a copy of the License at:
9  *
10  *  http://www.apache.org/licenses/LICENSE-2.0
11  *
12  *  Unless required by applicable law or agreed to in writing, software
13  *  distributed under the License is distributed on an "AS IS" BASIS,
14  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  *  See the License for the specific language governing permissions and
16  *  limitations under the License.
17  *
18  ******************************************************************************/
19 
20 /**********************************************************************************
21   $Revision: #1 $
22 ***********************************************************************************/
23 
24 /** @file
25 
26 This file, along with synthesis-generated.c, contains the synthesis
27 filterbank routines. The operations performed correspond to the
28 operations described in A2DP Appendix B, Figure 12.3. Several
29 mathematical optimizations are performed, particularly for the
30 8-subband case.
31 
32 One important optimization is to note that the "matrixing" operation
33 can be decomposed into the product of a type II discrete cosine kernel
34 and another, sparse matrix.
35 
36 According to Fig 12.3, in the 8-subband case,
37 @code
38     N[k][i] = cos((i+0.5)*(k+4)*pi/8), k = 0..15 and i = 0..7
39 @endcode
40 
41 N can be factored as R * C2, where C2 is an 8-point type II discrete
42 cosine kernel given by
43 @code
44     C2[k][i] = cos((i+0.5)*k*pi/8)), k = 0..7 and i = 0..7
45 @endcode
46 
47 R turns out to be a sparse 16x8 matrix with the following non-zero
48 entries:
49 @code
50     R[k][k+4]        =  1,   k = 0..3
51     R[k][abs(12-k)]  = -1,   k = 5..15
52 @endcode
53 
54 The spec describes computing V[0..15] as N * R.
55 @code
56     V[0..15] = N * R = (R * C2) * R = R * (C2 * R)
57 @endcode
58 
59 C2 * R corresponds to computing the discrete cosine transform of R, so
60 V[0..15] can be computed by taking the DCT of R followed by assignment
61 and selective negation of the DCT result into V.
62 
63         Although this was derived empirically using GNU Octave, it is
64         formally demonstrated in, e.g., Liu, Chi-Min and Lee,
65         Wen-Chieh. "A Unified Fast Algorithm for Cosine Modulated
66         Filter Banks in Current Audio Coding Standards." Journal of
67         the AES 47 (December 1999): 1061.
68 
69 Given the shift operation performed prior to computing V[0..15], it is
70 clear that V[0..159] represents a rolling history of the 10 most
71 recent groups of blocks input to the synthesis operation. Interpreting
72 the matrix N in light of its factorization into C2 and R, R's
73 sparseness has implications for interpreting the values in V. In
74 particular, there is considerable redundancy in the values stored in
75 V. Furthermore, since R[4][0..7] are all zeros, one out of every 16
76 values in V will be zero regardless of the input data. Within each
77 block of 16 values in V, fully half of them are redundant or
78 irrelevant:
79 
80 @code
81     V[ 0] =  DCT[4]
82     V[ 1] =  DCT[5]
83     V[ 2] =  DCT[6]
84     V[ 3] =  DCT[7]
85     V[ 4] = 0
86     V[ 5] = -DCT[7] = -V[3] (redundant)
87     V[ 6] = -DCT[6] = -V[2] (redundant)
88     V[ 7] = -DCT[5] = -V[1] (redundant)
89     V[ 8] = -DCT[4] = -V[0] (redundant)
90     V[ 9] = -DCT[3]
91     V[10] = -DCT[2]
92     V[11] = -DCT[1]
93     V[12] = -DCT[0]
94     V[13] = -DCT[1] = V[11] (redundant)
95     V[14] = -DCT[2] = V[10] (redundant)
96     V[15] = -DCT[3] = V[ 9] (redundant)
97 @endcode
98 
99 Since the elements of V beyond 15 were originally computed the same
100 way during a previous run, what holds true for V[x] also holds true
101 for V[x+16]. Thus, so long as care is taken to maintain the mapping,
102 we need only actually store the unique values, which correspond to the
103 output of the DCT, in some cases inverted. In fact, instead of storing
104 V[0..159], we could store DCT[0..79] which would contain a history of
105 DCT results. More on this in a bit.
106 
107 Going back to figure 12.3 in the spec, it should be clear that the
108 vector U need not actually be explicitly constructed, but that with
109 suitable indexing into V during the window operation, the same end can
110 be accomplished. In the same spirit of the pseudocode shown in the
111 figure, the following is the construction of W without using U:
112 
113 @code
114     for i=0 to 79 do
115         W[i] = D[i]*VSIGN(i)*V[remap_V(i)] where remap_V(i) = 32*(int(i/16)) + (i % 16) + (i % 16 >= 8 ? 16 : 0)
116                                              and VSIGN(i) maps i%16 into {1, 1, 1, 1, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1 }
117                                              These values correspond to the
118                                              signs of the redundant values as
119                                              shown in the explanation three
120                                              paragraphs above.
121 @endcode
122 
123 We saw above how V[4..8,13..15] (and by extension
124 V[(4..8,13..15)+16*n]) can be defined in terms of other elements
125 within the subblock of V. V[0..3,9..12] correspond to DCT elements.
126 
127 @code
128     for i=0 to 79 do
129         W[i] = D[i]*DSIGN(i)*DCT[remap_DCT(i)]
130 @endcode
131 
132 The DCT is calculated using the Arai-Agui-Nakajima factorization,
133 which saves some computation by producing output that needs to be
134 multiplied by scaling factors before being used.
135 
136 @code
137     for i=0 to 79 do
138         W[i] = D[i]*SCALE[i%8]*AAN_DCT[remap_DCT(i)]
139 @endcode
140 
141 D can be premultiplied with the DCT scaling factors to yield
142 
143 @code
144     for i=0 to 79 do
145         W[i] = DSCALED[i]*AAN_DCT[remap_DCT(i)] where DSCALED[i] = D[i]*SCALE[i%8]
146 @endcode
147 
148 The output samples X[0..7] are defined as sums of W:
149 
150 @code
151         X[j] = sum{i=0..9}(W[j+8*i])
152 @endcode
153 
154 @ingroup codec_internal
155 */
156 
157 /**
158 @addtogroup codec_internal
159 @{
160 */
161 
162 #include "oi_codec_sbc_private.h"
163 
164 const OI_INT32 dec_window_4[21] = {
165            0,        /* +0.00000000E+00 */
166           97,        /* +5.36548976E-04 */
167          270,        /* +1.49188357E-03 */
168          495,        /* +2.73370904E-03 */
169          694,        /* +3.83720193E-03 */
170          704,        /* +3.89205149E-03 */
171          338,        /* +1.86581691E-03 */
172         -554,        /* -3.06012286E-03 */
173         1974,        /* +1.09137620E-02 */
174         3697,        /* +2.04385087E-02 */
175         5224,        /* +2.88757392E-02 */
176         5824,        /* +3.21939290E-02 */
177         4681,        /* +2.58767811E-02 */
178         1109,        /* +6.13245186E-03 */
179        -5214,        /* -2.88217274E-02 */
180       -14047,        /* -7.76463494E-02 */
181        24529,        /* +1.35593274E-01 */
182        35274,        /* +1.94987841E-01 */
183        44618,        /* +2.46636662E-01 */
184        50984,        /* +2.81828203E-01 */
185        53243,        /* +2.94315332E-01 */
186 };
187 
188 #define DCTII_4_K06_FIX ( 11585)/* S1.14      11585   0.707107*/
189 
190 #define DCTII_4_K08_FIX ( 21407)/* S1.14      21407   1.306563*/
191 
192 #define DCTII_4_K09_FIX (-15137)/* S1.14     -15137  -0.923880*/
193 
194 #define DCTII_4_K10_FIX ( -8867)/* S1.14      -8867  -0.541196*/
195 
196 /** Scales x by y bits to the right, adding a rounding factor.
197  */
198 #ifndef SCALE
199 #define SCALE(x, y) (((x) + (1 <<((y)-1))) >> (y))
200 #endif
201 
202 #ifndef CLIP_INT16
203 #define CLIP_INT16(x) do { if (x > OI_INT16_MAX) { x = OI_INT16_MAX; } else if (x < OI_INT16_MIN) { x = OI_INT16_MIN; } } while (0)
204 #endif
205 
206 /**
207  * Default C language implementation of a 16x32->32 multiply. This function may
208  * be replaced by a platform-specific version for speed.
209  *
210  * @param u A signed 16-bit multiplicand
211  * @param v A signed 32-bit multiplier
212 
213  * @return  A signed 32-bit value corresponding to the 32 most significant bits
214  * of the 48-bit product of u and v.
215  */
default_mul_16s_32s_hi(OI_INT16 u,OI_INT32 v)216 INLINE OI_INT32 default_mul_16s_32s_hi(OI_INT16 u, OI_INT32 v)
217 {
218     OI_UINT16 v0;
219     OI_INT16 v1;
220 
221     OI_INT32 w,x;
222 
223     v0 = (OI_UINT16)(v & 0xffff);
224     v1 = (OI_INT16) (v >> 16);
225 
226     w = v1 * u;
227     x = u * v0;
228 
229     return w + (x >> 16);
230 }
231 
232 #define MUL_16S_32S_HI(_x, _y) default_mul_16s_32s_hi(_x, _y)
233 
234 #define LONG_MULT_DCT(K, sample) (MUL_16S_32S_HI(K, sample)<<2)
235 
236 PRIVATE void SynthWindow80_generated(OI_INT16 *pcm, SBC_BUFFER_T const * RESTRICT buffer, OI_UINT strideShift);
237 PRIVATE void SynthWindow112_generated(OI_INT16 *pcm, SBC_BUFFER_T const * RESTRICT buffer, OI_UINT strideShift);
238 PRIVATE void dct2_8(SBC_BUFFER_T * RESTRICT out, OI_INT32 const * RESTRICT x);
239 
240 typedef void (*SYNTH_FRAME)(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount);
241 
242 #ifndef COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS
243 #define COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(dest, src) do { shift_buffer(dest, src, 72); } while (0)
244 #endif
245 
246 #ifndef DCT2_8
247 #define DCT2_8(dst, src) dct2_8(dst, src)
248 #endif
249 
250 #ifndef SYNTH80
251 #define SYNTH80 SynthWindow80_generated
252 #endif
253 
254 #ifndef SYNTH112
255 #define SYNTH112 SynthWindow112_generated
256 #endif
257 
OI_SBC_SynthFrame_80(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT blkstart,OI_UINT blkcount)258 PRIVATE void OI_SBC_SynthFrame_80(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount)
259 {
260     OI_UINT blk;
261     OI_UINT ch;
262     OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
263     OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1;
264     OI_UINT offset = context->common.filterBufferOffset;
265     OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart;
266     OI_UINT blkstop = blkstart + blkcount;
267 
268     for (blk = blkstart; blk < blkstop; blk++) {
269         if (offset == 0) {
270             COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 72, context->common.filterBuffer[0]);
271             if (nrof_channels == 2) {
272                 COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 72, context->common.filterBuffer[1]);
273             }
274             offset = context->common.filterBufferLen - 80;
275         } else {
276             offset -= 1*8;
277         }
278 
279         for (ch = 0; ch < nrof_channels; ch++) {
280             DCT2_8(context->common.filterBuffer[ch] + offset, s);
281             SYNTH80(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift);
282             s += 8;
283         }
284         pcm += (8 << pcmStrideShift);
285     }
286     context->common.filterBufferOffset = offset;
287 }
288 
OI_SBC_SynthFrame_4SB(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT blkstart,OI_UINT blkcount)289 PRIVATE void OI_SBC_SynthFrame_4SB(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount)
290 {
291     OI_UINT blk;
292     OI_UINT ch;
293     OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
294     OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1;
295     OI_UINT offset = context->common.filterBufferOffset;
296     OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart;
297     OI_UINT blkstop = blkstart + blkcount;
298 
299     for (blk = blkstart; blk < blkstop; blk++) {
300         if (offset == 0) {
301             COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 72,context->common.filterBuffer[0]);
302             if (nrof_channels == 2) {
303                 COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 72,context->common.filterBuffer[1]);
304             }
305             offset =context->common.filterBufferLen - 80;
306         } else {
307             offset -= 8;
308         }
309         for (ch = 0; ch < nrof_channels; ch++) {
310             cosineModulateSynth4(context->common.filterBuffer[ch] + offset, s);
311             SynthWindow40_int32_int32_symmetry_with_sum(pcm + ch,
312                                                         context->common.filterBuffer[ch] + offset,
313                                                         pcmStrideShift);
314             s += 4;
315         }
316         pcm += (4 << pcmStrideShift);
317     }
318     context->common.filterBufferOffset = offset;
319 }
320 
321 #ifdef SBC_ENHANCED
322 
OI_SBC_SynthFrame_Enhanced(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT blkstart,OI_UINT blkcount)323 PRIVATE void OI_SBC_SynthFrame_Enhanced(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount)
324 {
325     OI_UINT blk;
326     OI_UINT ch;
327     OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
328     OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1;
329     OI_UINT offset = context->common.filterBufferOffset;
330     OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart;
331     OI_UINT blkstop = blkstart + blkcount;
332 
333     for (blk = blkstart; blk < blkstop; blk++) {
334         if (offset == 0) {
335             COPY_BACKWARD_32BIT_ALIGNED_104_HALFWORDS(context->common.filterBuffer[0] +context->common.filterBufferLen - 104, context->common.filterBuffer[0]);
336             if (nrof_channels == 2) {
337                 COPY_BACKWARD_32BIT_ALIGNED_104_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 104, context->common.filterBuffer[1]);
338             }
339             offset = context->common.filterBufferLen - 112;
340         } else {
341             offset -= 8;
342         }
343         for (ch = 0; ch < nrof_channels; ++ch) {
344             DCT2_8(context->common.filterBuffer[ch] + offset, s);
345             SYNTH112(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift);
346             s += 8;
347         }
348         pcm += (8 << pcmStrideShift);
349     }
350     context->common.filterBufferOffset = offset;
351 }
352 
353 static const SYNTH_FRAME SynthFrameEnhanced[] = {
354     NULL,                       /* invalid */
355     OI_SBC_SynthFrame_Enhanced, /* mono */
356     OI_SBC_SynthFrame_Enhanced  /* stereo */
357 };
358 
359 #endif
360 
361 static const SYNTH_FRAME SynthFrame8SB[] = {
362     NULL,             /* invalid */
363     OI_SBC_SynthFrame_80, /* mono */
364     OI_SBC_SynthFrame_80  /* stereo */
365 };
366 
367 
368 static const SYNTH_FRAME SynthFrame4SB[] = {
369     NULL,                  /* invalid */
370     OI_SBC_SynthFrame_4SB, /* mono */
371     OI_SBC_SynthFrame_4SB  /* stereo */
372 };
373 
OI_SBC_SynthFrame(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT start_block,OI_UINT nrof_blocks)374 PRIVATE void OI_SBC_SynthFrame(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT start_block, OI_UINT nrof_blocks)
375 {
376     OI_UINT nrof_subbands = context->common.frameInfo.nrof_subbands;
377     OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
378 
379     OI_ASSERT(nrof_subbands == 4 || nrof_subbands == 8);
380     if (nrof_subbands == 4) {
381         SynthFrame4SB[nrof_channels](context, pcm, start_block, nrof_blocks);
382 #ifdef SBC_ENHANCED
383     } else if (context->common.frameInfo.enhanced) {
384         SynthFrameEnhanced[nrof_channels](context, pcm, start_block, nrof_blocks);
385 #endif /* SBC_ENHANCED */
386         } else {
387         SynthFrame8SB[nrof_channels](context, pcm, start_block, nrof_blocks);
388     }
389 }
390 
391 
SynthWindow40_int32_int32_symmetry_with_sum(OI_INT16 * pcm,SBC_BUFFER_T buffer[80],OI_UINT strideShift)392 void SynthWindow40_int32_int32_symmetry_with_sum(OI_INT16 *pcm, SBC_BUFFER_T buffer[80], OI_UINT strideShift)
393 {
394     OI_INT32 pa;
395     OI_INT32 pb;
396 
397     /* These values should be zero, since out[2] of the 4-band cosine modulation
398      * is always zero. */
399     OI_ASSERT(buffer[ 2] == 0);
400     OI_ASSERT(buffer[10] == 0);
401     OI_ASSERT(buffer[18] == 0);
402     OI_ASSERT(buffer[26] == 0);
403     OI_ASSERT(buffer[34] == 0);
404     OI_ASSERT(buffer[42] == 0);
405     OI_ASSERT(buffer[50] == 0);
406     OI_ASSERT(buffer[58] == 0);
407     OI_ASSERT(buffer[66] == 0);
408     OI_ASSERT(buffer[74] == 0);
409 
410 
411     pa  = dec_window_4[ 4] * (buffer[12] + buffer[76]);
412     pa += dec_window_4[ 8] * (buffer[16] - buffer[64]);
413     pa += dec_window_4[12] * (buffer[28] + buffer[60]);
414     pa += dec_window_4[16] * (buffer[32] - buffer[48]);
415     pa += dec_window_4[20] *  buffer[44];
416     pa = SCALE(-pa, 15);
417     CLIP_INT16(pa);
418     pcm[0 << strideShift] = (OI_INT16)pa;
419 
420 
421     pa  = dec_window_4[ 1] * buffer[ 1]; pb  = dec_window_4[ 1] * buffer[79];
422     pb += dec_window_4[ 3] * buffer[ 3]; pa += dec_window_4[ 3] * buffer[77];
423     pa += dec_window_4[ 5] * buffer[13]; pb += dec_window_4[ 5] * buffer[67];
424     pb += dec_window_4[ 7] * buffer[15]; pa += dec_window_4[ 7] * buffer[65];
425     pa += dec_window_4[ 9] * buffer[17]; pb += dec_window_4[ 9] * buffer[63];
426     pb += dec_window_4[11] * buffer[19]; pa += dec_window_4[11] * buffer[61];
427     pa += dec_window_4[13] * buffer[29]; pb += dec_window_4[13] * buffer[51];
428     pb += dec_window_4[15] * buffer[31]; pa += dec_window_4[15] * buffer[49];
429     pa += dec_window_4[17] * buffer[33]; pb += dec_window_4[17] * buffer[47];
430     pb += dec_window_4[19] * buffer[35]; pa += dec_window_4[19] * buffer[45];
431     pa = SCALE(-pa, 15);
432     CLIP_INT16(pa);
433     pcm[1 << strideShift] = (OI_INT16)(pa);
434     pb = SCALE(-pb, 15);
435     CLIP_INT16(pb);
436     pcm[3 << strideShift] = (OI_INT16)(pb);
437 
438 
439     pa  = dec_window_4[2] * (/*buffer[ 2] + */ buffer[78]);  /* buffer[ 2] is always zero */
440     pa += dec_window_4[6] * (buffer[14] /* + buffer[66]*/);  /* buffer[66] is always zero */
441     pa += dec_window_4[10] * (/*buffer[18] + */ buffer[62]);  /* buffer[18] is always zero */
442     pa += dec_window_4[14] * (buffer[30] /* + buffer[50]*/);  /* buffer[50] is always zero */
443     pa += dec_window_4[18] * (/*buffer[34] + */ buffer[46]);  /* buffer[34] is always zero */
444     pa = SCALE(-pa, 15);
445     CLIP_INT16(pa);
446     pcm[2 << strideShift] = (OI_INT16)(pa);
447 }
448 
449 
450 /**
451   This routine implements the cosine modulation matrix for 4-subband
452   synthesis. This is called "matrixing" in the SBC specification. This
453   matrix, M4,  can be factored into an 8-point Type II Discrete Cosine
454   Transform, DCTII_4 and a matrix S4, given here:
455 
456   @code
457         __               __
458        |   0   0   1   0   |
459        |   0   0   0   1   |
460        |   0   0   0   0   |
461        |   0   0   0  -1   |
462   S4 = |   0   0  -1   0   |
463        |   0  -1   0   0   |
464        |  -1   0   0   0   |
465        |__ 0  -1   0   0 __|
466 
467   M4 * in = S4 * (DCTII_4 * in)
468   @endcode
469 
470   (DCTII_4 * in) is computed using a Fast Cosine Transform. The algorithm
471   here is based on an implementation computed by the SPIRAL computer
472   algebra system, manually converted to fixed-point arithmetic. S4 can be
473   implemented using only assignment and negation.
474   */
cosineModulateSynth4(SBC_BUFFER_T * RESTRICT out,OI_INT32 const * RESTRICT in)475 PRIVATE void cosineModulateSynth4(SBC_BUFFER_T * RESTRICT out, OI_INT32 const * RESTRICT in)
476 {
477     OI_INT32 f0, f1, f2, f3, f4, f7, f8, f9, f10;
478     OI_INT32 y0, y1, y2, y3;
479 
480     f0 = (in[0] - in[3]);
481     f1 = (in[0] + in[3]);
482     f2 = (in[1] - in[2]);
483     f3 = (in[1] + in[2]);
484 
485     f4 = f1 - f3;
486 
487     y0 = -SCALE(f1 + f3, DCT_SHIFT);
488     y2 = -SCALE(LONG_MULT_DCT(DCTII_4_K06_FIX, f4), DCT_SHIFT);
489     f7 = f0 + f2;
490     f8 = LONG_MULT_DCT(DCTII_4_K08_FIX, f0);
491     f9 = LONG_MULT_DCT(DCTII_4_K09_FIX, f7);
492     f10 = LONG_MULT_DCT(DCTII_4_K10_FIX, f2);
493     y3 = -SCALE(f8 + f9, DCT_SHIFT);
494     y1 = -SCALE(f10 - f9, DCT_SHIFT);
495 
496     out[0] = (OI_INT16)-y2;
497     out[1] = (OI_INT16)-y3;
498     out[2] = (OI_INT16)0;
499     out[3] = (OI_INT16)y3;
500     out[4] = (OI_INT16)y2;
501     out[5] = (OI_INT16)y1;
502     out[6] = (OI_INT16)y0;
503     out[7] = (OI_INT16)y1;
504 }
505 
506 
507 
508 /**
509 @}
510 */
511