1 /******************************************************************************
2 *
3 * Copyright (C) 2014 The Android Open Source Project
4 * Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved.
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at:
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 ******************************************************************************/
19
20 /**********************************************************************************
21 $Revision: #1 $
22 ***********************************************************************************/
23
24 /** @file
25
26 This file, along with synthesis-generated.c, contains the synthesis
27 filterbank routines. The operations performed correspond to the
28 operations described in A2DP Appendix B, Figure 12.3. Several
29 mathematical optimizations are performed, particularly for the
30 8-subband case.
31
32 One important optimization is to note that the "matrixing" operation
33 can be decomposed into the product of a type II discrete cosine kernel
34 and another, sparse matrix.
35
36 According to Fig 12.3, in the 8-subband case,
37 @code
38 N[k][i] = cos((i+0.5)*(k+4)*pi/8), k = 0..15 and i = 0..7
39 @endcode
40
41 N can be factored as R * C2, where C2 is an 8-point type II discrete
42 cosine kernel given by
43 @code
44 C2[k][i] = cos((i+0.5)*k*pi/8)), k = 0..7 and i = 0..7
45 @endcode
46
47 R turns out to be a sparse 16x8 matrix with the following non-zero
48 entries:
49 @code
50 R[k][k+4] = 1, k = 0..3
51 R[k][abs(12-k)] = -1, k = 5..15
52 @endcode
53
54 The spec describes computing V[0..15] as N * R.
55 @code
56 V[0..15] = N * R = (R * C2) * R = R * (C2 * R)
57 @endcode
58
59 C2 * R corresponds to computing the discrete cosine transform of R, so
60 V[0..15] can be computed by taking the DCT of R followed by assignment
61 and selective negation of the DCT result into V.
62
63 Although this was derived empirically using GNU Octave, it is
64 formally demonstrated in, e.g., Liu, Chi-Min and Lee,
65 Wen-Chieh. "A Unified Fast Algorithm for Cosine Modulated
66 Filter Banks in Current Audio Coding Standards." Journal of
67 the AES 47 (December 1999): 1061.
68
69 Given the shift operation performed prior to computing V[0..15], it is
70 clear that V[0..159] represents a rolling history of the 10 most
71 recent groups of blocks input to the synthesis operation. Interpreting
72 the matrix N in light of its factorization into C2 and R, R's
73 sparseness has implications for interpreting the values in V. In
74 particular, there is considerable redundancy in the values stored in
75 V. Furthermore, since R[4][0..7] are all zeros, one out of every 16
76 values in V will be zero regardless of the input data. Within each
77 block of 16 values in V, fully half of them are redundant or
78 irrelevant:
79
80 @code
81 V[ 0] = DCT[4]
82 V[ 1] = DCT[5]
83 V[ 2] = DCT[6]
84 V[ 3] = DCT[7]
85 V[ 4] = 0
86 V[ 5] = -DCT[7] = -V[3] (redundant)
87 V[ 6] = -DCT[6] = -V[2] (redundant)
88 V[ 7] = -DCT[5] = -V[1] (redundant)
89 V[ 8] = -DCT[4] = -V[0] (redundant)
90 V[ 9] = -DCT[3]
91 V[10] = -DCT[2]
92 V[11] = -DCT[1]
93 V[12] = -DCT[0]
94 V[13] = -DCT[1] = V[11] (redundant)
95 V[14] = -DCT[2] = V[10] (redundant)
96 V[15] = -DCT[3] = V[ 9] (redundant)
97 @endcode
98
99 Since the elements of V beyond 15 were originally computed the same
100 way during a previous run, what holds true for V[x] also holds true
101 for V[x+16]. Thus, so long as care is taken to maintain the mapping,
102 we need only actually store the unique values, which correspond to the
103 output of the DCT, in some cases inverted. In fact, instead of storing
104 V[0..159], we could store DCT[0..79] which would contain a history of
105 DCT results. More on this in a bit.
106
107 Going back to figure 12.3 in the spec, it should be clear that the
108 vector U need not actually be explicitly constructed, but that with
109 suitable indexing into V during the window operation, the same end can
110 be accomplished. In the same spirit of the pseudocode shown in the
111 figure, the following is the construction of W without using U:
112
113 @code
114 for i=0 to 79 do
115 W[i] = D[i]*VSIGN(i)*V[remap_V(i)] where remap_V(i) = 32*(int(i/16)) + (i % 16) + (i % 16 >= 8 ? 16 : 0)
116 and VSIGN(i) maps i%16 into {1, 1, 1, 1, 0, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1 }
117 These values correspond to the
118 signs of the redundant values as
119 shown in the explanation three
120 paragraphs above.
121 @endcode
122
123 We saw above how V[4..8,13..15] (and by extension
124 V[(4..8,13..15)+16*n]) can be defined in terms of other elements
125 within the subblock of V. V[0..3,9..12] correspond to DCT elements.
126
127 @code
128 for i=0 to 79 do
129 W[i] = D[i]*DSIGN(i)*DCT[remap_DCT(i)]
130 @endcode
131
132 The DCT is calculated using the Arai-Agui-Nakajima factorization,
133 which saves some computation by producing output that needs to be
134 multiplied by scaling factors before being used.
135
136 @code
137 for i=0 to 79 do
138 W[i] = D[i]*SCALE[i%8]*AAN_DCT[remap_DCT(i)]
139 @endcode
140
141 D can be premultiplied with the DCT scaling factors to yield
142
143 @code
144 for i=0 to 79 do
145 W[i] = DSCALED[i]*AAN_DCT[remap_DCT(i)] where DSCALED[i] = D[i]*SCALE[i%8]
146 @endcode
147
148 The output samples X[0..7] are defined as sums of W:
149
150 @code
151 X[j] = sum{i=0..9}(W[j+8*i])
152 @endcode
153
154 @ingroup codec_internal
155 */
156
157 /**
158 @addtogroup codec_internal
159 @{
160 */
161
162 #include "oi_codec_sbc_private.h"
163
164 const OI_INT32 dec_window_4[21] = {
165 0, /* +0.00000000E+00 */
166 97, /* +5.36548976E-04 */
167 270, /* +1.49188357E-03 */
168 495, /* +2.73370904E-03 */
169 694, /* +3.83720193E-03 */
170 704, /* +3.89205149E-03 */
171 338, /* +1.86581691E-03 */
172 -554, /* -3.06012286E-03 */
173 1974, /* +1.09137620E-02 */
174 3697, /* +2.04385087E-02 */
175 5224, /* +2.88757392E-02 */
176 5824, /* +3.21939290E-02 */
177 4681, /* +2.58767811E-02 */
178 1109, /* +6.13245186E-03 */
179 -5214, /* -2.88217274E-02 */
180 -14047, /* -7.76463494E-02 */
181 24529, /* +1.35593274E-01 */
182 35274, /* +1.94987841E-01 */
183 44618, /* +2.46636662E-01 */
184 50984, /* +2.81828203E-01 */
185 53243, /* +2.94315332E-01 */
186 };
187
188 #define DCTII_4_K06_FIX ( 11585)/* S1.14 11585 0.707107*/
189
190 #define DCTII_4_K08_FIX ( 21407)/* S1.14 21407 1.306563*/
191
192 #define DCTII_4_K09_FIX (-15137)/* S1.14 -15137 -0.923880*/
193
194 #define DCTII_4_K10_FIX ( -8867)/* S1.14 -8867 -0.541196*/
195
196 /** Scales x by y bits to the right, adding a rounding factor.
197 */
198 #ifndef SCALE
199 #define SCALE(x, y) (((x) + (1 <<((y)-1))) >> (y))
200 #endif
201
202 #ifndef CLIP_INT16
203 #define CLIP_INT16(x) do { if (x > OI_INT16_MAX) { x = OI_INT16_MAX; } else if (x < OI_INT16_MIN) { x = OI_INT16_MIN; } } while (0)
204 #endif
205
206 /**
207 * Default C language implementation of a 16x32->32 multiply. This function may
208 * be replaced by a platform-specific version for speed.
209 *
210 * @param u A signed 16-bit multiplicand
211 * @param v A signed 32-bit multiplier
212
213 * @return A signed 32-bit value corresponding to the 32 most significant bits
214 * of the 48-bit product of u and v.
215 */
default_mul_16s_32s_hi(OI_INT16 u,OI_INT32 v)216 INLINE OI_INT32 default_mul_16s_32s_hi(OI_INT16 u, OI_INT32 v)
217 {
218 OI_UINT16 v0;
219 OI_INT16 v1;
220
221 OI_INT32 w,x;
222
223 v0 = (OI_UINT16)(v & 0xffff);
224 v1 = (OI_INT16) (v >> 16);
225
226 w = v1 * u;
227 x = u * v0;
228
229 return w + (x >> 16);
230 }
231
232 #define MUL_16S_32S_HI(_x, _y) default_mul_16s_32s_hi(_x, _y)
233
234 #define LONG_MULT_DCT(K, sample) (MUL_16S_32S_HI(K, sample)<<2)
235
236 PRIVATE void SynthWindow80_generated(OI_INT16 *pcm, SBC_BUFFER_T const * RESTRICT buffer, OI_UINT strideShift);
237 PRIVATE void SynthWindow112_generated(OI_INT16 *pcm, SBC_BUFFER_T const * RESTRICT buffer, OI_UINT strideShift);
238 PRIVATE void dct2_8(SBC_BUFFER_T * RESTRICT out, OI_INT32 const * RESTRICT x);
239
240 typedef void (*SYNTH_FRAME)(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount);
241
242 #ifndef COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS
243 #define COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(dest, src) do { shift_buffer(dest, src, 72); } while (0)
244 #endif
245
246 #ifndef DCT2_8
247 #define DCT2_8(dst, src) dct2_8(dst, src)
248 #endif
249
250 #ifndef SYNTH80
251 #define SYNTH80 SynthWindow80_generated
252 #endif
253
254 #ifndef SYNTH112
255 #define SYNTH112 SynthWindow112_generated
256 #endif
257
OI_SBC_SynthFrame_80(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT blkstart,OI_UINT blkcount)258 PRIVATE void OI_SBC_SynthFrame_80(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount)
259 {
260 OI_UINT blk;
261 OI_UINT ch;
262 OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
263 OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1;
264 OI_UINT offset = context->common.filterBufferOffset;
265 OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart;
266 OI_UINT blkstop = blkstart + blkcount;
267
268 for (blk = blkstart; blk < blkstop; blk++) {
269 if (offset == 0) {
270 COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 72, context->common.filterBuffer[0]);
271 if (nrof_channels == 2) {
272 COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 72, context->common.filterBuffer[1]);
273 }
274 offset = context->common.filterBufferLen - 80;
275 } else {
276 offset -= 1*8;
277 }
278
279 for (ch = 0; ch < nrof_channels; ch++) {
280 DCT2_8(context->common.filterBuffer[ch] + offset, s);
281 SYNTH80(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift);
282 s += 8;
283 }
284 pcm += (8 << pcmStrideShift);
285 }
286 context->common.filterBufferOffset = offset;
287 }
288
OI_SBC_SynthFrame_4SB(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT blkstart,OI_UINT blkcount)289 PRIVATE void OI_SBC_SynthFrame_4SB(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount)
290 {
291 OI_UINT blk;
292 OI_UINT ch;
293 OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
294 OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1;
295 OI_UINT offset = context->common.filterBufferOffset;
296 OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart;
297 OI_UINT blkstop = blkstart + blkcount;
298
299 for (blk = blkstart; blk < blkstop; blk++) {
300 if (offset == 0) {
301 COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[0] + context->common.filterBufferLen - 72,context->common.filterBuffer[0]);
302 if (nrof_channels == 2) {
303 COPY_BACKWARD_32BIT_ALIGNED_72_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 72,context->common.filterBuffer[1]);
304 }
305 offset =context->common.filterBufferLen - 80;
306 } else {
307 offset -= 8;
308 }
309 for (ch = 0; ch < nrof_channels; ch++) {
310 cosineModulateSynth4(context->common.filterBuffer[ch] + offset, s);
311 SynthWindow40_int32_int32_symmetry_with_sum(pcm + ch,
312 context->common.filterBuffer[ch] + offset,
313 pcmStrideShift);
314 s += 4;
315 }
316 pcm += (4 << pcmStrideShift);
317 }
318 context->common.filterBufferOffset = offset;
319 }
320
321 #ifdef SBC_ENHANCED
322
OI_SBC_SynthFrame_Enhanced(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT blkstart,OI_UINT blkcount)323 PRIVATE void OI_SBC_SynthFrame_Enhanced(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT blkstart, OI_UINT blkcount)
324 {
325 OI_UINT blk;
326 OI_UINT ch;
327 OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
328 OI_UINT pcmStrideShift = context->common.pcmStride == 1 ? 0 : 1;
329 OI_UINT offset = context->common.filterBufferOffset;
330 OI_INT32 *s = context->common.subdata + 8 * nrof_channels * blkstart;
331 OI_UINT blkstop = blkstart + blkcount;
332
333 for (blk = blkstart; blk < blkstop; blk++) {
334 if (offset == 0) {
335 COPY_BACKWARD_32BIT_ALIGNED_104_HALFWORDS(context->common.filterBuffer[0] +context->common.filterBufferLen - 104, context->common.filterBuffer[0]);
336 if (nrof_channels == 2) {
337 COPY_BACKWARD_32BIT_ALIGNED_104_HALFWORDS(context->common.filterBuffer[1] + context->common.filterBufferLen - 104, context->common.filterBuffer[1]);
338 }
339 offset = context->common.filterBufferLen - 112;
340 } else {
341 offset -= 8;
342 }
343 for (ch = 0; ch < nrof_channels; ++ch) {
344 DCT2_8(context->common.filterBuffer[ch] + offset, s);
345 SYNTH112(pcm + ch, context->common.filterBuffer[ch] + offset, pcmStrideShift);
346 s += 8;
347 }
348 pcm += (8 << pcmStrideShift);
349 }
350 context->common.filterBufferOffset = offset;
351 }
352
353 static const SYNTH_FRAME SynthFrameEnhanced[] = {
354 NULL, /* invalid */
355 OI_SBC_SynthFrame_Enhanced, /* mono */
356 OI_SBC_SynthFrame_Enhanced /* stereo */
357 };
358
359 #endif
360
361 static const SYNTH_FRAME SynthFrame8SB[] = {
362 NULL, /* invalid */
363 OI_SBC_SynthFrame_80, /* mono */
364 OI_SBC_SynthFrame_80 /* stereo */
365 };
366
367
368 static const SYNTH_FRAME SynthFrame4SB[] = {
369 NULL, /* invalid */
370 OI_SBC_SynthFrame_4SB, /* mono */
371 OI_SBC_SynthFrame_4SB /* stereo */
372 };
373
OI_SBC_SynthFrame(OI_CODEC_SBC_DECODER_CONTEXT * context,OI_INT16 * pcm,OI_UINT start_block,OI_UINT nrof_blocks)374 PRIVATE void OI_SBC_SynthFrame(OI_CODEC_SBC_DECODER_CONTEXT *context, OI_INT16 *pcm, OI_UINT start_block, OI_UINT nrof_blocks)
375 {
376 OI_UINT nrof_subbands = context->common.frameInfo.nrof_subbands;
377 OI_UINT nrof_channels = context->common.frameInfo.nrof_channels;
378
379 OI_ASSERT(nrof_subbands == 4 || nrof_subbands == 8);
380 if (nrof_subbands == 4) {
381 SynthFrame4SB[nrof_channels](context, pcm, start_block, nrof_blocks);
382 #ifdef SBC_ENHANCED
383 } else if (context->common.frameInfo.enhanced) {
384 SynthFrameEnhanced[nrof_channels](context, pcm, start_block, nrof_blocks);
385 #endif /* SBC_ENHANCED */
386 } else {
387 SynthFrame8SB[nrof_channels](context, pcm, start_block, nrof_blocks);
388 }
389 }
390
391
SynthWindow40_int32_int32_symmetry_with_sum(OI_INT16 * pcm,SBC_BUFFER_T buffer[80],OI_UINT strideShift)392 void SynthWindow40_int32_int32_symmetry_with_sum(OI_INT16 *pcm, SBC_BUFFER_T buffer[80], OI_UINT strideShift)
393 {
394 OI_INT32 pa;
395 OI_INT32 pb;
396
397 /* These values should be zero, since out[2] of the 4-band cosine modulation
398 * is always zero. */
399 OI_ASSERT(buffer[ 2] == 0);
400 OI_ASSERT(buffer[10] == 0);
401 OI_ASSERT(buffer[18] == 0);
402 OI_ASSERT(buffer[26] == 0);
403 OI_ASSERT(buffer[34] == 0);
404 OI_ASSERT(buffer[42] == 0);
405 OI_ASSERT(buffer[50] == 0);
406 OI_ASSERT(buffer[58] == 0);
407 OI_ASSERT(buffer[66] == 0);
408 OI_ASSERT(buffer[74] == 0);
409
410
411 pa = dec_window_4[ 4] * (buffer[12] + buffer[76]);
412 pa += dec_window_4[ 8] * (buffer[16] - buffer[64]);
413 pa += dec_window_4[12] * (buffer[28] + buffer[60]);
414 pa += dec_window_4[16] * (buffer[32] - buffer[48]);
415 pa += dec_window_4[20] * buffer[44];
416 pa = SCALE(-pa, 15);
417 CLIP_INT16(pa);
418 pcm[0 << strideShift] = (OI_INT16)pa;
419
420
421 pa = dec_window_4[ 1] * buffer[ 1]; pb = dec_window_4[ 1] * buffer[79];
422 pb += dec_window_4[ 3] * buffer[ 3]; pa += dec_window_4[ 3] * buffer[77];
423 pa += dec_window_4[ 5] * buffer[13]; pb += dec_window_4[ 5] * buffer[67];
424 pb += dec_window_4[ 7] * buffer[15]; pa += dec_window_4[ 7] * buffer[65];
425 pa += dec_window_4[ 9] * buffer[17]; pb += dec_window_4[ 9] * buffer[63];
426 pb += dec_window_4[11] * buffer[19]; pa += dec_window_4[11] * buffer[61];
427 pa += dec_window_4[13] * buffer[29]; pb += dec_window_4[13] * buffer[51];
428 pb += dec_window_4[15] * buffer[31]; pa += dec_window_4[15] * buffer[49];
429 pa += dec_window_4[17] * buffer[33]; pb += dec_window_4[17] * buffer[47];
430 pb += dec_window_4[19] * buffer[35]; pa += dec_window_4[19] * buffer[45];
431 pa = SCALE(-pa, 15);
432 CLIP_INT16(pa);
433 pcm[1 << strideShift] = (OI_INT16)(pa);
434 pb = SCALE(-pb, 15);
435 CLIP_INT16(pb);
436 pcm[3 << strideShift] = (OI_INT16)(pb);
437
438
439 pa = dec_window_4[2] * (/*buffer[ 2] + */ buffer[78]); /* buffer[ 2] is always zero */
440 pa += dec_window_4[6] * (buffer[14] /* + buffer[66]*/); /* buffer[66] is always zero */
441 pa += dec_window_4[10] * (/*buffer[18] + */ buffer[62]); /* buffer[18] is always zero */
442 pa += dec_window_4[14] * (buffer[30] /* + buffer[50]*/); /* buffer[50] is always zero */
443 pa += dec_window_4[18] * (/*buffer[34] + */ buffer[46]); /* buffer[34] is always zero */
444 pa = SCALE(-pa, 15);
445 CLIP_INT16(pa);
446 pcm[2 << strideShift] = (OI_INT16)(pa);
447 }
448
449
450 /**
451 This routine implements the cosine modulation matrix for 4-subband
452 synthesis. This is called "matrixing" in the SBC specification. This
453 matrix, M4, can be factored into an 8-point Type II Discrete Cosine
454 Transform, DCTII_4 and a matrix S4, given here:
455
456 @code
457 __ __
458 | 0 0 1 0 |
459 | 0 0 0 1 |
460 | 0 0 0 0 |
461 | 0 0 0 -1 |
462 S4 = | 0 0 -1 0 |
463 | 0 -1 0 0 |
464 | -1 0 0 0 |
465 |__ 0 -1 0 0 __|
466
467 M4 * in = S4 * (DCTII_4 * in)
468 @endcode
469
470 (DCTII_4 * in) is computed using a Fast Cosine Transform. The algorithm
471 here is based on an implementation computed by the SPIRAL computer
472 algebra system, manually converted to fixed-point arithmetic. S4 can be
473 implemented using only assignment and negation.
474 */
cosineModulateSynth4(SBC_BUFFER_T * RESTRICT out,OI_INT32 const * RESTRICT in)475 PRIVATE void cosineModulateSynth4(SBC_BUFFER_T * RESTRICT out, OI_INT32 const * RESTRICT in)
476 {
477 OI_INT32 f0, f1, f2, f3, f4, f7, f8, f9, f10;
478 OI_INT32 y0, y1, y2, y3;
479
480 f0 = (in[0] - in[3]);
481 f1 = (in[0] + in[3]);
482 f2 = (in[1] - in[2]);
483 f3 = (in[1] + in[2]);
484
485 f4 = f1 - f3;
486
487 y0 = -SCALE(f1 + f3, DCT_SHIFT);
488 y2 = -SCALE(LONG_MULT_DCT(DCTII_4_K06_FIX, f4), DCT_SHIFT);
489 f7 = f0 + f2;
490 f8 = LONG_MULT_DCT(DCTII_4_K08_FIX, f0);
491 f9 = LONG_MULT_DCT(DCTII_4_K09_FIX, f7);
492 f10 = LONG_MULT_DCT(DCTII_4_K10_FIX, f2);
493 y3 = -SCALE(f8 + f9, DCT_SHIFT);
494 y1 = -SCALE(f10 - f9, DCT_SHIFT);
495
496 out[0] = (OI_INT16)-y2;
497 out[1] = (OI_INT16)-y3;
498 out[2] = (OI_INT16)0;
499 out[3] = (OI_INT16)y3;
500 out[4] = (OI_INT16)y2;
501 out[5] = (OI_INT16)y1;
502 out[6] = (OI_INT16)y0;
503 out[7] = (OI_INT16)y1;
504 }
505
506
507
508 /**
509 @}
510 */
511