1 /******************************************************************************
2 *
3 * Copyright (C) 2014 Google, Inc.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #define LOG_TAG "bt_osi_alarm"
20
21 #include <assert.h>
22 #include <errno.h>
23 #include <hardware/bluetooth.h>
24 #include <inttypes.h>
25 #include <malloc.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29
30 #include "osi/include/alarm.h"
31 #include "osi/include/allocator.h"
32 #include "osi/include/list.h"
33 #include "osi/include/log.h"
34 #include "osi/include/osi.h"
35 #include "osi/include/semaphore.h"
36 #include "osi/include/thread.h"
37
38 struct alarm_t {
39 // The lock is held while the callback for this alarm is being executed.
40 // It allows us to release the coarse-grained monitor lock while a potentially
41 // long-running callback is executing. |alarm_cancel| uses this lock to provide
42 // a guarantee to its caller that the callback will not be in progress when it
43 // returns.
44 pthread_mutex_t callback_lock;
45 period_ms_t created;
46 period_ms_t period;
47 period_ms_t deadline;
48 bool is_periodic;
49 alarm_callback_t callback;
50 void *data;
51 };
52
53 extern bt_os_callouts_t *bt_os_callouts;
54
55 // If the next wakeup time is less than this threshold, we should acquire
56 // a wakelock instead of setting a wake alarm so we're not bouncing in
57 // and out of suspend frequently. This value is externally visible to allow
58 // unit tests to run faster. It should not be modified by production code.
59 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
60 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
61 static const char *WAKE_LOCK_ID = "bluedroid_timer";
62
63 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
64 // functions execute serially and not concurrently. As a result, this mutex also
65 // protects the |alarms| list.
66 static pthread_mutex_t monitor;
67 static list_t *alarms;
68 static timer_t timer;
69 static bool timer_set;
70
71 // All alarm callbacks are dispatched from |callback_thread|
72 static thread_t *callback_thread;
73 static bool callback_thread_active;
74 static semaphore_t *alarm_expired;
75
76 static bool lazy_initialize(void);
77 static period_ms_t now(void);
78 static void alarm_set_internal(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data, bool is_periodic);
79 static void schedule_next_instance(alarm_t *alarm, bool force_reschedule);
80 static void reschedule_root_alarm(void);
81 static void timer_callback(void *data);
82 static void callback_dispatch(void *context);
83
alarm_new(void)84 alarm_t *alarm_new(void) {
85 // Make sure we have a list we can insert alarms into.
86 if (!alarms && !lazy_initialize())
87 return NULL;
88
89 pthread_mutexattr_t attr;
90 pthread_mutexattr_init(&attr);
91
92 alarm_t *ret = osi_calloc(sizeof(alarm_t));
93 if (!ret) {
94 LOG_ERROR("%s unable to allocate memory for alarm.", __func__);
95 goto error;
96 }
97
98 // Make this a recursive mutex to make it safe to call |alarm_cancel| from
99 // within the callback function of the alarm.
100 int error = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
101 if (error) {
102 LOG_ERROR("%s unable to create a recursive mutex: %s", __func__, strerror(error));
103 goto error;
104 }
105
106 error = pthread_mutex_init(&ret->callback_lock, &attr);
107 if (error) {
108 LOG_ERROR("%s unable to initialize mutex: %s", __func__, strerror(error));
109 goto error;
110 }
111
112 pthread_mutexattr_destroy(&attr);
113 return ret;
114
115 error:;
116 pthread_mutexattr_destroy(&attr);
117 osi_free(ret);
118 return NULL;
119 }
120
alarm_free(alarm_t * alarm)121 void alarm_free(alarm_t *alarm) {
122 if (!alarm)
123 return;
124
125 alarm_cancel(alarm);
126 pthread_mutex_destroy(&alarm->callback_lock);
127 osi_free(alarm);
128 }
129
alarm_get_remaining_ms(const alarm_t * alarm)130 period_ms_t alarm_get_remaining_ms(const alarm_t *alarm) {
131 assert(alarm != NULL);
132 period_ms_t remaining_ms = 0;
133
134 pthread_mutex_lock(&monitor);
135 if (alarm->deadline)
136 remaining_ms = alarm->deadline - now();
137 pthread_mutex_unlock(&monitor);
138
139 return remaining_ms;
140 }
141
alarm_set(alarm_t * alarm,period_ms_t deadline,alarm_callback_t cb,void * data)142 void alarm_set(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data) {
143 alarm_set_internal(alarm, deadline, cb, data, false);
144 }
145
alarm_set_periodic(alarm_t * alarm,period_ms_t period,alarm_callback_t cb,void * data)146 void alarm_set_periodic(alarm_t *alarm, period_ms_t period, alarm_callback_t cb, void *data) {
147 alarm_set_internal(alarm, period, cb, data, true);
148 }
149
150 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,period_ms_t period,alarm_callback_t cb,void * data,bool is_periodic)151 static void alarm_set_internal(alarm_t *alarm, period_ms_t period, alarm_callback_t cb, void *data, bool is_periodic) {
152 assert(alarms != NULL);
153 assert(alarm != NULL);
154 assert(cb != NULL);
155
156 pthread_mutex_lock(&monitor);
157
158 alarm->created = now();
159 alarm->is_periodic = is_periodic;
160 alarm->period = period;
161 alarm->callback = cb;
162 alarm->data = data;
163
164 schedule_next_instance(alarm, false);
165
166 pthread_mutex_unlock(&monitor);
167 }
168
alarm_cancel(alarm_t * alarm)169 void alarm_cancel(alarm_t *alarm) {
170 assert(alarms != NULL);
171 assert(alarm != NULL);
172
173 pthread_mutex_lock(&monitor);
174
175 bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
176
177 list_remove(alarms, alarm);
178 alarm->deadline = 0;
179 alarm->callback = NULL;
180 alarm->data = NULL;
181
182 if (needs_reschedule)
183 reschedule_root_alarm();
184
185 pthread_mutex_unlock(&monitor);
186
187 // If the callback for |alarm| is in progress, wait here until it completes.
188 pthread_mutex_lock(&alarm->callback_lock);
189 pthread_mutex_unlock(&alarm->callback_lock);
190 }
191
alarm_cleanup(void)192 void alarm_cleanup(void) {
193 // If lazy_initialize never ran there is nothing to do
194 if (!alarms)
195 return;
196
197 callback_thread_active = false;
198 semaphore_post(alarm_expired);
199 thread_free(callback_thread);
200 callback_thread = NULL;
201
202 semaphore_free(alarm_expired);
203 alarm_expired = NULL;
204 timer_delete(&timer);
205 list_free(alarms);
206 alarms = NULL;
207
208 pthread_mutex_destroy(&monitor);
209 }
210
lazy_initialize(void)211 static bool lazy_initialize(void) {
212 assert(alarms == NULL);
213
214 pthread_mutex_init(&monitor, NULL);
215
216 alarms = list_new(NULL);
217 if (!alarms) {
218 LOG_ERROR("%s unable to allocate alarm list.", __func__);
219 return false;
220 }
221
222 struct sigevent sigevent;
223 memset(&sigevent, 0, sizeof(sigevent));
224 sigevent.sigev_notify = SIGEV_THREAD;
225 sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
226 if (timer_create(CLOCK_ID, &sigevent, &timer) == -1) {
227 LOG_ERROR("%s unable to create timer: %s", __func__, strerror(errno));
228 return false;
229 }
230
231 alarm_expired = semaphore_new(0);
232 if (!alarm_expired) {
233 LOG_ERROR("%s unable to create alarm expired semaphore", __func__);
234 return false;
235 }
236
237 callback_thread_active = true;
238 callback_thread = thread_new("alarm_callbacks");
239 if (!callback_thread) {
240 LOG_ERROR("%s unable to create alarm callback thread.", __func__);
241 return false;
242 }
243
244 thread_post(callback_thread, callback_dispatch, NULL);
245 return true;
246 }
247
now(void)248 static period_ms_t now(void) {
249 assert(alarms != NULL);
250
251 struct timespec ts;
252 if (clock_gettime(CLOCK_ID, &ts) == -1) {
253 LOG_ERROR("%s unable to get current time: %s", __func__, strerror(errno));
254 return 0;
255 }
256
257 return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
258 }
259
260 // Must be called with monitor held
schedule_next_instance(alarm_t * alarm,bool force_reschedule)261 static void schedule_next_instance(alarm_t *alarm, bool force_reschedule) {
262 // If the alarm is currently set and it's at the start of the list,
263 // we'll need to re-schedule since we've adjusted the earliest deadline.
264 bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm);
265 if (alarm->callback)
266 list_remove(alarms, alarm);
267
268 // Calculate the next deadline for this alarm
269 period_ms_t just_now = now();
270 period_ms_t ms_into_period = alarm->is_periodic ? ((just_now - alarm->created) % alarm->period) : 0;
271 alarm->deadline = just_now + (alarm->period - ms_into_period);
272
273 // Add it into the timer list sorted by deadline (earliest deadline first).
274 if (list_is_empty(alarms) || ((alarm_t *)list_front(alarms))->deadline >= alarm->deadline)
275 list_prepend(alarms, alarm);
276 else
277 for (list_node_t *node = list_begin(alarms); node != list_end(alarms); node = list_next(node)) {
278 list_node_t *next = list_next(node);
279 if (next == list_end(alarms) || ((alarm_t *)list_node(next))->deadline >= alarm->deadline) {
280 list_insert_after(alarms, node, alarm);
281 break;
282 }
283 }
284
285 // If the new alarm has the earliest deadline, we need to re-evaluate our schedule.
286 if (force_reschedule || needs_reschedule || (!list_is_empty(alarms) && list_front(alarms) == alarm))
287 reschedule_root_alarm();
288 }
289
290 // NOTE: must be called with monitor lock.
reschedule_root_alarm(void)291 static void reschedule_root_alarm(void) {
292 bool timer_was_set = timer_set;
293 assert(alarms != NULL);
294
295 // If used in a zeroed state, disarms the timer
296 struct itimerspec wakeup_time;
297 memset(&wakeup_time, 0, sizeof(wakeup_time));
298
299 if (list_is_empty(alarms))
300 goto done;
301
302 alarm_t *next = list_front(alarms);
303 int64_t next_expiration = next->deadline - now();
304 if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
305 if (!timer_set) {
306 int status = bt_os_callouts->acquire_wake_lock(WAKE_LOCK_ID);
307 if (status != BT_STATUS_SUCCESS) {
308 LOG_ERROR("%s unable to acquire wake lock: %d", __func__, status);
309 goto done;
310 }
311 }
312
313 wakeup_time.it_value.tv_sec = (next->deadline / 1000);
314 wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
315 } else {
316 if (!bt_os_callouts->set_wake_alarm(next_expiration, true, timer_callback, NULL))
317 LOG_ERROR("%s unable to set wake alarm for %" PRId64 "ms.", __func__, next_expiration);
318 }
319
320 done:
321 timer_set = wakeup_time.it_value.tv_sec != 0 || wakeup_time.it_value.tv_nsec != 0;
322 if (timer_was_set && !timer_set) {
323 bt_os_callouts->release_wake_lock(WAKE_LOCK_ID);
324 }
325
326 if (timer_settime(timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
327 LOG_ERROR("%s unable to set timer: %s", __func__, strerror(errno));
328
329 // If next expiration was in the past (e.g. short timer that got context switched)
330 // then the timer might have diarmed itself. Detect this case and work around it
331 // by manually signalling the |alarm_expired| semaphore.
332 //
333 // It is possible that the timer was actually super short (a few milliseconds)
334 // and the timer expired normally before we called |timer_gettime|. Worst case,
335 // |alarm_expired| is signaled twice for that alarm. Nothing bad should happen in
336 // that case though since the callback dispatch function checks to make sure the
337 // timer at the head of the list actually expired.
338 if (timer_set) {
339 struct itimerspec time_to_expire;
340 timer_gettime(timer, &time_to_expire);
341 if (time_to_expire.it_value.tv_sec == 0 && time_to_expire.it_value.tv_nsec == 0) {
342 LOG_ERROR("%s alarm expiration too close for posix timers, switching to guns", __func__);
343 semaphore_post(alarm_expired);
344 }
345 }
346 }
347
348 // Callback function for wake alarms and our posix timer
timer_callback(UNUSED_ATTR void * ptr)349 static void timer_callback(UNUSED_ATTR void *ptr) {
350 semaphore_post(alarm_expired);
351 }
352
353 // Function running on |callback_thread| that dispatches alarm callbacks upon
354 // alarm expiration, which is signaled using |alarm_expired|.
callback_dispatch(UNUSED_ATTR void * context)355 static void callback_dispatch(UNUSED_ATTR void *context) {
356 while (true) {
357 semaphore_wait(alarm_expired);
358 if (!callback_thread_active)
359 break;
360
361 pthread_mutex_lock(&monitor);
362 alarm_t *alarm;
363
364 // Take into account that the alarm may get cancelled before we get to it.
365 // We're done here if there are no alarms or the alarm at the front is in
366 // the future. Release the monitor lock and exit right away since there's
367 // nothing left to do.
368 if (list_is_empty(alarms) || (alarm = list_front(alarms))->deadline > now()) {
369 reschedule_root_alarm();
370 pthread_mutex_unlock(&monitor);
371 continue;
372 }
373
374 list_remove(alarms, alarm);
375
376 alarm_callback_t callback = alarm->callback;
377 void *data = alarm->data;
378
379 if (alarm->is_periodic) {
380 schedule_next_instance(alarm, true);
381 } else {
382 reschedule_root_alarm();
383
384 alarm->deadline = 0;
385 alarm->callback = NULL;
386 alarm->data = NULL;
387 }
388
389 // Downgrade lock.
390 pthread_mutex_lock(&alarm->callback_lock);
391 pthread_mutex_unlock(&monitor);
392
393 callback(data);
394
395 pthread_mutex_unlock(&alarm->callback_lock);
396 }
397
398 LOG_DEBUG("%s Callback thread exited", __func__);
399 }
400