1 /* libs/pixelflinger/codeflinger/ARMAssembler.cpp
2 **
3 ** Copyright 2006, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 #define LOG_TAG "ARMAssembler"
19
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <cutils/log.h>
23 #include <cutils/properties.h>
24
25 #if defined(WITH_LIB_HARDWARE)
26 #include <hardware_legacy/qemu_tracing.h>
27 #endif
28
29 #include <private/pixelflinger/ggl_context.h>
30
31 #include "ARMAssembler.h"
32 #include "CodeCache.h"
33 #include "disassem.h"
34
35 // ----------------------------------------------------------------------------
36
37 namespace android {
38
39 // ----------------------------------------------------------------------------
40 #if 0
41 #pragma mark -
42 #pragma mark ARMAssembler...
43 #endif
44
ARMAssembler(const sp<Assembly> & assembly)45 ARMAssembler::ARMAssembler(const sp<Assembly>& assembly)
46 : ARMAssemblerInterface(),
47 mAssembly(assembly)
48 {
49 mBase = mPC = (uint32_t *)assembly->base();
50 mDuration = ggl_system_time();
51 #if defined(WITH_LIB_HARDWARE)
52 mQemuTracing = true;
53 #endif
54 }
55
~ARMAssembler()56 ARMAssembler::~ARMAssembler()
57 {
58 }
59
pc() const60 uint32_t* ARMAssembler::pc() const
61 {
62 return mPC;
63 }
64
base() const65 uint32_t* ARMAssembler::base() const
66 {
67 return mBase;
68 }
69
reset()70 void ARMAssembler::reset()
71 {
72 mBase = mPC = (uint32_t *)mAssembly->base();
73 mBranchTargets.clear();
74 mLabels.clear();
75 mLabelsInverseMapping.clear();
76 mComments.clear();
77 }
78
getCodegenArch()79 int ARMAssembler::getCodegenArch()
80 {
81 return CODEGEN_ARCH_ARM;
82 }
83
84 // ----------------------------------------------------------------------------
85
disassemble(const char * name)86 void ARMAssembler::disassemble(const char* name)
87 {
88 if (name) {
89 printf("%s:\n", name);
90 }
91 size_t count = pc()-base();
92 uint32_t* i = base();
93 while (count--) {
94 ssize_t label = mLabelsInverseMapping.indexOfKey(i);
95 if (label >= 0) {
96 printf("%s:\n", mLabelsInverseMapping.valueAt(label));
97 }
98 ssize_t comment = mComments.indexOfKey(i);
99 if (comment >= 0) {
100 printf("; %s\n", mComments.valueAt(comment));
101 }
102 printf("%08x: %08x ", uintptr_t(i), int(i[0]));
103 ::disassemble((uintptr_t)i);
104 i++;
105 }
106 }
107
comment(const char * string)108 void ARMAssembler::comment(const char* string)
109 {
110 mComments.add(mPC, string);
111 }
112
label(const char * theLabel)113 void ARMAssembler::label(const char* theLabel)
114 {
115 mLabels.add(theLabel, mPC);
116 mLabelsInverseMapping.add(mPC, theLabel);
117 }
118
B(int cc,const char * label)119 void ARMAssembler::B(int cc, const char* label)
120 {
121 mBranchTargets.add(branch_target_t(label, mPC));
122 *mPC++ = (cc<<28) | (0xA<<24) | 0;
123 }
124
BL(int cc,const char * label)125 void ARMAssembler::BL(int cc, const char* label)
126 {
127 mBranchTargets.add(branch_target_t(label, mPC));
128 *mPC++ = (cc<<28) | (0xB<<24) | 0;
129 }
130
131 #if 0
132 #pragma mark -
133 #pragma mark Prolog/Epilog & Generate...
134 #endif
135
136
prolog()137 void ARMAssembler::prolog()
138 {
139 // write dummy prolog code
140 mPrologPC = mPC;
141 STM(AL, FD, SP, 1, LSAVED);
142 }
143
epilog(uint32_t touched)144 void ARMAssembler::epilog(uint32_t touched)
145 {
146 touched &= LSAVED;
147 if (touched) {
148 // write prolog code
149 uint32_t* pc = mPC;
150 mPC = mPrologPC;
151 STM(AL, FD, SP, 1, touched | LLR);
152 mPC = pc;
153 // write epilog code
154 LDM(AL, FD, SP, 1, touched | LLR);
155 BX(AL, LR);
156 } else { // heh, no registers to save!
157 // write prolog code
158 uint32_t* pc = mPC;
159 mPC = mPrologPC;
160 MOV(AL, 0, R0, R0); // NOP
161 mPC = pc;
162 // write epilog code
163 BX(AL, LR);
164 }
165 }
166
generate(const char * name)167 int ARMAssembler::generate(const char* name)
168 {
169 // fixup all the branches
170 size_t count = mBranchTargets.size();
171 while (count--) {
172 const branch_target_t& bt = mBranchTargets[count];
173 uint32_t* target_pc = mLabels.valueFor(bt.label);
174 LOG_ALWAYS_FATAL_IF(!target_pc,
175 "error resolving branch targets, target_pc is null");
176 int32_t offset = int32_t(target_pc - (bt.pc+2));
177 *bt.pc |= offset & 0xFFFFFF;
178 }
179
180 mAssembly->resize( int(pc()-base())*4 );
181
182 // the instruction cache is flushed by CodeCache
183 const int64_t duration = ggl_system_time() - mDuration;
184 const char * const format = "generated %s (%d ins) at [%p:%p] in %lld ns\n";
185 ALOGI(format, name, int(pc()-base()), base(), pc(), duration);
186
187 #if defined(WITH_LIB_HARDWARE)
188 if (__builtin_expect(mQemuTracing, 0)) {
189 int err = qemu_add_mapping(uintptr_t(base()), name);
190 mQemuTracing = (err >= 0);
191 }
192 #endif
193
194 char value[PROPERTY_VALUE_MAX];
195 property_get("debug.pf.disasm", value, "0");
196 if (atoi(value) != 0) {
197 printf(format, name, int(pc()-base()), base(), pc(), duration);
198 disassemble(name);
199 }
200
201 return NO_ERROR;
202 }
203
pcForLabel(const char * label)204 uint32_t* ARMAssembler::pcForLabel(const char* label)
205 {
206 return mLabels.valueFor(label);
207 }
208
209 // ----------------------------------------------------------------------------
210
211 #if 0
212 #pragma mark -
213 #pragma mark Data Processing...
214 #endif
215
dataProcessing(int opcode,int cc,int s,int Rd,int Rn,uint32_t Op2)216 void ARMAssembler::dataProcessing(int opcode, int cc,
217 int s, int Rd, int Rn, uint32_t Op2)
218 {
219 *mPC++ = (cc<<28) | (opcode<<21) | (s<<20) | (Rn<<16) | (Rd<<12) | Op2;
220 }
221
222 #if 0
223 #pragma mark -
224 #pragma mark Multiply...
225 #endif
226
227 // multiply...
MLA(int cc,int s,int Rd,int Rm,int Rs,int Rn)228 void ARMAssembler::MLA(int cc, int s,
229 int Rd, int Rm, int Rs, int Rn) {
230 if (Rd == Rm) { int t = Rm; Rm=Rs; Rs=t; }
231 LOG_FATAL_IF(Rd==Rm, "MLA(r%u,r%u,r%u,r%u)", Rd,Rm,Rs,Rn);
232 *mPC++ = (cc<<28) | (1<<21) | (s<<20) |
233 (Rd<<16) | (Rn<<12) | (Rs<<8) | 0x90 | Rm;
234 }
MUL(int cc,int s,int Rd,int Rm,int Rs)235 void ARMAssembler::MUL(int cc, int s,
236 int Rd, int Rm, int Rs) {
237 if (Rd == Rm) { int t = Rm; Rm=Rs; Rs=t; }
238 LOG_FATAL_IF(Rd==Rm, "MUL(r%u,r%u,r%u)", Rd,Rm,Rs);
239 *mPC++ = (cc<<28) | (s<<20) | (Rd<<16) | (Rs<<8) | 0x90 | Rm;
240 }
UMULL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)241 void ARMAssembler::UMULL(int cc, int s,
242 int RdLo, int RdHi, int Rm, int Rs) {
243 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
244 "UMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
245 *mPC++ = (cc<<28) | (1<<23) | (s<<20) |
246 (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
247 }
UMUAL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)248 void ARMAssembler::UMUAL(int cc, int s,
249 int RdLo, int RdHi, int Rm, int Rs) {
250 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
251 "UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
252 *mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) |
253 (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
254 }
SMULL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)255 void ARMAssembler::SMULL(int cc, int s,
256 int RdLo, int RdHi, int Rm, int Rs) {
257 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
258 "SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
259 *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) |
260 (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
261 }
SMUAL(int cc,int s,int RdLo,int RdHi,int Rm,int Rs)262 void ARMAssembler::SMUAL(int cc, int s,
263 int RdLo, int RdHi, int Rm, int Rs) {
264 LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi,
265 "SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs);
266 *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) |
267 (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm;
268 }
269
270 #if 0
271 #pragma mark -
272 #pragma mark Branches...
273 #endif
274
275 // branches...
B(int cc,uint32_t * pc)276 void ARMAssembler::B(int cc, uint32_t* pc)
277 {
278 int32_t offset = int32_t(pc - (mPC+2));
279 *mPC++ = (cc<<28) | (0xA<<24) | (offset & 0xFFFFFF);
280 }
281
BL(int cc,uint32_t * pc)282 void ARMAssembler::BL(int cc, uint32_t* pc)
283 {
284 int32_t offset = int32_t(pc - (mPC+2));
285 *mPC++ = (cc<<28) | (0xB<<24) | (offset & 0xFFFFFF);
286 }
287
BX(int cc,int Rn)288 void ARMAssembler::BX(int cc, int Rn)
289 {
290 *mPC++ = (cc<<28) | 0x12FFF10 | Rn;
291 }
292
293 #if 0
294 #pragma mark -
295 #pragma mark Data Transfer...
296 #endif
297
298 // data transfert...
LDR(int cc,int Rd,int Rn,uint32_t offset)299 void ARMAssembler::LDR(int cc, int Rd, int Rn, uint32_t offset) {
300 *mPC++ = (cc<<28) | (1<<26) | (1<<20) | (Rn<<16) | (Rd<<12) | offset;
301 }
LDRB(int cc,int Rd,int Rn,uint32_t offset)302 void ARMAssembler::LDRB(int cc, int Rd, int Rn, uint32_t offset) {
303 *mPC++ = (cc<<28) | (1<<26) | (1<<22) | (1<<20) | (Rn<<16) | (Rd<<12) | offset;
304 }
STR(int cc,int Rd,int Rn,uint32_t offset)305 void ARMAssembler::STR(int cc, int Rd, int Rn, uint32_t offset) {
306 *mPC++ = (cc<<28) | (1<<26) | (Rn<<16) | (Rd<<12) | offset;
307 }
STRB(int cc,int Rd,int Rn,uint32_t offset)308 void ARMAssembler::STRB(int cc, int Rd, int Rn, uint32_t offset) {
309 *mPC++ = (cc<<28) | (1<<26) | (1<<22) | (Rn<<16) | (Rd<<12) | offset;
310 }
311
LDRH(int cc,int Rd,int Rn,uint32_t offset)312 void ARMAssembler::LDRH(int cc, int Rd, int Rn, uint32_t offset) {
313 *mPC++ = (cc<<28) | (1<<20) | (Rn<<16) | (Rd<<12) | 0xB0 | offset;
314 }
LDRSB(int cc,int Rd,int Rn,uint32_t offset)315 void ARMAssembler::LDRSB(int cc, int Rd, int Rn, uint32_t offset) {
316 *mPC++ = (cc<<28) | (1<<20) | (Rn<<16) | (Rd<<12) | 0xD0 | offset;
317 }
LDRSH(int cc,int Rd,int Rn,uint32_t offset)318 void ARMAssembler::LDRSH(int cc, int Rd, int Rn, uint32_t offset) {
319 *mPC++ = (cc<<28) | (1<<20) | (Rn<<16) | (Rd<<12) | 0xF0 | offset;
320 }
STRH(int cc,int Rd,int Rn,uint32_t offset)321 void ARMAssembler::STRH(int cc, int Rd, int Rn, uint32_t offset) {
322 *mPC++ = (cc<<28) | (Rn<<16) | (Rd<<12) | 0xB0 | offset;
323 }
324
325 #if 0
326 #pragma mark -
327 #pragma mark Block Data Transfer...
328 #endif
329
330 // block data transfer...
LDM(int cc,int dir,int Rn,int W,uint32_t reg_list)331 void ARMAssembler::LDM(int cc, int dir,
332 int Rn, int W, uint32_t reg_list)
333 { // ED FD EA FA IB IA DB DA
334 const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 };
335 const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 };
336 *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
337 (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list;
338 }
339
STM(int cc,int dir,int Rn,int W,uint32_t reg_list)340 void ARMAssembler::STM(int cc, int dir,
341 int Rn, int W, uint32_t reg_list)
342 { // ED FD EA FA IB IA DB DA
343 const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 };
344 const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 };
345 *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) |
346 (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list;
347 }
348
349 #if 0
350 #pragma mark -
351 #pragma mark Special...
352 #endif
353
354 // special...
SWP(int cc,int Rn,int Rd,int Rm)355 void ARMAssembler::SWP(int cc, int Rn, int Rd, int Rm) {
356 *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
357 }
SWPB(int cc,int Rn,int Rd,int Rm)358 void ARMAssembler::SWPB(int cc, int Rn, int Rd, int Rm) {
359 *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm;
360 }
SWI(int cc,uint32_t comment)361 void ARMAssembler::SWI(int cc, uint32_t comment) {
362 *mPC++ = (cc<<28) | (0xF<<24) | comment;
363 }
364
365 #if 0
366 #pragma mark -
367 #pragma mark DSP instructions...
368 #endif
369
370 // DSP instructions...
PLD(int Rn,uint32_t offset)371 void ARMAssembler::PLD(int Rn, uint32_t offset) {
372 LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))),
373 "PLD only P=1, W=0");
374 *mPC++ = 0xF550F000 | (Rn<<16) | offset;
375 }
376
CLZ(int cc,int Rd,int Rm)377 void ARMAssembler::CLZ(int cc, int Rd, int Rm)
378 {
379 *mPC++ = (cc<<28) | 0x16F0F10| (Rd<<12) | Rm;
380 }
381
QADD(int cc,int Rd,int Rm,int Rn)382 void ARMAssembler::QADD(int cc, int Rd, int Rm, int Rn)
383 {
384 *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm;
385 }
386
QDADD(int cc,int Rd,int Rm,int Rn)387 void ARMAssembler::QDADD(int cc, int Rd, int Rm, int Rn)
388 {
389 *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm;
390 }
391
QSUB(int cc,int Rd,int Rm,int Rn)392 void ARMAssembler::QSUB(int cc, int Rd, int Rm, int Rn)
393 {
394 *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm;
395 }
396
QDSUB(int cc,int Rd,int Rm,int Rn)397 void ARMAssembler::QDSUB(int cc, int Rd, int Rm, int Rn)
398 {
399 *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm;
400 }
401
SMUL(int cc,int xy,int Rd,int Rm,int Rs)402 void ARMAssembler::SMUL(int cc, int xy,
403 int Rd, int Rm, int Rs)
404 {
405 *mPC++ = (cc<<28) | 0x1600080 | (Rd<<16) | (Rs<<8) | (xy<<4) | Rm;
406 }
407
SMULW(int cc,int y,int Rd,int Rm,int Rs)408 void ARMAssembler::SMULW(int cc, int y,
409 int Rd, int Rm, int Rs)
410 {
411 *mPC++ = (cc<<28) | 0x12000A0 | (Rd<<16) | (Rs<<8) | (y<<4) | Rm;
412 }
413
SMLA(int cc,int xy,int Rd,int Rm,int Rs,int Rn)414 void ARMAssembler::SMLA(int cc, int xy,
415 int Rd, int Rm, int Rs, int Rn)
416 {
417 *mPC++ = (cc<<28) | 0x1000080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (xy<<4) | Rm;
418 }
419
SMLAL(int cc,int xy,int RdHi,int RdLo,int Rs,int Rm)420 void ARMAssembler::SMLAL(int cc, int xy,
421 int RdHi, int RdLo, int Rs, int Rm)
422 {
423 *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm;
424 }
425
SMLAW(int cc,int y,int Rd,int Rm,int Rs,int Rn)426 void ARMAssembler::SMLAW(int cc, int y,
427 int Rd, int Rm, int Rs, int Rn)
428 {
429 *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm;
430 }
431
432 #if 0
433 #pragma mark -
434 #pragma mark Byte/half word extract and extend (ARMv6+ only)...
435 #endif
436
UXTB16(int cc,int Rd,int Rm,int rotate)437 void ARMAssembler::UXTB16(int cc, int Rd, int Rm, int rotate)
438 {
439 *mPC++ = (cc<<28) | 0x6CF0070 | (Rd<<12) | ((rotate >> 3) << 10) | Rm;
440 }
441 #if 0
442 #pragma mark -
443 #pragma mark Bit manipulation (ARMv7+ only)...
444 #endif
445
446 // Bit manipulation (ARMv7+ only)...
UBFX(int cc,int Rd,int Rn,int lsb,int width)447 void ARMAssembler::UBFX(int cc, int Rd, int Rn, int lsb, int width)
448 {
449 *mPC++ = (cc<<28) | 0x7E00000 | ((width-1)<<16) | (Rd<<12) | (lsb<<7) | 0x50 | Rn;
450 }
451
452 #if 0
453 #pragma mark -
454 #pragma mark Addressing modes...
455 #endif
456
buildImmediate(uint32_t immediate,uint32_t & rot,uint32_t & imm)457 int ARMAssembler::buildImmediate(
458 uint32_t immediate, uint32_t& rot, uint32_t& imm)
459 {
460 rot = 0;
461 imm = immediate;
462 if (imm > 0x7F) { // skip the easy cases
463 while (!(imm&3) || (imm&0xFC000000)) {
464 uint32_t newval;
465 newval = imm >> 2;
466 newval |= (imm&3) << 30;
467 imm = newval;
468 rot += 2;
469 if (rot == 32) {
470 rot = 0;
471 break;
472 }
473 }
474 }
475 rot = (16 - (rot>>1)) & 0xF;
476
477 if (imm>=0x100)
478 return -EINVAL;
479
480 if (((imm>>(rot<<1)) | (imm<<(32-(rot<<1)))) != immediate)
481 return -1;
482
483 return 0;
484 }
485
486 // shifters...
487
isValidImmediate(uint32_t immediate)488 bool ARMAssembler::isValidImmediate(uint32_t immediate)
489 {
490 uint32_t rot, imm;
491 return buildImmediate(immediate, rot, imm) == 0;
492 }
493
imm(uint32_t immediate)494 uint32_t ARMAssembler::imm(uint32_t immediate)
495 {
496 uint32_t rot, imm;
497 int err = buildImmediate(immediate, rot, imm);
498
499 LOG_ALWAYS_FATAL_IF(err==-EINVAL,
500 "immediate %08x cannot be encoded",
501 immediate);
502
503 LOG_ALWAYS_FATAL_IF(err,
504 "immediate (%08x) encoding bogus!",
505 immediate);
506
507 return (1<<25) | (rot<<8) | imm;
508 }
509
reg_imm(int Rm,int type,uint32_t shift)510 uint32_t ARMAssembler::reg_imm(int Rm, int type, uint32_t shift)
511 {
512 return ((shift&0x1F)<<7) | ((type&0x3)<<5) | (Rm&0xF);
513 }
514
reg_rrx(int Rm)515 uint32_t ARMAssembler::reg_rrx(int Rm)
516 {
517 return (ROR<<5) | (Rm&0xF);
518 }
519
reg_reg(int Rm,int type,int Rs)520 uint32_t ARMAssembler::reg_reg(int Rm, int type, int Rs)
521 {
522 return ((Rs&0xF)<<8) | ((type&0x3)<<5) | (1<<4) | (Rm&0xF);
523 }
524
525 // addressing modes...
526 // LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0)
immed12_pre(int32_t immed12,int W)527 uint32_t ARMAssembler::immed12_pre(int32_t immed12, int W)
528 {
529 LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
530 "LDR(B)/STR(B)/PLD immediate too big (%08x)",
531 immed12);
532 return (1<<24) | (((uint32_t(immed12)>>31)^1)<<23) |
533 ((W&1)<<21) | (abs(immed12)&0x7FF);
534 }
535
immed12_post(int32_t immed12)536 uint32_t ARMAssembler::immed12_post(int32_t immed12)
537 {
538 LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800,
539 "LDR(B)/STR(B)/PLD immediate too big (%08x)",
540 immed12);
541
542 return (((uint32_t(immed12)>>31)^1)<<23) | (abs(immed12)&0x7FF);
543 }
544
reg_scale_pre(int Rm,int type,uint32_t shift,int W)545 uint32_t ARMAssembler::reg_scale_pre(int Rm, int type,
546 uint32_t shift, int W)
547 {
548 return (1<<25) | (1<<24) |
549 (((uint32_t(Rm)>>31)^1)<<23) | ((W&1)<<21) |
550 reg_imm(abs(Rm), type, shift);
551 }
552
reg_scale_post(int Rm,int type,uint32_t shift)553 uint32_t ARMAssembler::reg_scale_post(int Rm, int type, uint32_t shift)
554 {
555 return (1<<25) | (((uint32_t(Rm)>>31)^1)<<23) | reg_imm(abs(Rm), type, shift);
556 }
557
558 // LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0)
immed8_pre(int32_t immed8,int W)559 uint32_t ARMAssembler::immed8_pre(int32_t immed8, int W)
560 {
561 uint32_t offset = abs(immed8);
562
563 LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
564 "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
565 immed8);
566
567 return (1<<24) | (1<<22) | (((uint32_t(immed8)>>31)^1)<<23) |
568 ((W&1)<<21) | (((offset&0xF0)<<4)|(offset&0xF));
569 }
570
immed8_post(int32_t immed8)571 uint32_t ARMAssembler::immed8_post(int32_t immed8)
572 {
573 uint32_t offset = abs(immed8);
574
575 LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100,
576 "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)",
577 immed8);
578
579 return (1<<22) | (((uint32_t(immed8)>>31)^1)<<23) |
580 (((offset&0xF0)<<4) | (offset&0xF));
581 }
582
reg_pre(int Rm,int W)583 uint32_t ARMAssembler::reg_pre(int Rm, int W)
584 {
585 return (1<<24) | (((uint32_t(Rm)>>31)^1)<<23) | ((W&1)<<21) | (abs(Rm)&0xF);
586 }
587
reg_post(int Rm)588 uint32_t ARMAssembler::reg_post(int Rm)
589 {
590 return (((uint32_t(Rm)>>31)^1)<<23) | (abs(Rm)&0xF);
591 }
592
593 }; // namespace android
594
595