1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCSectionELF.h"
28 #include "llvm/MC/MCSymbolELF.h"
29 #include "llvm/MC/MCValue.h"
30 #include "llvm/MC/StringTableBuilder.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/StringSaver.h"
37 #include <vector>
38 using namespace llvm;
39 
40 #undef  DEBUG_TYPE
41 #define DEBUG_TYPE "reloc-info"
42 
43 namespace {
44 
45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
46 
47 class ELFObjectWriter;
48 
49 class SymbolTableWriter {
50   ELFObjectWriter &EWriter;
51   bool Is64Bit;
52 
53   // indexes we are going to write to .symtab_shndx.
54   std::vector<uint32_t> ShndxIndexes;
55 
56   // The numbel of symbols written so far.
57   unsigned NumWritten;
58 
59   void createSymtabShndx();
60 
61   template <typename T> void write(T Value);
62 
63 public:
64   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
65 
66   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
67                    uint8_t other, uint32_t shndx, bool Reserved);
68 
getShndxIndexes() const69   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
70 };
71 
72 class ELFObjectWriter : public MCObjectWriter {
73     static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
74     static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
75     static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
76                            bool Used, bool Renamed);
77 
78     /// Helper struct for containing some precomputed information on symbols.
79     struct ELFSymbolData {
80       const MCSymbolELF *Symbol;
81       uint32_t SectionIndex;
82       StringRef Name;
83 
84       // Support lexicographic sorting.
operator <__anon4ed704dc0111::ELFObjectWriter::ELFSymbolData85       bool operator<(const ELFSymbolData &RHS) const {
86         unsigned LHSType = Symbol->getType();
87         unsigned RHSType = RHS.Symbol->getType();
88         if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
89           return false;
90         if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
91           return true;
92         if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
93           return SectionIndex < RHS.SectionIndex;
94         return Name < RHS.Name;
95       }
96     };
97 
98     /// The target specific ELF writer instance.
99     std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
100 
101     DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
102 
103     llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
104         Relocations;
105 
106     /// @}
107     /// @name Symbol Table Data
108     /// @{
109 
110     BumpPtrAllocator Alloc;
111     StringSaver VersionSymSaver{Alloc};
112     StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
113 
114     /// @}
115 
116     // This holds the symbol table index of the last local symbol.
117     unsigned LastLocalSymbolIndex;
118     // This holds the .strtab section index.
119     unsigned StringTableIndex;
120     // This holds the .symtab section index.
121     unsigned SymbolTableIndex;
122 
123     // Sections in the order they are to be output in the section table.
124     std::vector<const MCSectionELF *> SectionTable;
125     unsigned addToSectionTable(const MCSectionELF *Sec);
126 
127     // TargetObjectWriter wrappers.
is64Bit() const128     bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
hasRelocationAddend() const129     bool hasRelocationAddend() const {
130       return TargetObjectWriter->hasRelocationAddend();
131     }
GetRelocType(const MCValue & Target,const MCFixup & Fixup,bool IsPCRel) const132     unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
133                           bool IsPCRel) const {
134       return TargetObjectWriter->GetRelocType(Target, Fixup, IsPCRel);
135     }
136 
137     void align(unsigned Alignment);
138 
139   public:
ELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)140     ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
141                     bool IsLittleEndian)
142         : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
143 
reset()144     void reset() override {
145       Renames.clear();
146       Relocations.clear();
147       StrTabBuilder.clear();
148       SectionTable.clear();
149       MCObjectWriter::reset();
150     }
151 
152     ~ELFObjectWriter() override;
153 
WriteWord(uint64_t W)154     void WriteWord(uint64_t W) {
155       if (is64Bit())
156         write64(W);
157       else
158         write32(W);
159     }
160 
write(T Val)161     template <typename T> void write(T Val) {
162       if (IsLittleEndian)
163         support::endian::Writer<support::little>(getStream()).write(Val);
164       else
165         support::endian::Writer<support::big>(getStream()).write(Val);
166     }
167 
168     void writeHeader(const MCAssembler &Asm);
169 
170     void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
171                      ELFSymbolData &MSD, const MCAsmLayout &Layout);
172 
173     // Start and end offset of each section
174     typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
175         SectionOffsetsTy;
176 
177     bool shouldRelocateWithSymbol(const MCAssembler &Asm,
178                                   const MCSymbolRefExpr *RefA,
179                                   const MCSymbol *Sym, uint64_t C,
180                                   unsigned Type) const;
181 
182     void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
183                           const MCFragment *Fragment, const MCFixup &Fixup,
184                           MCValue Target, bool &IsPCRel,
185                           uint64_t &FixedValue) override;
186 
187     // Map from a signature symbol to the group section index
188     typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
189 
190     /// Compute the symbol table data
191     ///
192     /// \param Asm - The assembler.
193     /// \param SectionIndexMap - Maps a section to its index.
194     /// \param RevGroupMap - Maps a signature symbol to the group section.
195     void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
196                             const SectionIndexMapTy &SectionIndexMap,
197                             const RevGroupMapTy &RevGroupMap,
198                             SectionOffsetsTy &SectionOffsets);
199 
200     MCSectionELF *createRelocationSection(MCContext &Ctx,
201                                           const MCSectionELF &Sec);
202 
203     const MCSectionELF *createStringTable(MCContext &Ctx);
204 
205     void executePostLayoutBinding(MCAssembler &Asm,
206                                   const MCAsmLayout &Layout) override;
207 
208     void writeSectionHeader(const MCAsmLayout &Layout,
209                             const SectionIndexMapTy &SectionIndexMap,
210                             const SectionOffsetsTy &SectionOffsets);
211 
212     void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
213                           const MCAsmLayout &Layout);
214 
215     void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
216                           uint64_t Address, uint64_t Offset, uint64_t Size,
217                           uint32_t Link, uint32_t Info, uint64_t Alignment,
218                           uint64_t EntrySize);
219 
220     void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
221 
222     bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
223                                                 const MCSymbol &SymA,
224                                                 const MCFragment &FB,
225                                                 bool InSet,
226                                                 bool IsPCRel) const override;
227 
228     bool isWeak(const MCSymbol &Sym) const override;
229 
230     void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
231     void writeSection(const SectionIndexMapTy &SectionIndexMap,
232                       uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
233                       const MCSectionELF &Section);
234   };
235 }
236 
align(unsigned Alignment)237 void ELFObjectWriter::align(unsigned Alignment) {
238   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
239   WriteZeros(Padding);
240 }
241 
addToSectionTable(const MCSectionELF * Sec)242 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
243   SectionTable.push_back(Sec);
244   StrTabBuilder.add(Sec->getSectionName());
245   return SectionTable.size();
246 }
247 
createSymtabShndx()248 void SymbolTableWriter::createSymtabShndx() {
249   if (!ShndxIndexes.empty())
250     return;
251 
252   ShndxIndexes.resize(NumWritten);
253 }
254 
write(T Value)255 template <typename T> void SymbolTableWriter::write(T Value) {
256   EWriter.write(Value);
257 }
258 
SymbolTableWriter(ELFObjectWriter & EWriter,bool Is64Bit)259 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
260     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
261 
writeSymbol(uint32_t name,uint8_t info,uint64_t value,uint64_t size,uint8_t other,uint32_t shndx,bool Reserved)262 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
263                                     uint64_t size, uint8_t other,
264                                     uint32_t shndx, bool Reserved) {
265   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
266 
267   if (LargeIndex)
268     createSymtabShndx();
269 
270   if (!ShndxIndexes.empty()) {
271     if (LargeIndex)
272       ShndxIndexes.push_back(shndx);
273     else
274       ShndxIndexes.push_back(0);
275   }
276 
277   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
278 
279   if (Is64Bit) {
280     write(name);  // st_name
281     write(info);  // st_info
282     write(other); // st_other
283     write(Index); // st_shndx
284     write(value); // st_value
285     write(size);  // st_size
286   } else {
287     write(name);            // st_name
288     write(uint32_t(value)); // st_value
289     write(uint32_t(size));  // st_size
290     write(info);            // st_info
291     write(other);           // st_other
292     write(Index);           // st_shndx
293   }
294 
295   ++NumWritten;
296 }
297 
isFixupKindPCRel(const MCAssembler & Asm,unsigned Kind)298 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
299   const MCFixupKindInfo &FKI =
300     Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
301 
302   return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
303 }
304 
~ELFObjectWriter()305 ELFObjectWriter::~ELFObjectWriter()
306 {}
307 
308 // Emit the ELF header.
writeHeader(const MCAssembler & Asm)309 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
310   // ELF Header
311   // ----------
312   //
313   // Note
314   // ----
315   // emitWord method behaves differently for ELF32 and ELF64, writing
316   // 4 bytes in the former and 8 in the latter.
317 
318   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
319 
320   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
321 
322   // e_ident[EI_DATA]
323   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
324 
325   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
326   // e_ident[EI_OSABI]
327   write8(TargetObjectWriter->getOSABI());
328   write8(0);                  // e_ident[EI_ABIVERSION]
329 
330   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
331 
332   write16(ELF::ET_REL);             // e_type
333 
334   write16(TargetObjectWriter->getEMachine()); // e_machine = target
335 
336   write32(ELF::EV_CURRENT);         // e_version
337   WriteWord(0);                    // e_entry, no entry point in .o file
338   WriteWord(0);                    // e_phoff, no program header for .o
339   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
340 
341   // e_flags = whatever the target wants
342   write32(Asm.getELFHeaderEFlags());
343 
344   // e_ehsize = ELF header size
345   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
346 
347   write16(0);                  // e_phentsize = prog header entry size
348   write16(0);                  // e_phnum = # prog header entries = 0
349 
350   // e_shentsize = Section header entry size
351   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
352 
353   // e_shnum     = # of section header ents
354   write16(0);
355 
356   // e_shstrndx  = Section # of '.shstrtab'
357   assert(StringTableIndex < ELF::SHN_LORESERVE);
358   write16(StringTableIndex);
359 }
360 
SymbolValue(const MCSymbol & Sym,const MCAsmLayout & Layout)361 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
362                                       const MCAsmLayout &Layout) {
363   if (Sym.isCommon() && Sym.isExternal())
364     return Sym.getCommonAlignment();
365 
366   uint64_t Res;
367   if (!Layout.getSymbolOffset(Sym, Res))
368     return 0;
369 
370   if (Layout.getAssembler().isThumbFunc(&Sym))
371     Res |= 1;
372 
373   return Res;
374 }
375 
executePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)376 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
377                                                const MCAsmLayout &Layout) {
378   // The presence of symbol versions causes undefined symbols and
379   // versions declared with @@@ to be renamed.
380 
381   for (const MCSymbol &A : Asm.symbols()) {
382     const auto &Alias = cast<MCSymbolELF>(A);
383     // Not an alias.
384     if (!Alias.isVariable())
385       continue;
386     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
387     if (!Ref)
388       continue;
389     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
390 
391     StringRef AliasName = Alias.getName();
392     size_t Pos = AliasName.find('@');
393     if (Pos == StringRef::npos)
394       continue;
395 
396     // Aliases defined with .symvar copy the binding from the symbol they alias.
397     // This is the first place we are able to copy this information.
398     Alias.setExternal(Symbol.isExternal());
399     Alias.setBinding(Symbol.getBinding());
400 
401     StringRef Rest = AliasName.substr(Pos);
402     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
403       continue;
404 
405     // FIXME: produce a better error message.
406     if (Symbol.isUndefined() && Rest.startswith("@@") &&
407         !Rest.startswith("@@@"))
408       report_fatal_error("A @@ version cannot be undefined");
409 
410     Renames.insert(std::make_pair(&Symbol, &Alias));
411   }
412 }
413 
mergeTypeForSet(uint8_t origType,uint8_t newType)414 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
415   uint8_t Type = newType;
416 
417   // Propagation rules:
418   // IFUNC > FUNC > OBJECT > NOTYPE
419   // TLS_OBJECT > OBJECT > NOTYPE
420   //
421   // dont let the new type degrade the old type
422   switch (origType) {
423   default:
424     break;
425   case ELF::STT_GNU_IFUNC:
426     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
427         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
428       Type = ELF::STT_GNU_IFUNC;
429     break;
430   case ELF::STT_FUNC:
431     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
432         Type == ELF::STT_TLS)
433       Type = ELF::STT_FUNC;
434     break;
435   case ELF::STT_OBJECT:
436     if (Type == ELF::STT_NOTYPE)
437       Type = ELF::STT_OBJECT;
438     break;
439   case ELF::STT_TLS:
440     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
441         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
442       Type = ELF::STT_TLS;
443     break;
444   }
445 
446   return Type;
447 }
448 
writeSymbol(SymbolTableWriter & Writer,uint32_t StringIndex,ELFSymbolData & MSD,const MCAsmLayout & Layout)449 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
450                                   uint32_t StringIndex, ELFSymbolData &MSD,
451                                   const MCAsmLayout &Layout) {
452   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
453   const MCSymbolELF *Base =
454       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
455 
456   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
457   // SHN_COMMON.
458   bool IsReserved = !Base || Symbol.isCommon();
459 
460   // Binding and Type share the same byte as upper and lower nibbles
461   uint8_t Binding = Symbol.getBinding();
462   uint8_t Type = Symbol.getType();
463   if (Base) {
464     Type = mergeTypeForSet(Type, Base->getType());
465   }
466   uint8_t Info = (Binding << 4) | Type;
467 
468   // Other and Visibility share the same byte with Visibility using the lower
469   // 2 bits
470   uint8_t Visibility = Symbol.getVisibility();
471   uint8_t Other = Symbol.getOther() | Visibility;
472 
473   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
474   uint64_t Size = 0;
475 
476   const MCExpr *ESize = MSD.Symbol->getSize();
477   if (!ESize && Base)
478     ESize = Base->getSize();
479 
480   if (ESize) {
481     int64_t Res;
482     if (!ESize->evaluateKnownAbsolute(Res, Layout))
483       report_fatal_error("Size expression must be absolute.");
484     Size = Res;
485   }
486 
487   // Write out the symbol table entry
488   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
489                      IsReserved);
490 }
491 
492 // It is always valid to create a relocation with a symbol. It is preferable
493 // to use a relocation with a section if that is possible. Using the section
494 // allows us to omit some local symbols from the symbol table.
shouldRelocateWithSymbol(const MCAssembler & Asm,const MCSymbolRefExpr * RefA,const MCSymbol * S,uint64_t C,unsigned Type) const495 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
496                                                const MCSymbolRefExpr *RefA,
497                                                const MCSymbol *S, uint64_t C,
498                                                unsigned Type) const {
499   const auto *Sym = cast_or_null<MCSymbolELF>(S);
500   // A PCRel relocation to an absolute value has no symbol (or section). We
501   // represent that with a relocation to a null section.
502   if (!RefA)
503     return false;
504 
505   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
506   switch (Kind) {
507   default:
508     break;
509   // The .odp creation emits a relocation against the symbol ".TOC." which
510   // create a R_PPC64_TOC relocation. However the relocation symbol name
511   // in final object creation should be NULL, since the symbol does not
512   // really exist, it is just the reference to TOC base for the current
513   // object file. Since the symbol is undefined, returning false results
514   // in a relocation with a null section which is the desired result.
515   case MCSymbolRefExpr::VK_PPC_TOCBASE:
516     return false;
517 
518   // These VariantKind cause the relocation to refer to something other than
519   // the symbol itself, like a linker generated table. Since the address of
520   // symbol is not relevant, we cannot replace the symbol with the
521   // section and patch the difference in the addend.
522   case MCSymbolRefExpr::VK_GOT:
523   case MCSymbolRefExpr::VK_PLT:
524   case MCSymbolRefExpr::VK_GOTPCREL:
525   case MCSymbolRefExpr::VK_Mips_GOT:
526   case MCSymbolRefExpr::VK_PPC_GOT_LO:
527   case MCSymbolRefExpr::VK_PPC_GOT_HI:
528   case MCSymbolRefExpr::VK_PPC_GOT_HA:
529     return true;
530   }
531 
532   // An undefined symbol is not in any section, so the relocation has to point
533   // to the symbol itself.
534   assert(Sym && "Expected a symbol");
535   if (Sym->isUndefined())
536     return true;
537 
538   unsigned Binding = Sym->getBinding();
539   switch(Binding) {
540   default:
541     llvm_unreachable("Invalid Binding");
542   case ELF::STB_LOCAL:
543     break;
544   case ELF::STB_WEAK:
545     // If the symbol is weak, it might be overridden by a symbol in another
546     // file. The relocation has to point to the symbol so that the linker
547     // can update it.
548     return true;
549   case ELF::STB_GLOBAL:
550     // Global ELF symbols can be preempted by the dynamic linker. The relocation
551     // has to point to the symbol for a reason analogous to the STB_WEAK case.
552     return true;
553   }
554 
555   // If a relocation points to a mergeable section, we have to be careful.
556   // If the offset is zero, a relocation with the section will encode the
557   // same information. With a non-zero offset, the situation is different.
558   // For example, a relocation can point 42 bytes past the end of a string.
559   // If we change such a relocation to use the section, the linker would think
560   // that it pointed to another string and subtracting 42 at runtime will
561   // produce the wrong value.
562   auto &Sec = cast<MCSectionELF>(Sym->getSection());
563   unsigned Flags = Sec.getFlags();
564   if (Flags & ELF::SHF_MERGE) {
565     if (C != 0)
566       return true;
567 
568     // It looks like gold has a bug (http://sourceware.org/PR16794) and can
569     // only handle section relocations to mergeable sections if using RELA.
570     if (!hasRelocationAddend())
571       return true;
572   }
573 
574   // Most TLS relocations use a got, so they need the symbol. Even those that
575   // are just an offset (@tpoff), require a symbol in gold versions before
576   // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
577   // http://sourceware.org/PR16773.
578   if (Flags & ELF::SHF_TLS)
579     return true;
580 
581   // If the symbol is a thumb function the final relocation must set the lowest
582   // bit. With a symbol that is done by just having the symbol have that bit
583   // set, so we would lose the bit if we relocated with the section.
584   // FIXME: We could use the section but add the bit to the relocation value.
585   if (Asm.isThumbFunc(Sym))
586     return true;
587 
588   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
589     return true;
590   return false;
591 }
592 
593 // True if the assembler knows nothing about the final value of the symbol.
594 // This doesn't cover the comdat issues, since in those cases the assembler
595 // can at least know that all symbols in the section will move together.
isWeak(const MCSymbolELF & Sym)596 static bool isWeak(const MCSymbolELF &Sym) {
597   if (Sym.getType() == ELF::STT_GNU_IFUNC)
598     return true;
599 
600   switch (Sym.getBinding()) {
601   default:
602     llvm_unreachable("Unknown binding");
603   case ELF::STB_LOCAL:
604     return false;
605   case ELF::STB_GLOBAL:
606     return false;
607   case ELF::STB_WEAK:
608   case ELF::STB_GNU_UNIQUE:
609     return true;
610   }
611 }
612 
recordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,bool & IsPCRel,uint64_t & FixedValue)613 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
614                                        const MCAsmLayout &Layout,
615                                        const MCFragment *Fragment,
616                                        const MCFixup &Fixup, MCValue Target,
617                                        bool &IsPCRel, uint64_t &FixedValue) {
618   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
619   uint64_t C = Target.getConstant();
620   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
621 
622   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
623     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
624            "Should not have constructed this");
625 
626     // Let A, B and C being the components of Target and R be the location of
627     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
628     // If it is pcrel, we want to compute (A - B + C - R).
629 
630     // In general, ELF has no relocations for -B. It can only represent (A + C)
631     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
632     // replace B to implement it: (A - R - K + C)
633     if (IsPCRel) {
634       Asm.getContext().reportError(
635           Fixup.getLoc(),
636           "No relocation available to represent this relative expression");
637       return;
638     }
639 
640     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
641 
642     if (SymB.isUndefined()) {
643       Asm.getContext().reportError(
644           Fixup.getLoc(),
645           Twine("symbol '") + SymB.getName() +
646               "' can not be undefined in a subtraction expression");
647       return;
648     }
649 
650     assert(!SymB.isAbsolute() && "Should have been folded");
651     const MCSection &SecB = SymB.getSection();
652     if (&SecB != &FixupSection) {
653       Asm.getContext().reportError(
654           Fixup.getLoc(), "Cannot represent a difference across sections");
655       return;
656     }
657 
658     if (::isWeak(SymB)) {
659       Asm.getContext().reportError(
660           Fixup.getLoc(), "Cannot represent a subtraction with a weak symbol");
661       return;
662     }
663 
664     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
665     uint64_t K = SymBOffset - FixupOffset;
666     IsPCRel = true;
667     C -= K;
668   }
669 
670   // We either rejected the fixup or folded B into C at this point.
671   const MCSymbolRefExpr *RefA = Target.getSymA();
672   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
673 
674   bool ViaWeakRef = false;
675   if (SymA && SymA->isVariable()) {
676     const MCExpr *Expr = SymA->getVariableValue();
677     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
678       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
679         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
680         ViaWeakRef = true;
681       }
682     }
683   }
684 
685   unsigned Type = GetRelocType(Target, Fixup, IsPCRel);
686   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
687   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
688     C += Layout.getSymbolOffset(*SymA);
689 
690   uint64_t Addend = 0;
691   if (hasRelocationAddend()) {
692     Addend = C;
693     C = 0;
694   }
695 
696   FixedValue = C;
697 
698   if (!RelocateWithSymbol) {
699     const MCSection *SecA =
700         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
701     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
702     const auto *SectionSymbol =
703         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
704     if (SectionSymbol)
705       SectionSymbol->setUsedInReloc();
706     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
707     Relocations[&FixupSection].push_back(Rec);
708     return;
709   }
710 
711   if (SymA) {
712     if (const MCSymbolELF *R = Renames.lookup(SymA))
713       SymA = R;
714 
715     if (ViaWeakRef)
716       SymA->setIsWeakrefUsedInReloc();
717     else
718       SymA->setUsedInReloc();
719   }
720   ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
721   Relocations[&FixupSection].push_back(Rec);
722   return;
723 }
724 
isInSymtab(const MCAsmLayout & Layout,const MCSymbolELF & Symbol,bool Used,bool Renamed)725 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
726                                  const MCSymbolELF &Symbol, bool Used,
727                                  bool Renamed) {
728   if (Symbol.isVariable()) {
729     const MCExpr *Expr = Symbol.getVariableValue();
730     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
731       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
732         return false;
733     }
734   }
735 
736   if (Used)
737     return true;
738 
739   if (Renamed)
740     return false;
741 
742   if (Symbol.isVariable() && Symbol.isUndefined()) {
743     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
744     Layout.getBaseSymbol(Symbol);
745     return false;
746   }
747 
748   if (Symbol.isUndefined() && !Symbol.isBindingSet())
749     return false;
750 
751   if (Symbol.isTemporary())
752     return false;
753 
754   if (Symbol.getType() == ELF::STT_SECTION)
755     return false;
756 
757   return true;
758 }
759 
computeSymbolTable(MCAssembler & Asm,const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const RevGroupMapTy & RevGroupMap,SectionOffsetsTy & SectionOffsets)760 void ELFObjectWriter::computeSymbolTable(
761     MCAssembler &Asm, const MCAsmLayout &Layout,
762     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
763     SectionOffsetsTy &SectionOffsets) {
764   MCContext &Ctx = Asm.getContext();
765   SymbolTableWriter Writer(*this, is64Bit());
766 
767   // Symbol table
768   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
769   MCSectionELF *SymtabSection =
770       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
771   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
772   SymbolTableIndex = addToSectionTable(SymtabSection);
773 
774   align(SymtabSection->getAlignment());
775   uint64_t SecStart = getStream().tell();
776 
777   // The first entry is the undefined symbol entry.
778   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
779 
780   std::vector<ELFSymbolData> LocalSymbolData;
781   std::vector<ELFSymbolData> ExternalSymbolData;
782 
783   // Add the data for the symbols.
784   bool HasLargeSectionIndex = false;
785   for (const MCSymbol &S : Asm.symbols()) {
786     const auto &Symbol = cast<MCSymbolELF>(S);
787     bool Used = Symbol.isUsedInReloc();
788     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
789     bool isSignature = Symbol.isSignature();
790 
791     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
792                     Renames.count(&Symbol)))
793       continue;
794 
795     if (Symbol.isTemporary() && Symbol.isUndefined()) {
796       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
797       continue;
798     }
799 
800     ELFSymbolData MSD;
801     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
802 
803     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
804     assert(Local || !Symbol.isTemporary());
805 
806     if (Symbol.isAbsolute()) {
807       MSD.SectionIndex = ELF::SHN_ABS;
808     } else if (Symbol.isCommon()) {
809       assert(!Local);
810       MSD.SectionIndex = ELF::SHN_COMMON;
811     } else if (Symbol.isUndefined()) {
812       if (isSignature && !Used) {
813         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
814         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
815           HasLargeSectionIndex = true;
816       } else {
817         MSD.SectionIndex = ELF::SHN_UNDEF;
818       }
819     } else {
820       const MCSectionELF &Section =
821           static_cast<const MCSectionELF &>(Symbol.getSection());
822       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
823       assert(MSD.SectionIndex && "Invalid section index!");
824       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
825         HasLargeSectionIndex = true;
826     }
827 
828     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
829     // in defined ones.
830     //
831     // FIXME: All name handling should be done before we get to the writer,
832     // including dealing with GNU-style version suffixes.  Fixing this isn't
833     // trivial.
834     //
835     // We thus have to be careful to not perform the symbol version replacement
836     // blindly:
837     //
838     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
839     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
840     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
841     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
842     // the EFLObjectWriter should not interpret the "@@@" sub-string as
843     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
844     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
845     // "__imp_?" or "__imp_@?".
846     //
847     // It would have been interesting to perform the MS mangling prefix check
848     // only when the target triple is of the form *-pc-windows-elf. But, it
849     // seems that this information is not easily accessible from the
850     // ELFObjectWriter.
851     StringRef Name = Symbol.getName();
852     SmallString<32> Buf;
853     if (!Name.startswith("?") && !Name.startswith("@?") &&
854         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
855       // This symbol isn't following the MSVC C++ name mangling convention. We
856       // can thus safely interpret the @@@ in symbol names as specifying symbol
857       // versioning.
858       size_t Pos = Name.find("@@@");
859       if (Pos != StringRef::npos) {
860         Buf += Name.substr(0, Pos);
861         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
862         Buf += Name.substr(Pos + Skip);
863         Name = VersionSymSaver.save(Buf.c_str());
864       }
865     }
866 
867     // Sections have their own string table
868     if (Symbol.getType() != ELF::STT_SECTION) {
869       MSD.Name = Name;
870       StrTabBuilder.add(Name);
871     }
872 
873     if (Local)
874       LocalSymbolData.push_back(MSD);
875     else
876       ExternalSymbolData.push_back(MSD);
877   }
878 
879   // This holds the .symtab_shndx section index.
880   unsigned SymtabShndxSectionIndex = 0;
881 
882   if (HasLargeSectionIndex) {
883     MCSectionELF *SymtabShndxSection =
884         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
885     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
886     SymtabShndxSection->setAlignment(4);
887   }
888 
889   ArrayRef<std::string> FileNames = Asm.getFileNames();
890   for (const std::string &Name : FileNames)
891     StrTabBuilder.add(Name);
892 
893   StrTabBuilder.finalize();
894 
895   for (const std::string &Name : FileNames)
896     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
897                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
898                        ELF::SHN_ABS, true);
899 
900   // Symbols are required to be in lexicographic order.
901   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
902   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
903 
904   // Set the symbol indices. Local symbols must come before all other
905   // symbols with non-local bindings.
906   unsigned Index = FileNames.size() + 1;
907 
908   for (ELFSymbolData &MSD : LocalSymbolData) {
909     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
910                                ? 0
911                                : StrTabBuilder.getOffset(MSD.Name);
912     MSD.Symbol->setIndex(Index++);
913     writeSymbol(Writer, StringIndex, MSD, Layout);
914   }
915 
916   // Write the symbol table entries.
917   LastLocalSymbolIndex = Index;
918 
919   for (ELFSymbolData &MSD : ExternalSymbolData) {
920     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
921     MSD.Symbol->setIndex(Index++);
922     writeSymbol(Writer, StringIndex, MSD, Layout);
923     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
924   }
925 
926   uint64_t SecEnd = getStream().tell();
927   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
928 
929   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
930   if (ShndxIndexes.empty()) {
931     assert(SymtabShndxSectionIndex == 0);
932     return;
933   }
934   assert(SymtabShndxSectionIndex != 0);
935 
936   SecStart = getStream().tell();
937   const MCSectionELF *SymtabShndxSection =
938       SectionTable[SymtabShndxSectionIndex - 1];
939   for (uint32_t Index : ShndxIndexes)
940     write(Index);
941   SecEnd = getStream().tell();
942   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
943 }
944 
945 MCSectionELF *
createRelocationSection(MCContext & Ctx,const MCSectionELF & Sec)946 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
947                                          const MCSectionELF &Sec) {
948   if (Relocations[&Sec].empty())
949     return nullptr;
950 
951   const StringRef SectionName = Sec.getSectionName();
952   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
953   RelaSectionName += SectionName;
954 
955   unsigned EntrySize;
956   if (hasRelocationAddend())
957     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
958   else
959     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
960 
961   unsigned Flags = 0;
962   if (Sec.getFlags() & ELF::SHF_GROUP)
963     Flags = ELF::SHF_GROUP;
964 
965   MCSectionELF *RelaSection = Ctx.createELFRelSection(
966       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
967       Flags, EntrySize, Sec.getGroup(), &Sec);
968   RelaSection->setAlignment(is64Bit() ? 8 : 4);
969   return RelaSection;
970 }
971 
972 // Include the debug info compression header:
973 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
974 // useful for consumers to preallocate a buffer to decompress into.
975 static bool
prependCompressionHeader(uint64_t Size,SmallVectorImpl<char> & CompressedContents)976 prependCompressionHeader(uint64_t Size,
977                          SmallVectorImpl<char> &CompressedContents) {
978   const StringRef Magic = "ZLIB";
979   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
980     return false;
981   if (sys::IsLittleEndianHost)
982     sys::swapByteOrder(Size);
983   CompressedContents.insert(CompressedContents.begin(),
984                             Magic.size() + sizeof(Size), 0);
985   std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
986   std::copy(reinterpret_cast<char *>(&Size),
987             reinterpret_cast<char *>(&Size + 1),
988             CompressedContents.begin() + Magic.size());
989   return true;
990 }
991 
writeSectionData(const MCAssembler & Asm,MCSection & Sec,const MCAsmLayout & Layout)992 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
993                                        const MCAsmLayout &Layout) {
994   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
995   StringRef SectionName = Section.getSectionName();
996 
997   // Compressing debug_frame requires handling alignment fragments which is
998   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
999   // for writing to arbitrary buffers) for little benefit.
1000   if (!Asm.getContext().getAsmInfo()->compressDebugSections() ||
1001       !SectionName.startswith(".debug_") || SectionName == ".debug_frame") {
1002     Asm.writeSectionData(&Section, Layout);
1003     return;
1004   }
1005 
1006   SmallVector<char, 128> UncompressedData;
1007   raw_svector_ostream VecOS(UncompressedData);
1008   raw_pwrite_stream &OldStream = getStream();
1009   setStream(VecOS);
1010   Asm.writeSectionData(&Section, Layout);
1011   setStream(OldStream);
1012 
1013   SmallVector<char, 128> CompressedContents;
1014   zlib::Status Success = zlib::compress(
1015       StringRef(UncompressedData.data(), UncompressedData.size()),
1016       CompressedContents);
1017   if (Success != zlib::StatusOK) {
1018     getStream() << UncompressedData;
1019     return;
1020   }
1021 
1022   if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) {
1023     getStream() << UncompressedData;
1024     return;
1025   }
1026   Asm.getContext().renameELFSection(&Section,
1027                                     (".z" + SectionName.drop_front(1)).str());
1028   getStream() << CompressedContents;
1029 }
1030 
WriteSecHdrEntry(uint32_t Name,uint32_t Type,uint64_t Flags,uint64_t Address,uint64_t Offset,uint64_t Size,uint32_t Link,uint32_t Info,uint64_t Alignment,uint64_t EntrySize)1031 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1032                                        uint64_t Flags, uint64_t Address,
1033                                        uint64_t Offset, uint64_t Size,
1034                                        uint32_t Link, uint32_t Info,
1035                                        uint64_t Alignment,
1036                                        uint64_t EntrySize) {
1037   write32(Name);        // sh_name: index into string table
1038   write32(Type);        // sh_type
1039   WriteWord(Flags);     // sh_flags
1040   WriteWord(Address);   // sh_addr
1041   WriteWord(Offset);    // sh_offset
1042   WriteWord(Size);      // sh_size
1043   write32(Link);        // sh_link
1044   write32(Info);        // sh_info
1045   WriteWord(Alignment); // sh_addralign
1046   WriteWord(EntrySize); // sh_entsize
1047 }
1048 
writeRelocations(const MCAssembler & Asm,const MCSectionELF & Sec)1049 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1050                                        const MCSectionELF &Sec) {
1051   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1052 
1053   // We record relocations by pushing to the end of a vector. Reverse the vector
1054   // to get the relocations in the order they were created.
1055   // In most cases that is not important, but it can be for special sections
1056   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1057   std::reverse(Relocs.begin(), Relocs.end());
1058 
1059   // Sort the relocation entries. MIPS needs this.
1060   TargetObjectWriter->sortRelocs(Asm, Relocs);
1061 
1062   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1063     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1064     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1065 
1066     if (is64Bit()) {
1067       write(Entry.Offset);
1068       if (TargetObjectWriter->isN64()) {
1069         write(uint32_t(Index));
1070 
1071         write(TargetObjectWriter->getRSsym(Entry.Type));
1072         write(TargetObjectWriter->getRType3(Entry.Type));
1073         write(TargetObjectWriter->getRType2(Entry.Type));
1074         write(TargetObjectWriter->getRType(Entry.Type));
1075       } else {
1076         struct ELF::Elf64_Rela ERE64;
1077         ERE64.setSymbolAndType(Index, Entry.Type);
1078         write(ERE64.r_info);
1079       }
1080       if (hasRelocationAddend())
1081         write(Entry.Addend);
1082     } else {
1083       write(uint32_t(Entry.Offset));
1084 
1085       struct ELF::Elf32_Rela ERE32;
1086       ERE32.setSymbolAndType(Index, Entry.Type);
1087       write(ERE32.r_info);
1088 
1089       if (hasRelocationAddend())
1090         write(uint32_t(Entry.Addend));
1091     }
1092   }
1093 }
1094 
createStringTable(MCContext & Ctx)1095 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1096   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1097   getStream() << StrTabBuilder.data();
1098   return StrtabSection;
1099 }
1100 
writeSection(const SectionIndexMapTy & SectionIndexMap,uint32_t GroupSymbolIndex,uint64_t Offset,uint64_t Size,const MCSectionELF & Section)1101 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1102                                    uint32_t GroupSymbolIndex, uint64_t Offset,
1103                                    uint64_t Size, const MCSectionELF &Section) {
1104   uint64_t sh_link = 0;
1105   uint64_t sh_info = 0;
1106 
1107   switch(Section.getType()) {
1108   default:
1109     // Nothing to do.
1110     break;
1111 
1112   case ELF::SHT_DYNAMIC:
1113     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1114 
1115   case ELF::SHT_REL:
1116   case ELF::SHT_RELA: {
1117     sh_link = SymbolTableIndex;
1118     assert(sh_link && ".symtab not found");
1119     const MCSectionELF *InfoSection = Section.getAssociatedSection();
1120     sh_info = SectionIndexMap.lookup(InfoSection);
1121     break;
1122   }
1123 
1124   case ELF::SHT_SYMTAB:
1125   case ELF::SHT_DYNSYM:
1126     sh_link = StringTableIndex;
1127     sh_info = LastLocalSymbolIndex;
1128     break;
1129 
1130   case ELF::SHT_SYMTAB_SHNDX:
1131     sh_link = SymbolTableIndex;
1132     break;
1133 
1134   case ELF::SHT_GROUP:
1135     sh_link = SymbolTableIndex;
1136     sh_info = GroupSymbolIndex;
1137     break;
1138   }
1139 
1140   if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1141       Section.getType() == ELF::SHT_ARM_EXIDX)
1142     sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1143 
1144   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1145                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1146                    sh_link, sh_info, Section.getAlignment(),
1147                    Section.getEntrySize());
1148 }
1149 
writeSectionHeader(const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const SectionOffsetsTy & SectionOffsets)1150 void ELFObjectWriter::writeSectionHeader(
1151     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1152     const SectionOffsetsTy &SectionOffsets) {
1153   const unsigned NumSections = SectionTable.size();
1154 
1155   // Null section first.
1156   uint64_t FirstSectionSize =
1157       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1158   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1159 
1160   for (const MCSectionELF *Section : SectionTable) {
1161     uint32_t GroupSymbolIndex;
1162     unsigned Type = Section->getType();
1163     if (Type != ELF::SHT_GROUP)
1164       GroupSymbolIndex = 0;
1165     else
1166       GroupSymbolIndex = Section->getGroup()->getIndex();
1167 
1168     const std::pair<uint64_t, uint64_t> &Offsets =
1169         SectionOffsets.find(Section)->second;
1170     uint64_t Size;
1171     if (Type == ELF::SHT_NOBITS)
1172       Size = Layout.getSectionAddressSize(Section);
1173     else
1174       Size = Offsets.second - Offsets.first;
1175 
1176     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1177                  *Section);
1178   }
1179 }
1180 
writeObject(MCAssembler & Asm,const MCAsmLayout & Layout)1181 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1182                                   const MCAsmLayout &Layout) {
1183   MCContext &Ctx = Asm.getContext();
1184   MCSectionELF *StrtabSection =
1185       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1186   StringTableIndex = addToSectionTable(StrtabSection);
1187 
1188   RevGroupMapTy RevGroupMap;
1189   SectionIndexMapTy SectionIndexMap;
1190 
1191   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1192 
1193   // Write out the ELF header ...
1194   writeHeader(Asm);
1195 
1196   // ... then the sections ...
1197   SectionOffsetsTy SectionOffsets;
1198   std::vector<MCSectionELF *> Groups;
1199   std::vector<MCSectionELF *> Relocations;
1200   for (MCSection &Sec : Asm) {
1201     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1202 
1203     align(Section.getAlignment());
1204 
1205     // Remember the offset into the file for this section.
1206     uint64_t SecStart = getStream().tell();
1207 
1208     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1209     writeSectionData(Asm, Section, Layout);
1210 
1211     uint64_t SecEnd = getStream().tell();
1212     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1213 
1214     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1215 
1216     if (SignatureSymbol) {
1217       Asm.registerSymbol(*SignatureSymbol);
1218       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1219       if (!GroupIdx) {
1220         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1221         GroupIdx = addToSectionTable(Group);
1222         Group->setAlignment(4);
1223         Groups.push_back(Group);
1224       }
1225       std::vector<const MCSectionELF *> &Members =
1226           GroupMembers[SignatureSymbol];
1227       Members.push_back(&Section);
1228       if (RelSection)
1229         Members.push_back(RelSection);
1230     }
1231 
1232     SectionIndexMap[&Section] = addToSectionTable(&Section);
1233     if (RelSection) {
1234       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1235       Relocations.push_back(RelSection);
1236     }
1237   }
1238 
1239   for (MCSectionELF *Group : Groups) {
1240     align(Group->getAlignment());
1241 
1242     // Remember the offset into the file for this section.
1243     uint64_t SecStart = getStream().tell();
1244 
1245     const MCSymbol *SignatureSymbol = Group->getGroup();
1246     assert(SignatureSymbol);
1247     write(uint32_t(ELF::GRP_COMDAT));
1248     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1249       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1250       write(SecIndex);
1251     }
1252 
1253     uint64_t SecEnd = getStream().tell();
1254     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1255   }
1256 
1257   // Compute symbol table information.
1258   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1259 
1260   for (MCSectionELF *RelSection : Relocations) {
1261     align(RelSection->getAlignment());
1262 
1263     // Remember the offset into the file for this section.
1264     uint64_t SecStart = getStream().tell();
1265 
1266     writeRelocations(Asm, *RelSection->getAssociatedSection());
1267 
1268     uint64_t SecEnd = getStream().tell();
1269     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1270   }
1271 
1272   {
1273     uint64_t SecStart = getStream().tell();
1274     const MCSectionELF *Sec = createStringTable(Ctx);
1275     uint64_t SecEnd = getStream().tell();
1276     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1277   }
1278 
1279   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1280   align(NaturalAlignment);
1281 
1282   const unsigned SectionHeaderOffset = getStream().tell();
1283 
1284   // ... then the section header table ...
1285   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1286 
1287   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1288                              ? (uint16_t)ELF::SHN_UNDEF
1289                              : SectionTable.size() + 1;
1290   if (sys::IsLittleEndianHost != IsLittleEndian)
1291     sys::swapByteOrder(NumSections);
1292   unsigned NumSectionsOffset;
1293 
1294   if (is64Bit()) {
1295     uint64_t Val = SectionHeaderOffset;
1296     if (sys::IsLittleEndianHost != IsLittleEndian)
1297       sys::swapByteOrder(Val);
1298     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1299                        offsetof(ELF::Elf64_Ehdr, e_shoff));
1300     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1301   } else {
1302     uint32_t Val = SectionHeaderOffset;
1303     if (sys::IsLittleEndianHost != IsLittleEndian)
1304       sys::swapByteOrder(Val);
1305     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1306                        offsetof(ELF::Elf32_Ehdr, e_shoff));
1307     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1308   }
1309   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1310                      sizeof(NumSections), NumSectionsOffset);
1311 }
1312 
isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler & Asm,const MCSymbol & SA,const MCFragment & FB,bool InSet,bool IsPCRel) const1313 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1314     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1315     bool InSet, bool IsPCRel) const {
1316   const auto &SymA = cast<MCSymbolELF>(SA);
1317   if (IsPCRel) {
1318     assert(!InSet);
1319     if (::isWeak(SymA))
1320       return false;
1321   }
1322   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1323                                                                 InSet, IsPCRel);
1324 }
1325 
isWeak(const MCSymbol & S) const1326 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1327   const auto &Sym = cast<MCSymbolELF>(S);
1328   if (::isWeak(Sym))
1329     return true;
1330 
1331   // It is invalid to replace a reference to a global in a comdat
1332   // with a reference to a local since out of comdat references
1333   // to a local are forbidden.
1334   // We could try to return false for more cases, like the reference
1335   // being in the same comdat or Sym being an alias to another global,
1336   // but it is not clear if it is worth the effort.
1337   if (Sym.getBinding() != ELF::STB_GLOBAL)
1338     return false;
1339 
1340   if (!Sym.isInSection())
1341     return false;
1342 
1343   const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1344   return Sec.getGroup();
1345 }
1346 
createELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)1347 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1348                                             raw_pwrite_stream &OS,
1349                                             bool IsLittleEndian) {
1350   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1351 }
1352