1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCSectionELF.h"
28 #include "llvm/MC/MCSymbolELF.h"
29 #include "llvm/MC/MCValue.h"
30 #include "llvm/MC/StringTableBuilder.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/StringSaver.h"
37 #include <vector>
38 using namespace llvm;
39
40 #undef DEBUG_TYPE
41 #define DEBUG_TYPE "reloc-info"
42
43 namespace {
44
45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
46
47 class ELFObjectWriter;
48
49 class SymbolTableWriter {
50 ELFObjectWriter &EWriter;
51 bool Is64Bit;
52
53 // indexes we are going to write to .symtab_shndx.
54 std::vector<uint32_t> ShndxIndexes;
55
56 // The numbel of symbols written so far.
57 unsigned NumWritten;
58
59 void createSymtabShndx();
60
61 template <typename T> void write(T Value);
62
63 public:
64 SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
65
66 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
67 uint8_t other, uint32_t shndx, bool Reserved);
68
getShndxIndexes() const69 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
70 };
71
72 class ELFObjectWriter : public MCObjectWriter {
73 static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
74 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
75 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
76 bool Used, bool Renamed);
77
78 /// Helper struct for containing some precomputed information on symbols.
79 struct ELFSymbolData {
80 const MCSymbolELF *Symbol;
81 uint32_t SectionIndex;
82 StringRef Name;
83
84 // Support lexicographic sorting.
operator <__anon4ed704dc0111::ELFObjectWriter::ELFSymbolData85 bool operator<(const ELFSymbolData &RHS) const {
86 unsigned LHSType = Symbol->getType();
87 unsigned RHSType = RHS.Symbol->getType();
88 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
89 return false;
90 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
91 return true;
92 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
93 return SectionIndex < RHS.SectionIndex;
94 return Name < RHS.Name;
95 }
96 };
97
98 /// The target specific ELF writer instance.
99 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
100
101 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
102
103 llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
104 Relocations;
105
106 /// @}
107 /// @name Symbol Table Data
108 /// @{
109
110 BumpPtrAllocator Alloc;
111 StringSaver VersionSymSaver{Alloc};
112 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
113
114 /// @}
115
116 // This holds the symbol table index of the last local symbol.
117 unsigned LastLocalSymbolIndex;
118 // This holds the .strtab section index.
119 unsigned StringTableIndex;
120 // This holds the .symtab section index.
121 unsigned SymbolTableIndex;
122
123 // Sections in the order they are to be output in the section table.
124 std::vector<const MCSectionELF *> SectionTable;
125 unsigned addToSectionTable(const MCSectionELF *Sec);
126
127 // TargetObjectWriter wrappers.
is64Bit() const128 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
hasRelocationAddend() const129 bool hasRelocationAddend() const {
130 return TargetObjectWriter->hasRelocationAddend();
131 }
GetRelocType(const MCValue & Target,const MCFixup & Fixup,bool IsPCRel) const132 unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
133 bool IsPCRel) const {
134 return TargetObjectWriter->GetRelocType(Target, Fixup, IsPCRel);
135 }
136
137 void align(unsigned Alignment);
138
139 public:
ELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)140 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
141 bool IsLittleEndian)
142 : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
143
reset()144 void reset() override {
145 Renames.clear();
146 Relocations.clear();
147 StrTabBuilder.clear();
148 SectionTable.clear();
149 MCObjectWriter::reset();
150 }
151
152 ~ELFObjectWriter() override;
153
WriteWord(uint64_t W)154 void WriteWord(uint64_t W) {
155 if (is64Bit())
156 write64(W);
157 else
158 write32(W);
159 }
160
write(T Val)161 template <typename T> void write(T Val) {
162 if (IsLittleEndian)
163 support::endian::Writer<support::little>(getStream()).write(Val);
164 else
165 support::endian::Writer<support::big>(getStream()).write(Val);
166 }
167
168 void writeHeader(const MCAssembler &Asm);
169
170 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
171 ELFSymbolData &MSD, const MCAsmLayout &Layout);
172
173 // Start and end offset of each section
174 typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
175 SectionOffsetsTy;
176
177 bool shouldRelocateWithSymbol(const MCAssembler &Asm,
178 const MCSymbolRefExpr *RefA,
179 const MCSymbol *Sym, uint64_t C,
180 unsigned Type) const;
181
182 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
183 const MCFragment *Fragment, const MCFixup &Fixup,
184 MCValue Target, bool &IsPCRel,
185 uint64_t &FixedValue) override;
186
187 // Map from a signature symbol to the group section index
188 typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
189
190 /// Compute the symbol table data
191 ///
192 /// \param Asm - The assembler.
193 /// \param SectionIndexMap - Maps a section to its index.
194 /// \param RevGroupMap - Maps a signature symbol to the group section.
195 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
196 const SectionIndexMapTy &SectionIndexMap,
197 const RevGroupMapTy &RevGroupMap,
198 SectionOffsetsTy &SectionOffsets);
199
200 MCSectionELF *createRelocationSection(MCContext &Ctx,
201 const MCSectionELF &Sec);
202
203 const MCSectionELF *createStringTable(MCContext &Ctx);
204
205 void executePostLayoutBinding(MCAssembler &Asm,
206 const MCAsmLayout &Layout) override;
207
208 void writeSectionHeader(const MCAsmLayout &Layout,
209 const SectionIndexMapTy &SectionIndexMap,
210 const SectionOffsetsTy &SectionOffsets);
211
212 void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
213 const MCAsmLayout &Layout);
214
215 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
216 uint64_t Address, uint64_t Offset, uint64_t Size,
217 uint32_t Link, uint32_t Info, uint64_t Alignment,
218 uint64_t EntrySize);
219
220 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
221
222 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
223 const MCSymbol &SymA,
224 const MCFragment &FB,
225 bool InSet,
226 bool IsPCRel) const override;
227
228 bool isWeak(const MCSymbol &Sym) const override;
229
230 void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
231 void writeSection(const SectionIndexMapTy &SectionIndexMap,
232 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
233 const MCSectionELF &Section);
234 };
235 }
236
align(unsigned Alignment)237 void ELFObjectWriter::align(unsigned Alignment) {
238 uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
239 WriteZeros(Padding);
240 }
241
addToSectionTable(const MCSectionELF * Sec)242 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
243 SectionTable.push_back(Sec);
244 StrTabBuilder.add(Sec->getSectionName());
245 return SectionTable.size();
246 }
247
createSymtabShndx()248 void SymbolTableWriter::createSymtabShndx() {
249 if (!ShndxIndexes.empty())
250 return;
251
252 ShndxIndexes.resize(NumWritten);
253 }
254
write(T Value)255 template <typename T> void SymbolTableWriter::write(T Value) {
256 EWriter.write(Value);
257 }
258
SymbolTableWriter(ELFObjectWriter & EWriter,bool Is64Bit)259 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
260 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
261
writeSymbol(uint32_t name,uint8_t info,uint64_t value,uint64_t size,uint8_t other,uint32_t shndx,bool Reserved)262 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
263 uint64_t size, uint8_t other,
264 uint32_t shndx, bool Reserved) {
265 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
266
267 if (LargeIndex)
268 createSymtabShndx();
269
270 if (!ShndxIndexes.empty()) {
271 if (LargeIndex)
272 ShndxIndexes.push_back(shndx);
273 else
274 ShndxIndexes.push_back(0);
275 }
276
277 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
278
279 if (Is64Bit) {
280 write(name); // st_name
281 write(info); // st_info
282 write(other); // st_other
283 write(Index); // st_shndx
284 write(value); // st_value
285 write(size); // st_size
286 } else {
287 write(name); // st_name
288 write(uint32_t(value)); // st_value
289 write(uint32_t(size)); // st_size
290 write(info); // st_info
291 write(other); // st_other
292 write(Index); // st_shndx
293 }
294
295 ++NumWritten;
296 }
297
isFixupKindPCRel(const MCAssembler & Asm,unsigned Kind)298 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
299 const MCFixupKindInfo &FKI =
300 Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
301
302 return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
303 }
304
~ELFObjectWriter()305 ELFObjectWriter::~ELFObjectWriter()
306 {}
307
308 // Emit the ELF header.
writeHeader(const MCAssembler & Asm)309 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
310 // ELF Header
311 // ----------
312 //
313 // Note
314 // ----
315 // emitWord method behaves differently for ELF32 and ELF64, writing
316 // 4 bytes in the former and 8 in the latter.
317
318 writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
319
320 write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
321
322 // e_ident[EI_DATA]
323 write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
324
325 write8(ELF::EV_CURRENT); // e_ident[EI_VERSION]
326 // e_ident[EI_OSABI]
327 write8(TargetObjectWriter->getOSABI());
328 write8(0); // e_ident[EI_ABIVERSION]
329
330 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
331
332 write16(ELF::ET_REL); // e_type
333
334 write16(TargetObjectWriter->getEMachine()); // e_machine = target
335
336 write32(ELF::EV_CURRENT); // e_version
337 WriteWord(0); // e_entry, no entry point in .o file
338 WriteWord(0); // e_phoff, no program header for .o
339 WriteWord(0); // e_shoff = sec hdr table off in bytes
340
341 // e_flags = whatever the target wants
342 write32(Asm.getELFHeaderEFlags());
343
344 // e_ehsize = ELF header size
345 write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
346
347 write16(0); // e_phentsize = prog header entry size
348 write16(0); // e_phnum = # prog header entries = 0
349
350 // e_shentsize = Section header entry size
351 write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
352
353 // e_shnum = # of section header ents
354 write16(0);
355
356 // e_shstrndx = Section # of '.shstrtab'
357 assert(StringTableIndex < ELF::SHN_LORESERVE);
358 write16(StringTableIndex);
359 }
360
SymbolValue(const MCSymbol & Sym,const MCAsmLayout & Layout)361 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
362 const MCAsmLayout &Layout) {
363 if (Sym.isCommon() && Sym.isExternal())
364 return Sym.getCommonAlignment();
365
366 uint64_t Res;
367 if (!Layout.getSymbolOffset(Sym, Res))
368 return 0;
369
370 if (Layout.getAssembler().isThumbFunc(&Sym))
371 Res |= 1;
372
373 return Res;
374 }
375
executePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)376 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
377 const MCAsmLayout &Layout) {
378 // The presence of symbol versions causes undefined symbols and
379 // versions declared with @@@ to be renamed.
380
381 for (const MCSymbol &A : Asm.symbols()) {
382 const auto &Alias = cast<MCSymbolELF>(A);
383 // Not an alias.
384 if (!Alias.isVariable())
385 continue;
386 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
387 if (!Ref)
388 continue;
389 const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
390
391 StringRef AliasName = Alias.getName();
392 size_t Pos = AliasName.find('@');
393 if (Pos == StringRef::npos)
394 continue;
395
396 // Aliases defined with .symvar copy the binding from the symbol they alias.
397 // This is the first place we are able to copy this information.
398 Alias.setExternal(Symbol.isExternal());
399 Alias.setBinding(Symbol.getBinding());
400
401 StringRef Rest = AliasName.substr(Pos);
402 if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
403 continue;
404
405 // FIXME: produce a better error message.
406 if (Symbol.isUndefined() && Rest.startswith("@@") &&
407 !Rest.startswith("@@@"))
408 report_fatal_error("A @@ version cannot be undefined");
409
410 Renames.insert(std::make_pair(&Symbol, &Alias));
411 }
412 }
413
mergeTypeForSet(uint8_t origType,uint8_t newType)414 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
415 uint8_t Type = newType;
416
417 // Propagation rules:
418 // IFUNC > FUNC > OBJECT > NOTYPE
419 // TLS_OBJECT > OBJECT > NOTYPE
420 //
421 // dont let the new type degrade the old type
422 switch (origType) {
423 default:
424 break;
425 case ELF::STT_GNU_IFUNC:
426 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
427 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
428 Type = ELF::STT_GNU_IFUNC;
429 break;
430 case ELF::STT_FUNC:
431 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
432 Type == ELF::STT_TLS)
433 Type = ELF::STT_FUNC;
434 break;
435 case ELF::STT_OBJECT:
436 if (Type == ELF::STT_NOTYPE)
437 Type = ELF::STT_OBJECT;
438 break;
439 case ELF::STT_TLS:
440 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
441 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
442 Type = ELF::STT_TLS;
443 break;
444 }
445
446 return Type;
447 }
448
writeSymbol(SymbolTableWriter & Writer,uint32_t StringIndex,ELFSymbolData & MSD,const MCAsmLayout & Layout)449 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
450 uint32_t StringIndex, ELFSymbolData &MSD,
451 const MCAsmLayout &Layout) {
452 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
453 const MCSymbolELF *Base =
454 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
455
456 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
457 // SHN_COMMON.
458 bool IsReserved = !Base || Symbol.isCommon();
459
460 // Binding and Type share the same byte as upper and lower nibbles
461 uint8_t Binding = Symbol.getBinding();
462 uint8_t Type = Symbol.getType();
463 if (Base) {
464 Type = mergeTypeForSet(Type, Base->getType());
465 }
466 uint8_t Info = (Binding << 4) | Type;
467
468 // Other and Visibility share the same byte with Visibility using the lower
469 // 2 bits
470 uint8_t Visibility = Symbol.getVisibility();
471 uint8_t Other = Symbol.getOther() | Visibility;
472
473 uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
474 uint64_t Size = 0;
475
476 const MCExpr *ESize = MSD.Symbol->getSize();
477 if (!ESize && Base)
478 ESize = Base->getSize();
479
480 if (ESize) {
481 int64_t Res;
482 if (!ESize->evaluateKnownAbsolute(Res, Layout))
483 report_fatal_error("Size expression must be absolute.");
484 Size = Res;
485 }
486
487 // Write out the symbol table entry
488 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
489 IsReserved);
490 }
491
492 // It is always valid to create a relocation with a symbol. It is preferable
493 // to use a relocation with a section if that is possible. Using the section
494 // allows us to omit some local symbols from the symbol table.
shouldRelocateWithSymbol(const MCAssembler & Asm,const MCSymbolRefExpr * RefA,const MCSymbol * S,uint64_t C,unsigned Type) const495 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
496 const MCSymbolRefExpr *RefA,
497 const MCSymbol *S, uint64_t C,
498 unsigned Type) const {
499 const auto *Sym = cast_or_null<MCSymbolELF>(S);
500 // A PCRel relocation to an absolute value has no symbol (or section). We
501 // represent that with a relocation to a null section.
502 if (!RefA)
503 return false;
504
505 MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
506 switch (Kind) {
507 default:
508 break;
509 // The .odp creation emits a relocation against the symbol ".TOC." which
510 // create a R_PPC64_TOC relocation. However the relocation symbol name
511 // in final object creation should be NULL, since the symbol does not
512 // really exist, it is just the reference to TOC base for the current
513 // object file. Since the symbol is undefined, returning false results
514 // in a relocation with a null section which is the desired result.
515 case MCSymbolRefExpr::VK_PPC_TOCBASE:
516 return false;
517
518 // These VariantKind cause the relocation to refer to something other than
519 // the symbol itself, like a linker generated table. Since the address of
520 // symbol is not relevant, we cannot replace the symbol with the
521 // section and patch the difference in the addend.
522 case MCSymbolRefExpr::VK_GOT:
523 case MCSymbolRefExpr::VK_PLT:
524 case MCSymbolRefExpr::VK_GOTPCREL:
525 case MCSymbolRefExpr::VK_Mips_GOT:
526 case MCSymbolRefExpr::VK_PPC_GOT_LO:
527 case MCSymbolRefExpr::VK_PPC_GOT_HI:
528 case MCSymbolRefExpr::VK_PPC_GOT_HA:
529 return true;
530 }
531
532 // An undefined symbol is not in any section, so the relocation has to point
533 // to the symbol itself.
534 assert(Sym && "Expected a symbol");
535 if (Sym->isUndefined())
536 return true;
537
538 unsigned Binding = Sym->getBinding();
539 switch(Binding) {
540 default:
541 llvm_unreachable("Invalid Binding");
542 case ELF::STB_LOCAL:
543 break;
544 case ELF::STB_WEAK:
545 // If the symbol is weak, it might be overridden by a symbol in another
546 // file. The relocation has to point to the symbol so that the linker
547 // can update it.
548 return true;
549 case ELF::STB_GLOBAL:
550 // Global ELF symbols can be preempted by the dynamic linker. The relocation
551 // has to point to the symbol for a reason analogous to the STB_WEAK case.
552 return true;
553 }
554
555 // If a relocation points to a mergeable section, we have to be careful.
556 // If the offset is zero, a relocation with the section will encode the
557 // same information. With a non-zero offset, the situation is different.
558 // For example, a relocation can point 42 bytes past the end of a string.
559 // If we change such a relocation to use the section, the linker would think
560 // that it pointed to another string and subtracting 42 at runtime will
561 // produce the wrong value.
562 auto &Sec = cast<MCSectionELF>(Sym->getSection());
563 unsigned Flags = Sec.getFlags();
564 if (Flags & ELF::SHF_MERGE) {
565 if (C != 0)
566 return true;
567
568 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
569 // only handle section relocations to mergeable sections if using RELA.
570 if (!hasRelocationAddend())
571 return true;
572 }
573
574 // Most TLS relocations use a got, so they need the symbol. Even those that
575 // are just an offset (@tpoff), require a symbol in gold versions before
576 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
577 // http://sourceware.org/PR16773.
578 if (Flags & ELF::SHF_TLS)
579 return true;
580
581 // If the symbol is a thumb function the final relocation must set the lowest
582 // bit. With a symbol that is done by just having the symbol have that bit
583 // set, so we would lose the bit if we relocated with the section.
584 // FIXME: We could use the section but add the bit to the relocation value.
585 if (Asm.isThumbFunc(Sym))
586 return true;
587
588 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
589 return true;
590 return false;
591 }
592
593 // True if the assembler knows nothing about the final value of the symbol.
594 // This doesn't cover the comdat issues, since in those cases the assembler
595 // can at least know that all symbols in the section will move together.
isWeak(const MCSymbolELF & Sym)596 static bool isWeak(const MCSymbolELF &Sym) {
597 if (Sym.getType() == ELF::STT_GNU_IFUNC)
598 return true;
599
600 switch (Sym.getBinding()) {
601 default:
602 llvm_unreachable("Unknown binding");
603 case ELF::STB_LOCAL:
604 return false;
605 case ELF::STB_GLOBAL:
606 return false;
607 case ELF::STB_WEAK:
608 case ELF::STB_GNU_UNIQUE:
609 return true;
610 }
611 }
612
recordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,bool & IsPCRel,uint64_t & FixedValue)613 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
614 const MCAsmLayout &Layout,
615 const MCFragment *Fragment,
616 const MCFixup &Fixup, MCValue Target,
617 bool &IsPCRel, uint64_t &FixedValue) {
618 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
619 uint64_t C = Target.getConstant();
620 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
621
622 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
623 assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
624 "Should not have constructed this");
625
626 // Let A, B and C being the components of Target and R be the location of
627 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
628 // If it is pcrel, we want to compute (A - B + C - R).
629
630 // In general, ELF has no relocations for -B. It can only represent (A + C)
631 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
632 // replace B to implement it: (A - R - K + C)
633 if (IsPCRel) {
634 Asm.getContext().reportError(
635 Fixup.getLoc(),
636 "No relocation available to represent this relative expression");
637 return;
638 }
639
640 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
641
642 if (SymB.isUndefined()) {
643 Asm.getContext().reportError(
644 Fixup.getLoc(),
645 Twine("symbol '") + SymB.getName() +
646 "' can not be undefined in a subtraction expression");
647 return;
648 }
649
650 assert(!SymB.isAbsolute() && "Should have been folded");
651 const MCSection &SecB = SymB.getSection();
652 if (&SecB != &FixupSection) {
653 Asm.getContext().reportError(
654 Fixup.getLoc(), "Cannot represent a difference across sections");
655 return;
656 }
657
658 if (::isWeak(SymB)) {
659 Asm.getContext().reportError(
660 Fixup.getLoc(), "Cannot represent a subtraction with a weak symbol");
661 return;
662 }
663
664 uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
665 uint64_t K = SymBOffset - FixupOffset;
666 IsPCRel = true;
667 C -= K;
668 }
669
670 // We either rejected the fixup or folded B into C at this point.
671 const MCSymbolRefExpr *RefA = Target.getSymA();
672 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
673
674 bool ViaWeakRef = false;
675 if (SymA && SymA->isVariable()) {
676 const MCExpr *Expr = SymA->getVariableValue();
677 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
678 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
679 SymA = cast<MCSymbolELF>(&Inner->getSymbol());
680 ViaWeakRef = true;
681 }
682 }
683 }
684
685 unsigned Type = GetRelocType(Target, Fixup, IsPCRel);
686 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
687 if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
688 C += Layout.getSymbolOffset(*SymA);
689
690 uint64_t Addend = 0;
691 if (hasRelocationAddend()) {
692 Addend = C;
693 C = 0;
694 }
695
696 FixedValue = C;
697
698 if (!RelocateWithSymbol) {
699 const MCSection *SecA =
700 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
701 auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
702 const auto *SectionSymbol =
703 ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
704 if (SectionSymbol)
705 SectionSymbol->setUsedInReloc();
706 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
707 Relocations[&FixupSection].push_back(Rec);
708 return;
709 }
710
711 if (SymA) {
712 if (const MCSymbolELF *R = Renames.lookup(SymA))
713 SymA = R;
714
715 if (ViaWeakRef)
716 SymA->setIsWeakrefUsedInReloc();
717 else
718 SymA->setUsedInReloc();
719 }
720 ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
721 Relocations[&FixupSection].push_back(Rec);
722 return;
723 }
724
isInSymtab(const MCAsmLayout & Layout,const MCSymbolELF & Symbol,bool Used,bool Renamed)725 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
726 const MCSymbolELF &Symbol, bool Used,
727 bool Renamed) {
728 if (Symbol.isVariable()) {
729 const MCExpr *Expr = Symbol.getVariableValue();
730 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
731 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
732 return false;
733 }
734 }
735
736 if (Used)
737 return true;
738
739 if (Renamed)
740 return false;
741
742 if (Symbol.isVariable() && Symbol.isUndefined()) {
743 // FIXME: this is here just to diagnose the case of a var = commmon_sym.
744 Layout.getBaseSymbol(Symbol);
745 return false;
746 }
747
748 if (Symbol.isUndefined() && !Symbol.isBindingSet())
749 return false;
750
751 if (Symbol.isTemporary())
752 return false;
753
754 if (Symbol.getType() == ELF::STT_SECTION)
755 return false;
756
757 return true;
758 }
759
computeSymbolTable(MCAssembler & Asm,const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const RevGroupMapTy & RevGroupMap,SectionOffsetsTy & SectionOffsets)760 void ELFObjectWriter::computeSymbolTable(
761 MCAssembler &Asm, const MCAsmLayout &Layout,
762 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
763 SectionOffsetsTy &SectionOffsets) {
764 MCContext &Ctx = Asm.getContext();
765 SymbolTableWriter Writer(*this, is64Bit());
766
767 // Symbol table
768 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
769 MCSectionELF *SymtabSection =
770 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
771 SymtabSection->setAlignment(is64Bit() ? 8 : 4);
772 SymbolTableIndex = addToSectionTable(SymtabSection);
773
774 align(SymtabSection->getAlignment());
775 uint64_t SecStart = getStream().tell();
776
777 // The first entry is the undefined symbol entry.
778 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
779
780 std::vector<ELFSymbolData> LocalSymbolData;
781 std::vector<ELFSymbolData> ExternalSymbolData;
782
783 // Add the data for the symbols.
784 bool HasLargeSectionIndex = false;
785 for (const MCSymbol &S : Asm.symbols()) {
786 const auto &Symbol = cast<MCSymbolELF>(S);
787 bool Used = Symbol.isUsedInReloc();
788 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
789 bool isSignature = Symbol.isSignature();
790
791 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
792 Renames.count(&Symbol)))
793 continue;
794
795 if (Symbol.isTemporary() && Symbol.isUndefined()) {
796 Ctx.reportError(SMLoc(), "Undefined temporary symbol");
797 continue;
798 }
799
800 ELFSymbolData MSD;
801 MSD.Symbol = cast<MCSymbolELF>(&Symbol);
802
803 bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
804 assert(Local || !Symbol.isTemporary());
805
806 if (Symbol.isAbsolute()) {
807 MSD.SectionIndex = ELF::SHN_ABS;
808 } else if (Symbol.isCommon()) {
809 assert(!Local);
810 MSD.SectionIndex = ELF::SHN_COMMON;
811 } else if (Symbol.isUndefined()) {
812 if (isSignature && !Used) {
813 MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
814 if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
815 HasLargeSectionIndex = true;
816 } else {
817 MSD.SectionIndex = ELF::SHN_UNDEF;
818 }
819 } else {
820 const MCSectionELF &Section =
821 static_cast<const MCSectionELF &>(Symbol.getSection());
822 MSD.SectionIndex = SectionIndexMap.lookup(&Section);
823 assert(MSD.SectionIndex && "Invalid section index!");
824 if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
825 HasLargeSectionIndex = true;
826 }
827
828 // The @@@ in symbol version is replaced with @ in undefined symbols and @@
829 // in defined ones.
830 //
831 // FIXME: All name handling should be done before we get to the writer,
832 // including dealing with GNU-style version suffixes. Fixing this isn't
833 // trivial.
834 //
835 // We thus have to be careful to not perform the symbol version replacement
836 // blindly:
837 //
838 // The ELF format is used on Windows by the MCJIT engine. Thus, on
839 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
840 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
841 // C++ name mangling can legally have "@@@" as a sub-string. In that case,
842 // the EFLObjectWriter should not interpret the "@@@" sub-string as
843 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
844 // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
845 // "__imp_?" or "__imp_@?".
846 //
847 // It would have been interesting to perform the MS mangling prefix check
848 // only when the target triple is of the form *-pc-windows-elf. But, it
849 // seems that this information is not easily accessible from the
850 // ELFObjectWriter.
851 StringRef Name = Symbol.getName();
852 SmallString<32> Buf;
853 if (!Name.startswith("?") && !Name.startswith("@?") &&
854 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
855 // This symbol isn't following the MSVC C++ name mangling convention. We
856 // can thus safely interpret the @@@ in symbol names as specifying symbol
857 // versioning.
858 size_t Pos = Name.find("@@@");
859 if (Pos != StringRef::npos) {
860 Buf += Name.substr(0, Pos);
861 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
862 Buf += Name.substr(Pos + Skip);
863 Name = VersionSymSaver.save(Buf.c_str());
864 }
865 }
866
867 // Sections have their own string table
868 if (Symbol.getType() != ELF::STT_SECTION) {
869 MSD.Name = Name;
870 StrTabBuilder.add(Name);
871 }
872
873 if (Local)
874 LocalSymbolData.push_back(MSD);
875 else
876 ExternalSymbolData.push_back(MSD);
877 }
878
879 // This holds the .symtab_shndx section index.
880 unsigned SymtabShndxSectionIndex = 0;
881
882 if (HasLargeSectionIndex) {
883 MCSectionELF *SymtabShndxSection =
884 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
885 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
886 SymtabShndxSection->setAlignment(4);
887 }
888
889 ArrayRef<std::string> FileNames = Asm.getFileNames();
890 for (const std::string &Name : FileNames)
891 StrTabBuilder.add(Name);
892
893 StrTabBuilder.finalize();
894
895 for (const std::string &Name : FileNames)
896 Writer.writeSymbol(StrTabBuilder.getOffset(Name),
897 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
898 ELF::SHN_ABS, true);
899
900 // Symbols are required to be in lexicographic order.
901 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
902 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
903
904 // Set the symbol indices. Local symbols must come before all other
905 // symbols with non-local bindings.
906 unsigned Index = FileNames.size() + 1;
907
908 for (ELFSymbolData &MSD : LocalSymbolData) {
909 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
910 ? 0
911 : StrTabBuilder.getOffset(MSD.Name);
912 MSD.Symbol->setIndex(Index++);
913 writeSymbol(Writer, StringIndex, MSD, Layout);
914 }
915
916 // Write the symbol table entries.
917 LastLocalSymbolIndex = Index;
918
919 for (ELFSymbolData &MSD : ExternalSymbolData) {
920 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
921 MSD.Symbol->setIndex(Index++);
922 writeSymbol(Writer, StringIndex, MSD, Layout);
923 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
924 }
925
926 uint64_t SecEnd = getStream().tell();
927 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
928
929 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
930 if (ShndxIndexes.empty()) {
931 assert(SymtabShndxSectionIndex == 0);
932 return;
933 }
934 assert(SymtabShndxSectionIndex != 0);
935
936 SecStart = getStream().tell();
937 const MCSectionELF *SymtabShndxSection =
938 SectionTable[SymtabShndxSectionIndex - 1];
939 for (uint32_t Index : ShndxIndexes)
940 write(Index);
941 SecEnd = getStream().tell();
942 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
943 }
944
945 MCSectionELF *
createRelocationSection(MCContext & Ctx,const MCSectionELF & Sec)946 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
947 const MCSectionELF &Sec) {
948 if (Relocations[&Sec].empty())
949 return nullptr;
950
951 const StringRef SectionName = Sec.getSectionName();
952 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
953 RelaSectionName += SectionName;
954
955 unsigned EntrySize;
956 if (hasRelocationAddend())
957 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
958 else
959 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
960
961 unsigned Flags = 0;
962 if (Sec.getFlags() & ELF::SHF_GROUP)
963 Flags = ELF::SHF_GROUP;
964
965 MCSectionELF *RelaSection = Ctx.createELFRelSection(
966 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
967 Flags, EntrySize, Sec.getGroup(), &Sec);
968 RelaSection->setAlignment(is64Bit() ? 8 : 4);
969 return RelaSection;
970 }
971
972 // Include the debug info compression header:
973 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
974 // useful for consumers to preallocate a buffer to decompress into.
975 static bool
prependCompressionHeader(uint64_t Size,SmallVectorImpl<char> & CompressedContents)976 prependCompressionHeader(uint64_t Size,
977 SmallVectorImpl<char> &CompressedContents) {
978 const StringRef Magic = "ZLIB";
979 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
980 return false;
981 if (sys::IsLittleEndianHost)
982 sys::swapByteOrder(Size);
983 CompressedContents.insert(CompressedContents.begin(),
984 Magic.size() + sizeof(Size), 0);
985 std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
986 std::copy(reinterpret_cast<char *>(&Size),
987 reinterpret_cast<char *>(&Size + 1),
988 CompressedContents.begin() + Magic.size());
989 return true;
990 }
991
writeSectionData(const MCAssembler & Asm,MCSection & Sec,const MCAsmLayout & Layout)992 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
993 const MCAsmLayout &Layout) {
994 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
995 StringRef SectionName = Section.getSectionName();
996
997 // Compressing debug_frame requires handling alignment fragments which is
998 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
999 // for writing to arbitrary buffers) for little benefit.
1000 if (!Asm.getContext().getAsmInfo()->compressDebugSections() ||
1001 !SectionName.startswith(".debug_") || SectionName == ".debug_frame") {
1002 Asm.writeSectionData(&Section, Layout);
1003 return;
1004 }
1005
1006 SmallVector<char, 128> UncompressedData;
1007 raw_svector_ostream VecOS(UncompressedData);
1008 raw_pwrite_stream &OldStream = getStream();
1009 setStream(VecOS);
1010 Asm.writeSectionData(&Section, Layout);
1011 setStream(OldStream);
1012
1013 SmallVector<char, 128> CompressedContents;
1014 zlib::Status Success = zlib::compress(
1015 StringRef(UncompressedData.data(), UncompressedData.size()),
1016 CompressedContents);
1017 if (Success != zlib::StatusOK) {
1018 getStream() << UncompressedData;
1019 return;
1020 }
1021
1022 if (!prependCompressionHeader(UncompressedData.size(), CompressedContents)) {
1023 getStream() << UncompressedData;
1024 return;
1025 }
1026 Asm.getContext().renameELFSection(&Section,
1027 (".z" + SectionName.drop_front(1)).str());
1028 getStream() << CompressedContents;
1029 }
1030
WriteSecHdrEntry(uint32_t Name,uint32_t Type,uint64_t Flags,uint64_t Address,uint64_t Offset,uint64_t Size,uint32_t Link,uint32_t Info,uint64_t Alignment,uint64_t EntrySize)1031 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1032 uint64_t Flags, uint64_t Address,
1033 uint64_t Offset, uint64_t Size,
1034 uint32_t Link, uint32_t Info,
1035 uint64_t Alignment,
1036 uint64_t EntrySize) {
1037 write32(Name); // sh_name: index into string table
1038 write32(Type); // sh_type
1039 WriteWord(Flags); // sh_flags
1040 WriteWord(Address); // sh_addr
1041 WriteWord(Offset); // sh_offset
1042 WriteWord(Size); // sh_size
1043 write32(Link); // sh_link
1044 write32(Info); // sh_info
1045 WriteWord(Alignment); // sh_addralign
1046 WriteWord(EntrySize); // sh_entsize
1047 }
1048
writeRelocations(const MCAssembler & Asm,const MCSectionELF & Sec)1049 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1050 const MCSectionELF &Sec) {
1051 std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1052
1053 // We record relocations by pushing to the end of a vector. Reverse the vector
1054 // to get the relocations in the order they were created.
1055 // In most cases that is not important, but it can be for special sections
1056 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1057 std::reverse(Relocs.begin(), Relocs.end());
1058
1059 // Sort the relocation entries. MIPS needs this.
1060 TargetObjectWriter->sortRelocs(Asm, Relocs);
1061
1062 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1063 const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1064 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1065
1066 if (is64Bit()) {
1067 write(Entry.Offset);
1068 if (TargetObjectWriter->isN64()) {
1069 write(uint32_t(Index));
1070
1071 write(TargetObjectWriter->getRSsym(Entry.Type));
1072 write(TargetObjectWriter->getRType3(Entry.Type));
1073 write(TargetObjectWriter->getRType2(Entry.Type));
1074 write(TargetObjectWriter->getRType(Entry.Type));
1075 } else {
1076 struct ELF::Elf64_Rela ERE64;
1077 ERE64.setSymbolAndType(Index, Entry.Type);
1078 write(ERE64.r_info);
1079 }
1080 if (hasRelocationAddend())
1081 write(Entry.Addend);
1082 } else {
1083 write(uint32_t(Entry.Offset));
1084
1085 struct ELF::Elf32_Rela ERE32;
1086 ERE32.setSymbolAndType(Index, Entry.Type);
1087 write(ERE32.r_info);
1088
1089 if (hasRelocationAddend())
1090 write(uint32_t(Entry.Addend));
1091 }
1092 }
1093 }
1094
createStringTable(MCContext & Ctx)1095 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1096 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1097 getStream() << StrTabBuilder.data();
1098 return StrtabSection;
1099 }
1100
writeSection(const SectionIndexMapTy & SectionIndexMap,uint32_t GroupSymbolIndex,uint64_t Offset,uint64_t Size,const MCSectionELF & Section)1101 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1102 uint32_t GroupSymbolIndex, uint64_t Offset,
1103 uint64_t Size, const MCSectionELF &Section) {
1104 uint64_t sh_link = 0;
1105 uint64_t sh_info = 0;
1106
1107 switch(Section.getType()) {
1108 default:
1109 // Nothing to do.
1110 break;
1111
1112 case ELF::SHT_DYNAMIC:
1113 llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1114
1115 case ELF::SHT_REL:
1116 case ELF::SHT_RELA: {
1117 sh_link = SymbolTableIndex;
1118 assert(sh_link && ".symtab not found");
1119 const MCSectionELF *InfoSection = Section.getAssociatedSection();
1120 sh_info = SectionIndexMap.lookup(InfoSection);
1121 break;
1122 }
1123
1124 case ELF::SHT_SYMTAB:
1125 case ELF::SHT_DYNSYM:
1126 sh_link = StringTableIndex;
1127 sh_info = LastLocalSymbolIndex;
1128 break;
1129
1130 case ELF::SHT_SYMTAB_SHNDX:
1131 sh_link = SymbolTableIndex;
1132 break;
1133
1134 case ELF::SHT_GROUP:
1135 sh_link = SymbolTableIndex;
1136 sh_info = GroupSymbolIndex;
1137 break;
1138 }
1139
1140 if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1141 Section.getType() == ELF::SHT_ARM_EXIDX)
1142 sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1143
1144 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1145 Section.getType(), Section.getFlags(), 0, Offset, Size,
1146 sh_link, sh_info, Section.getAlignment(),
1147 Section.getEntrySize());
1148 }
1149
writeSectionHeader(const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const SectionOffsetsTy & SectionOffsets)1150 void ELFObjectWriter::writeSectionHeader(
1151 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1152 const SectionOffsetsTy &SectionOffsets) {
1153 const unsigned NumSections = SectionTable.size();
1154
1155 // Null section first.
1156 uint64_t FirstSectionSize =
1157 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1158 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1159
1160 for (const MCSectionELF *Section : SectionTable) {
1161 uint32_t GroupSymbolIndex;
1162 unsigned Type = Section->getType();
1163 if (Type != ELF::SHT_GROUP)
1164 GroupSymbolIndex = 0;
1165 else
1166 GroupSymbolIndex = Section->getGroup()->getIndex();
1167
1168 const std::pair<uint64_t, uint64_t> &Offsets =
1169 SectionOffsets.find(Section)->second;
1170 uint64_t Size;
1171 if (Type == ELF::SHT_NOBITS)
1172 Size = Layout.getSectionAddressSize(Section);
1173 else
1174 Size = Offsets.second - Offsets.first;
1175
1176 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1177 *Section);
1178 }
1179 }
1180
writeObject(MCAssembler & Asm,const MCAsmLayout & Layout)1181 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1182 const MCAsmLayout &Layout) {
1183 MCContext &Ctx = Asm.getContext();
1184 MCSectionELF *StrtabSection =
1185 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1186 StringTableIndex = addToSectionTable(StrtabSection);
1187
1188 RevGroupMapTy RevGroupMap;
1189 SectionIndexMapTy SectionIndexMap;
1190
1191 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1192
1193 // Write out the ELF header ...
1194 writeHeader(Asm);
1195
1196 // ... then the sections ...
1197 SectionOffsetsTy SectionOffsets;
1198 std::vector<MCSectionELF *> Groups;
1199 std::vector<MCSectionELF *> Relocations;
1200 for (MCSection &Sec : Asm) {
1201 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1202
1203 align(Section.getAlignment());
1204
1205 // Remember the offset into the file for this section.
1206 uint64_t SecStart = getStream().tell();
1207
1208 const MCSymbolELF *SignatureSymbol = Section.getGroup();
1209 writeSectionData(Asm, Section, Layout);
1210
1211 uint64_t SecEnd = getStream().tell();
1212 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1213
1214 MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1215
1216 if (SignatureSymbol) {
1217 Asm.registerSymbol(*SignatureSymbol);
1218 unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1219 if (!GroupIdx) {
1220 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1221 GroupIdx = addToSectionTable(Group);
1222 Group->setAlignment(4);
1223 Groups.push_back(Group);
1224 }
1225 std::vector<const MCSectionELF *> &Members =
1226 GroupMembers[SignatureSymbol];
1227 Members.push_back(&Section);
1228 if (RelSection)
1229 Members.push_back(RelSection);
1230 }
1231
1232 SectionIndexMap[&Section] = addToSectionTable(&Section);
1233 if (RelSection) {
1234 SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1235 Relocations.push_back(RelSection);
1236 }
1237 }
1238
1239 for (MCSectionELF *Group : Groups) {
1240 align(Group->getAlignment());
1241
1242 // Remember the offset into the file for this section.
1243 uint64_t SecStart = getStream().tell();
1244
1245 const MCSymbol *SignatureSymbol = Group->getGroup();
1246 assert(SignatureSymbol);
1247 write(uint32_t(ELF::GRP_COMDAT));
1248 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1249 uint32_t SecIndex = SectionIndexMap.lookup(Member);
1250 write(SecIndex);
1251 }
1252
1253 uint64_t SecEnd = getStream().tell();
1254 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1255 }
1256
1257 // Compute symbol table information.
1258 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1259
1260 for (MCSectionELF *RelSection : Relocations) {
1261 align(RelSection->getAlignment());
1262
1263 // Remember the offset into the file for this section.
1264 uint64_t SecStart = getStream().tell();
1265
1266 writeRelocations(Asm, *RelSection->getAssociatedSection());
1267
1268 uint64_t SecEnd = getStream().tell();
1269 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1270 }
1271
1272 {
1273 uint64_t SecStart = getStream().tell();
1274 const MCSectionELF *Sec = createStringTable(Ctx);
1275 uint64_t SecEnd = getStream().tell();
1276 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1277 }
1278
1279 uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1280 align(NaturalAlignment);
1281
1282 const unsigned SectionHeaderOffset = getStream().tell();
1283
1284 // ... then the section header table ...
1285 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1286
1287 uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1288 ? (uint16_t)ELF::SHN_UNDEF
1289 : SectionTable.size() + 1;
1290 if (sys::IsLittleEndianHost != IsLittleEndian)
1291 sys::swapByteOrder(NumSections);
1292 unsigned NumSectionsOffset;
1293
1294 if (is64Bit()) {
1295 uint64_t Val = SectionHeaderOffset;
1296 if (sys::IsLittleEndianHost != IsLittleEndian)
1297 sys::swapByteOrder(Val);
1298 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1299 offsetof(ELF::Elf64_Ehdr, e_shoff));
1300 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1301 } else {
1302 uint32_t Val = SectionHeaderOffset;
1303 if (sys::IsLittleEndianHost != IsLittleEndian)
1304 sys::swapByteOrder(Val);
1305 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1306 offsetof(ELF::Elf32_Ehdr, e_shoff));
1307 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1308 }
1309 getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1310 sizeof(NumSections), NumSectionsOffset);
1311 }
1312
isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler & Asm,const MCSymbol & SA,const MCFragment & FB,bool InSet,bool IsPCRel) const1313 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1314 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1315 bool InSet, bool IsPCRel) const {
1316 const auto &SymA = cast<MCSymbolELF>(SA);
1317 if (IsPCRel) {
1318 assert(!InSet);
1319 if (::isWeak(SymA))
1320 return false;
1321 }
1322 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1323 InSet, IsPCRel);
1324 }
1325
isWeak(const MCSymbol & S) const1326 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1327 const auto &Sym = cast<MCSymbolELF>(S);
1328 if (::isWeak(Sym))
1329 return true;
1330
1331 // It is invalid to replace a reference to a global in a comdat
1332 // with a reference to a local since out of comdat references
1333 // to a local are forbidden.
1334 // We could try to return false for more cases, like the reference
1335 // being in the same comdat or Sym being an alias to another global,
1336 // but it is not clear if it is worth the effort.
1337 if (Sym.getBinding() != ELF::STB_GLOBAL)
1338 return false;
1339
1340 if (!Sym.isInSection())
1341 return false;
1342
1343 const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1344 return Sec.getGroup();
1345 }
1346
createELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)1347 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1348 raw_pwrite_stream &OS,
1349 bool IsLittleEndian) {
1350 return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1351 }
1352