1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/FunctionInfo.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <deque>
38 using namespace llvm;
39
40 namespace {
41 enum {
42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
43 };
44
45 class BitcodeReaderValueList {
46 std::vector<WeakVH> ValuePtrs;
47
48 /// As we resolve forward-referenced constants, we add information about them
49 /// to this vector. This allows us to resolve them in bulk instead of
50 /// resolving each reference at a time. See the code in
51 /// ResolveConstantForwardRefs for more information about this.
52 ///
53 /// The key of this vector is the placeholder constant, the value is the slot
54 /// number that holds the resolved value.
55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
56 ResolveConstantsTy ResolveConstants;
57 LLVMContext &Context;
58 public:
BitcodeReaderValueList(LLVMContext & C)59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()60 ~BitcodeReaderValueList() {
61 assert(ResolveConstants.empty() && "Constants not resolved?");
62 }
63
64 // vector compatibility methods
size() const65 unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)66 void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)67 void push_back(Value *V) { ValuePtrs.emplace_back(V); }
68
clear()69 void clear() {
70 assert(ResolveConstants.empty() && "Constants not resolved?");
71 ValuePtrs.clear();
72 }
73
operator [](unsigned i) const74 Value *operator[](unsigned i) const {
75 assert(i < ValuePtrs.size());
76 return ValuePtrs[i];
77 }
78
back() const79 Value *back() const { return ValuePtrs.back(); }
pop_back()80 void pop_back() { ValuePtrs.pop_back(); }
empty() const81 bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)82 void shrinkTo(unsigned N) {
83 assert(N <= size() && "Invalid shrinkTo request!");
84 ValuePtrs.resize(N);
85 }
86
87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
88 Value *getValueFwdRef(unsigned Idx, Type *Ty);
89
90 void assignValue(Value *V, unsigned Idx);
91
92 /// Once all constants are read, this method bulk resolves any forward
93 /// references.
94 void resolveConstantForwardRefs();
95 };
96
97 class BitcodeReaderMDValueList {
98 unsigned NumFwdRefs;
99 bool AnyFwdRefs;
100 unsigned MinFwdRef;
101 unsigned MaxFwdRef;
102 std::vector<TrackingMDRef> MDValuePtrs;
103
104 LLVMContext &Context;
105 public:
BitcodeReaderMDValueList(LLVMContext & C)106 BitcodeReaderMDValueList(LLVMContext &C)
107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
108
109 // vector compatibility methods
size() const110 unsigned size() const { return MDValuePtrs.size(); }
resize(unsigned N)111 void resize(unsigned N) { MDValuePtrs.resize(N); }
push_back(Metadata * MD)112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
clear()113 void clear() { MDValuePtrs.clear(); }
back() const114 Metadata *back() const { return MDValuePtrs.back(); }
pop_back()115 void pop_back() { MDValuePtrs.pop_back(); }
empty() const116 bool empty() const { return MDValuePtrs.empty(); }
117
operator [](unsigned i) const118 Metadata *operator[](unsigned i) const {
119 assert(i < MDValuePtrs.size());
120 return MDValuePtrs[i];
121 }
122
shrinkTo(unsigned N)123 void shrinkTo(unsigned N) {
124 assert(N <= size() && "Invalid shrinkTo request!");
125 MDValuePtrs.resize(N);
126 }
127
128 Metadata *getValueFwdRef(unsigned Idx);
129 void assignValue(Metadata *MD, unsigned Idx);
130 void tryToResolveCycles();
131 };
132
133 class BitcodeReader : public GVMaterializer {
134 LLVMContext &Context;
135 Module *TheModule = nullptr;
136 std::unique_ptr<MemoryBuffer> Buffer;
137 std::unique_ptr<BitstreamReader> StreamFile;
138 BitstreamCursor Stream;
139 // Next offset to start scanning for lazy parsing of function bodies.
140 uint64_t NextUnreadBit = 0;
141 // Last function offset found in the VST.
142 uint64_t LastFunctionBlockBit = 0;
143 bool SeenValueSymbolTable = false;
144 uint64_t VSTOffset = 0;
145 // Contains an arbitrary and optional string identifying the bitcode producer
146 std::string ProducerIdentification;
147 // Number of module level metadata records specified by the
148 // MODULE_CODE_METADATA_VALUES record.
149 unsigned NumModuleMDs = 0;
150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
151 bool SeenModuleValuesRecord = false;
152
153 std::vector<Type*> TypeList;
154 BitcodeReaderValueList ValueList;
155 BitcodeReaderMDValueList MDValueList;
156 std::vector<Comdat *> ComdatList;
157 SmallVector<Instruction *, 64> InstructionList;
158
159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
164
165 SmallVector<Instruction*, 64> InstsWithTBAATag;
166
167 /// The set of attributes by index. Index zero in the file is for null, and
168 /// is thus not represented here. As such all indices are off by one.
169 std::vector<AttributeSet> MAttributes;
170
171 /// The set of attribute groups.
172 std::map<unsigned, AttributeSet> MAttributeGroups;
173
174 /// While parsing a function body, this is a list of the basic blocks for the
175 /// function.
176 std::vector<BasicBlock*> FunctionBBs;
177
178 // When reading the module header, this list is populated with functions that
179 // have bodies later in the file.
180 std::vector<Function*> FunctionsWithBodies;
181
182 // When intrinsic functions are encountered which require upgrading they are
183 // stored here with their replacement function.
184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
185 UpgradedIntrinsicMap UpgradedIntrinsics;
186
187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
188 DenseMap<unsigned, unsigned> MDKindMap;
189
190 // Several operations happen after the module header has been read, but
191 // before function bodies are processed. This keeps track of whether
192 // we've done this yet.
193 bool SeenFirstFunctionBody = false;
194
195 /// When function bodies are initially scanned, this map contains info about
196 /// where to find deferred function body in the stream.
197 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
198
199 /// When Metadata block is initially scanned when parsing the module, we may
200 /// choose to defer parsing of the metadata. This vector contains info about
201 /// which Metadata blocks are deferred.
202 std::vector<uint64_t> DeferredMetadataInfo;
203
204 /// These are basic blocks forward-referenced by block addresses. They are
205 /// inserted lazily into functions when they're loaded. The basic block ID is
206 /// its index into the vector.
207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
208 std::deque<Function *> BasicBlockFwdRefQueue;
209
210 /// Indicates that we are using a new encoding for instruction operands where
211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
212 /// instruction number, for a more compact encoding. Some instruction
213 /// operands are not relative to the instruction ID: basic block numbers, and
214 /// types. Once the old style function blocks have been phased out, we would
215 /// not need this flag.
216 bool UseRelativeIDs = false;
217
218 /// True if all functions will be materialized, negating the need to process
219 /// (e.g.) blockaddress forward references.
220 bool WillMaterializeAllForwardRefs = false;
221
222 /// True if any Metadata block has been materialized.
223 bool IsMetadataMaterialized = false;
224
225 bool StripDebugInfo = false;
226
227 /// Functions that need to be matched with subprograms when upgrading old
228 /// metadata.
229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
230
231 std::vector<std::string> BundleTags;
232
233 public:
234 std::error_code error(BitcodeError E, const Twine &Message);
235 std::error_code error(BitcodeError E);
236 std::error_code error(const Twine &Message);
237
238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
239 BitcodeReader(LLVMContext &Context);
~BitcodeReader()240 ~BitcodeReader() override { freeState(); }
241
242 std::error_code materializeForwardReferencedFunctions();
243
244 void freeState();
245
246 void releaseBuffer();
247
248 std::error_code materialize(GlobalValue *GV) override;
249 std::error_code materializeModule() override;
250 std::vector<StructType *> getIdentifiedStructTypes() const override;
251
252 /// \brief Main interface to parsing a bitcode buffer.
253 /// \returns true if an error occurred.
254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
255 Module *M,
256 bool ShouldLazyLoadMetadata = false);
257
258 /// \brief Cheap mechanism to just extract module triple
259 /// \returns true if an error occurred.
260 ErrorOr<std::string> parseTriple();
261
262 /// Cheap mechanism to just extract the identification block out of bitcode.
263 ErrorOr<std::string> parseIdentificationBlock();
264
265 static uint64_t decodeSignRotatedValue(uint64_t V);
266
267 /// Materialize any deferred Metadata block.
268 std::error_code materializeMetadata() override;
269
270 void setStripDebugInfo() override;
271
272 /// Save the mapping between the metadata values and the corresponding
273 /// value id that were recorded in the MDValueList during parsing. If
274 /// OnlyTempMD is true, then only record those entries that are still
275 /// temporary metadata. This interface is used when metadata linking is
276 /// performed as a postpass, such as during function importing.
277 void saveMDValueList(DenseMap<const Metadata *, unsigned> &MDValueToValIDMap,
278 bool OnlyTempMD) override;
279
280 private:
281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282 // ProducerIdentification data member, and do some basic enforcement on the
283 // "epoch" encoded in the bitcode.
284 std::error_code parseBitcodeVersion();
285
286 std::vector<StructType *> IdentifiedStructTypes;
287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288 StructType *createIdentifiedStructType(LLVMContext &Context);
289
290 Type *getTypeByID(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)291 Value *getFnValueByID(unsigned ID, Type *Ty) {
292 if (Ty && Ty->isMetadataTy())
293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294 return ValueList.getValueFwdRef(ID, Ty);
295 }
getFnMetadataByID(unsigned ID)296 Metadata *getFnMetadataByID(unsigned ID) {
297 return MDValueList.getValueFwdRef(ID);
298 }
getBasicBlock(unsigned ID) const299 BasicBlock *getBasicBlock(unsigned ID) const {
300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301 return FunctionBBs[ID];
302 }
getAttributes(unsigned i) const303 AttributeSet getAttributes(unsigned i) const {
304 if (i-1 < MAttributes.size())
305 return MAttributes[i-1];
306 return AttributeSet();
307 }
308
309 /// Read a value/type pair out of the specified record from slot 'Slot'.
310 /// Increment Slot past the number of slots used in the record. Return true on
311 /// failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313 unsigned InstNum, Value *&ResVal) {
314 if (Slot == Record.size()) return true;
315 unsigned ValNo = (unsigned)Record[Slot++];
316 // Adjust the ValNo, if it was encoded relative to the InstNum.
317 if (UseRelativeIDs)
318 ValNo = InstNum - ValNo;
319 if (ValNo < InstNum) {
320 // If this is not a forward reference, just return the value we already
321 // have.
322 ResVal = getFnValueByID(ValNo, nullptr);
323 return ResVal == nullptr;
324 }
325 if (Slot == Record.size())
326 return true;
327
328 unsigned TypeNo = (unsigned)Record[Slot++];
329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330 return ResVal == nullptr;
331 }
332
333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334 /// past the number of slots used by the value in the record. Return true if
335 /// there is an error.
popValue(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Type * Ty,Value * & ResVal)336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337 unsigned InstNum, Type *Ty, Value *&ResVal) {
338 if (getValue(Record, Slot, InstNum, Ty, ResVal))
339 return true;
340 // All values currently take a single record slot.
341 ++Slot;
342 return false;
343 }
344
345 /// Like popValue, but does not increment the Slot number.
getValue(SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty,Value * & ResVal)346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347 unsigned InstNum, Type *Ty, Value *&ResVal) {
348 ResVal = getValue(Record, Slot, InstNum, Ty);
349 return ResVal == nullptr;
350 }
351
352 /// Version of getValue that returns ResVal directly, or 0 if there is an
353 /// error.
getValue(SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty)354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355 unsigned InstNum, Type *Ty) {
356 if (Slot == Record.size()) return nullptr;
357 unsigned ValNo = (unsigned)Record[Slot];
358 // Adjust the ValNo, if it was encoded relative to the InstNum.
359 if (UseRelativeIDs)
360 ValNo = InstNum - ValNo;
361 return getFnValueByID(ValNo, Ty);
362 }
363
364 /// Like getValue, but decodes signed VBRs.
getValueSigned(SmallVectorImpl<uint64_t> & Record,unsigned Slot,unsigned InstNum,Type * Ty)365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366 unsigned InstNum, Type *Ty) {
367 if (Slot == Record.size()) return nullptr;
368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369 // Adjust the ValNo, if it was encoded relative to the InstNum.
370 if (UseRelativeIDs)
371 ValNo = InstNum - ValNo;
372 return getFnValueByID(ValNo, Ty);
373 }
374
375 /// Converts alignment exponent (i.e. power of two (or zero)) to the
376 /// corresponding alignment to use. If alignment is too large, returns
377 /// a corresponding error code.
378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380 std::error_code parseModule(uint64_t ResumeBit,
381 bool ShouldLazyLoadMetadata = false);
382 std::error_code parseAttributeBlock();
383 std::error_code parseAttributeGroupBlock();
384 std::error_code parseTypeTable();
385 std::error_code parseTypeTableBody();
386 std::error_code parseOperandBundleTags();
387
388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389 unsigned NameIndex, Triple &TT);
390 std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391 std::error_code parseConstants();
392 std::error_code rememberAndSkipFunctionBodies();
393 std::error_code rememberAndSkipFunctionBody();
394 /// Save the positions of the Metadata blocks and skip parsing the blocks.
395 std::error_code rememberAndSkipMetadata();
396 std::error_code parseFunctionBody(Function *F);
397 std::error_code globalCleanup();
398 std::error_code resolveGlobalAndAliasInits();
399 std::error_code parseMetadata(bool ModuleLevel = false);
400 std::error_code parseMetadataKinds();
401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
402 std::error_code parseMetadataAttachment(Function &F);
403 ErrorOr<std::string> parseModuleTriple();
404 std::error_code parseUseLists();
405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
406 std::error_code initStreamFromBuffer();
407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
408 std::error_code findFunctionInStream(
409 Function *F,
410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
411 };
412
413 /// Class to manage reading and parsing function summary index bitcode
414 /// files/sections.
415 class FunctionIndexBitcodeReader {
416 DiagnosticHandlerFunction DiagnosticHandler;
417
418 /// Eventually points to the function index built during parsing.
419 FunctionInfoIndex *TheIndex = nullptr;
420
421 std::unique_ptr<MemoryBuffer> Buffer;
422 std::unique_ptr<BitstreamReader> StreamFile;
423 BitstreamCursor Stream;
424
425 /// \brief Used to indicate whether we are doing lazy parsing of summary data.
426 ///
427 /// If false, the summary section is fully parsed into the index during
428 /// the initial parse. Otherwise, if true, the caller is expected to
429 /// invoke \a readFunctionSummary for each summary needed, and the summary
430 /// section is thus parsed lazily.
431 bool IsLazy = false;
432
433 /// Used to indicate whether caller only wants to check for the presence
434 /// of the function summary bitcode section. All blocks are skipped,
435 /// but the SeenFuncSummary boolean is set.
436 bool CheckFuncSummaryPresenceOnly = false;
437
438 /// Indicates whether we have encountered a function summary section
439 /// yet during parsing, used when checking if file contains function
440 /// summary section.
441 bool SeenFuncSummary = false;
442
443 /// \brief Map populated during function summary section parsing, and
444 /// consumed during ValueSymbolTable parsing.
445 ///
446 /// Used to correlate summary records with VST entries. For the per-module
447 /// index this maps the ValueID to the parsed function summary, and
448 /// for the combined index this maps the summary record's bitcode
449 /// offset to the function summary (since in the combined index the
450 /// VST records do not hold value IDs but rather hold the function
451 /// summary record offset).
452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
453
454 /// Map populated during module path string table parsing, from the
455 /// module ID to a string reference owned by the index's module
456 /// path string table, used to correlate with combined index function
457 /// summary records.
458 DenseMap<uint64_t, StringRef> ModuleIdMap;
459
460 public:
461 std::error_code error(BitcodeError E, const Twine &Message);
462 std::error_code error(BitcodeError E);
463 std::error_code error(const Twine &Message);
464
465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer,
466 DiagnosticHandlerFunction DiagnosticHandler,
467 bool IsLazy = false,
468 bool CheckFuncSummaryPresenceOnly = false);
469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,
470 bool IsLazy = false,
471 bool CheckFuncSummaryPresenceOnly = false);
~FunctionIndexBitcodeReader()472 ~FunctionIndexBitcodeReader() { freeState(); }
473
474 void freeState();
475
476 void releaseBuffer();
477
478 /// Check if the parser has encountered a function summary section.
foundFuncSummary()479 bool foundFuncSummary() { return SeenFuncSummary; }
480
481 /// \brief Main interface to parsing a bitcode buffer.
482 /// \returns true if an error occurred.
483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
484 FunctionInfoIndex *I);
485
486 /// \brief Interface for parsing a function summary lazily.
487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
488 FunctionInfoIndex *I,
489 size_t FunctionSummaryOffset);
490
491 private:
492 std::error_code parseModule();
493 std::error_code parseValueSymbolTable();
494 std::error_code parseEntireSummary();
495 std::error_code parseModuleStringTable();
496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
497 std::error_code initStreamFromBuffer();
498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
499 };
500 } // namespace
501
BitcodeDiagnosticInfo(std::error_code EC,DiagnosticSeverity Severity,const Twine & Msg)502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
503 DiagnosticSeverity Severity,
504 const Twine &Msg)
505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
506
print(DiagnosticPrinter & DP) const507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
508
error(DiagnosticHandlerFunction DiagnosticHandler,std::error_code EC,const Twine & Message)509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
510 std::error_code EC, const Twine &Message) {
511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
512 DiagnosticHandler(DI);
513 return EC;
514 }
515
error(DiagnosticHandlerFunction DiagnosticHandler,std::error_code EC)516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
517 std::error_code EC) {
518 return error(DiagnosticHandler, EC, EC.message());
519 }
520
error(LLVMContext & Context,std::error_code EC,const Twine & Message)521 static std::error_code error(LLVMContext &Context, std::error_code EC,
522 const Twine &Message) {
523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
524 Message);
525 }
526
error(LLVMContext & Context,std::error_code EC)527 static std::error_code error(LLVMContext &Context, std::error_code EC) {
528 return error(Context, EC, EC.message());
529 }
530
error(LLVMContext & Context,const Twine & Message)531 static std::error_code error(LLVMContext &Context, const Twine &Message) {
532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
533 Message);
534 }
535
error(BitcodeError E,const Twine & Message)536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
537 if (!ProducerIdentification.empty()) {
538 return ::error(Context, make_error_code(E),
539 Message + " (Producer: '" + ProducerIdentification +
540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
541 }
542 return ::error(Context, make_error_code(E), Message);
543 }
544
error(const Twine & Message)545 std::error_code BitcodeReader::error(const Twine &Message) {
546 if (!ProducerIdentification.empty()) {
547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
548 Message + " (Producer: '" + ProducerIdentification +
549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
550 }
551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
552 Message);
553 }
554
error(BitcodeError E)555 std::error_code BitcodeReader::error(BitcodeError E) {
556 return ::error(Context, make_error_code(E));
557 }
558
BitcodeReader(MemoryBuffer * Buffer,LLVMContext & Context)559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
560 : Context(Context), Buffer(Buffer), ValueList(Context),
561 MDValueList(Context) {}
562
BitcodeReader(LLVMContext & Context)563 BitcodeReader::BitcodeReader(LLVMContext &Context)
564 : Context(Context), Buffer(nullptr), ValueList(Context),
565 MDValueList(Context) {}
566
materializeForwardReferencedFunctions()567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
568 if (WillMaterializeAllForwardRefs)
569 return std::error_code();
570
571 // Prevent recursion.
572 WillMaterializeAllForwardRefs = true;
573
574 while (!BasicBlockFwdRefQueue.empty()) {
575 Function *F = BasicBlockFwdRefQueue.front();
576 BasicBlockFwdRefQueue.pop_front();
577 assert(F && "Expected valid function");
578 if (!BasicBlockFwdRefs.count(F))
579 // Already materialized.
580 continue;
581
582 // Check for a function that isn't materializable to prevent an infinite
583 // loop. When parsing a blockaddress stored in a global variable, there
584 // isn't a trivial way to check if a function will have a body without a
585 // linear search through FunctionsWithBodies, so just check it here.
586 if (!F->isMaterializable())
587 return error("Never resolved function from blockaddress");
588
589 // Try to materialize F.
590 if (std::error_code EC = materialize(F))
591 return EC;
592 }
593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
594
595 // Reset state.
596 WillMaterializeAllForwardRefs = false;
597 return std::error_code();
598 }
599
freeState()600 void BitcodeReader::freeState() {
601 Buffer = nullptr;
602 std::vector<Type*>().swap(TypeList);
603 ValueList.clear();
604 MDValueList.clear();
605 std::vector<Comdat *>().swap(ComdatList);
606
607 std::vector<AttributeSet>().swap(MAttributes);
608 std::vector<BasicBlock*>().swap(FunctionBBs);
609 std::vector<Function*>().swap(FunctionsWithBodies);
610 DeferredFunctionInfo.clear();
611 DeferredMetadataInfo.clear();
612 MDKindMap.clear();
613
614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
615 BasicBlockFwdRefQueue.clear();
616 }
617
618 //===----------------------------------------------------------------------===//
619 // Helper functions to implement forward reference resolution, etc.
620 //===----------------------------------------------------------------------===//
621
622 /// Convert a string from a record into an std::string, return true on failure.
623 template <typename StrTy>
convertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
625 StrTy &Result) {
626 if (Idx > Record.size())
627 return true;
628
629 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
630 Result += (char)Record[i];
631 return false;
632 }
633
hasImplicitComdat(size_t Val)634 static bool hasImplicitComdat(size_t Val) {
635 switch (Val) {
636 default:
637 return false;
638 case 1: // Old WeakAnyLinkage
639 case 4: // Old LinkOnceAnyLinkage
640 case 10: // Old WeakODRLinkage
641 case 11: // Old LinkOnceODRLinkage
642 return true;
643 }
644 }
645
getDecodedLinkage(unsigned Val)646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
647 switch (Val) {
648 default: // Map unknown/new linkages to external
649 case 0:
650 return GlobalValue::ExternalLinkage;
651 case 2:
652 return GlobalValue::AppendingLinkage;
653 case 3:
654 return GlobalValue::InternalLinkage;
655 case 5:
656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
657 case 6:
658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
659 case 7:
660 return GlobalValue::ExternalWeakLinkage;
661 case 8:
662 return GlobalValue::CommonLinkage;
663 case 9:
664 return GlobalValue::PrivateLinkage;
665 case 12:
666 return GlobalValue::AvailableExternallyLinkage;
667 case 13:
668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
669 case 14:
670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
671 case 15:
672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
673 case 1: // Old value with implicit comdat.
674 case 16:
675 return GlobalValue::WeakAnyLinkage;
676 case 10: // Old value with implicit comdat.
677 case 17:
678 return GlobalValue::WeakODRLinkage;
679 case 4: // Old value with implicit comdat.
680 case 18:
681 return GlobalValue::LinkOnceAnyLinkage;
682 case 11: // Old value with implicit comdat.
683 case 19:
684 return GlobalValue::LinkOnceODRLinkage;
685 }
686 }
687
getDecodedVisibility(unsigned Val)688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
689 switch (Val) {
690 default: // Map unknown visibilities to default.
691 case 0: return GlobalValue::DefaultVisibility;
692 case 1: return GlobalValue::HiddenVisibility;
693 case 2: return GlobalValue::ProtectedVisibility;
694 }
695 }
696
697 static GlobalValue::DLLStorageClassTypes
getDecodedDLLStorageClass(unsigned Val)698 getDecodedDLLStorageClass(unsigned Val) {
699 switch (Val) {
700 default: // Map unknown values to default.
701 case 0: return GlobalValue::DefaultStorageClass;
702 case 1: return GlobalValue::DLLImportStorageClass;
703 case 2: return GlobalValue::DLLExportStorageClass;
704 }
705 }
706
getDecodedThreadLocalMode(unsigned Val)707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
708 switch (Val) {
709 case 0: return GlobalVariable::NotThreadLocal;
710 default: // Map unknown non-zero value to general dynamic.
711 case 1: return GlobalVariable::GeneralDynamicTLSModel;
712 case 2: return GlobalVariable::LocalDynamicTLSModel;
713 case 3: return GlobalVariable::InitialExecTLSModel;
714 case 4: return GlobalVariable::LocalExecTLSModel;
715 }
716 }
717
getDecodedCastOpcode(unsigned Val)718 static int getDecodedCastOpcode(unsigned Val) {
719 switch (Val) {
720 default: return -1;
721 case bitc::CAST_TRUNC : return Instruction::Trunc;
722 case bitc::CAST_ZEXT : return Instruction::ZExt;
723 case bitc::CAST_SEXT : return Instruction::SExt;
724 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
725 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
726 case bitc::CAST_UITOFP : return Instruction::UIToFP;
727 case bitc::CAST_SITOFP : return Instruction::SIToFP;
728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
729 case bitc::CAST_FPEXT : return Instruction::FPExt;
730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
732 case bitc::CAST_BITCAST : return Instruction::BitCast;
733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
734 }
735 }
736
getDecodedBinaryOpcode(unsigned Val,Type * Ty)737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
738 bool IsFP = Ty->isFPOrFPVectorTy();
739 // BinOps are only valid for int/fp or vector of int/fp types
740 if (!IsFP && !Ty->isIntOrIntVectorTy())
741 return -1;
742
743 switch (Val) {
744 default:
745 return -1;
746 case bitc::BINOP_ADD:
747 return IsFP ? Instruction::FAdd : Instruction::Add;
748 case bitc::BINOP_SUB:
749 return IsFP ? Instruction::FSub : Instruction::Sub;
750 case bitc::BINOP_MUL:
751 return IsFP ? Instruction::FMul : Instruction::Mul;
752 case bitc::BINOP_UDIV:
753 return IsFP ? -1 : Instruction::UDiv;
754 case bitc::BINOP_SDIV:
755 return IsFP ? Instruction::FDiv : Instruction::SDiv;
756 case bitc::BINOP_UREM:
757 return IsFP ? -1 : Instruction::URem;
758 case bitc::BINOP_SREM:
759 return IsFP ? Instruction::FRem : Instruction::SRem;
760 case bitc::BINOP_SHL:
761 return IsFP ? -1 : Instruction::Shl;
762 case bitc::BINOP_LSHR:
763 return IsFP ? -1 : Instruction::LShr;
764 case bitc::BINOP_ASHR:
765 return IsFP ? -1 : Instruction::AShr;
766 case bitc::BINOP_AND:
767 return IsFP ? -1 : Instruction::And;
768 case bitc::BINOP_OR:
769 return IsFP ? -1 : Instruction::Or;
770 case bitc::BINOP_XOR:
771 return IsFP ? -1 : Instruction::Xor;
772 }
773 }
774
getDecodedRMWOperation(unsigned Val)775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
776 switch (Val) {
777 default: return AtomicRMWInst::BAD_BINOP;
778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
779 case bitc::RMW_ADD: return AtomicRMWInst::Add;
780 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
781 case bitc::RMW_AND: return AtomicRMWInst::And;
782 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
783 case bitc::RMW_OR: return AtomicRMWInst::Or;
784 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
785 case bitc::RMW_MAX: return AtomicRMWInst::Max;
786 case bitc::RMW_MIN: return AtomicRMWInst::Min;
787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
789 }
790 }
791
getDecodedOrdering(unsigned Val)792 static AtomicOrdering getDecodedOrdering(unsigned Val) {
793 switch (Val) {
794 case bitc::ORDERING_NOTATOMIC: return NotAtomic;
795 case bitc::ORDERING_UNORDERED: return Unordered;
796 case bitc::ORDERING_MONOTONIC: return Monotonic;
797 case bitc::ORDERING_ACQUIRE: return Acquire;
798 case bitc::ORDERING_RELEASE: return Release;
799 case bitc::ORDERING_ACQREL: return AcquireRelease;
800 default: // Map unknown orderings to sequentially-consistent.
801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
802 }
803 }
804
getDecodedSynchScope(unsigned Val)805 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
806 switch (Val) {
807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
808 default: // Map unknown scopes to cross-thread.
809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
810 }
811 }
812
getDecodedComdatSelectionKind(unsigned Val)813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
814 switch (Val) {
815 default: // Map unknown selection kinds to any.
816 case bitc::COMDAT_SELECTION_KIND_ANY:
817 return Comdat::Any;
818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
819 return Comdat::ExactMatch;
820 case bitc::COMDAT_SELECTION_KIND_LARGEST:
821 return Comdat::Largest;
822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
823 return Comdat::NoDuplicates;
824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
825 return Comdat::SameSize;
826 }
827 }
828
getDecodedFastMathFlags(unsigned Val)829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
830 FastMathFlags FMF;
831 if (0 != (Val & FastMathFlags::UnsafeAlgebra))
832 FMF.setUnsafeAlgebra();
833 if (0 != (Val & FastMathFlags::NoNaNs))
834 FMF.setNoNaNs();
835 if (0 != (Val & FastMathFlags::NoInfs))
836 FMF.setNoInfs();
837 if (0 != (Val & FastMathFlags::NoSignedZeros))
838 FMF.setNoSignedZeros();
839 if (0 != (Val & FastMathFlags::AllowReciprocal))
840 FMF.setAllowReciprocal();
841 return FMF;
842 }
843
upgradeDLLImportExportLinkage(llvm::GlobalValue * GV,unsigned Val)844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
845 switch (Val) {
846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
848 }
849 }
850
851 namespace llvm {
852 namespace {
853 /// \brief A class for maintaining the slot number definition
854 /// as a placeholder for the actual definition for forward constants defs.
855 class ConstantPlaceHolder : public ConstantExpr {
856 void operator=(const ConstantPlaceHolder &) = delete;
857
858 public:
859 // allocate space for exactly one operand
operator new(size_t s)860 void *operator new(size_t s) { return User::operator new(s, 1); }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
864 }
865
866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)867 static bool classof(const Value *V) {
868 return isa<ConstantExpr>(V) &&
869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
870 }
871
872 /// Provide fast operand accessors
873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
874 };
875 }
876
877 // FIXME: can we inherit this from ConstantExpr?
878 template <>
879 struct OperandTraits<ConstantPlaceHolder> :
880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
881 };
882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
883 }
884
assignValue(Value * V,unsigned Idx)885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
886 if (Idx == size()) {
887 push_back(V);
888 return;
889 }
890
891 if (Idx >= size())
892 resize(Idx+1);
893
894 WeakVH &OldV = ValuePtrs[Idx];
895 if (!OldV) {
896 OldV = V;
897 return;
898 }
899
900 // Handle constants and non-constants (e.g. instrs) differently for
901 // efficiency.
902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
903 ResolveConstants.push_back(std::make_pair(PHC, Idx));
904 OldV = V;
905 } else {
906 // If there was a forward reference to this value, replace it.
907 Value *PrevVal = OldV;
908 OldV->replaceAllUsesWith(V);
909 delete PrevVal;
910 }
911
912 return;
913 }
914
915
getConstantFwdRef(unsigned Idx,Type * Ty)916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
917 Type *Ty) {
918 if (Idx >= size())
919 resize(Idx + 1);
920
921 if (Value *V = ValuePtrs[Idx]) {
922 if (Ty != V->getType())
923 report_fatal_error("Type mismatch in constant table!");
924 return cast<Constant>(V);
925 }
926
927 // Create and return a placeholder, which will later be RAUW'd.
928 Constant *C = new ConstantPlaceHolder(Ty, Context);
929 ValuePtrs[Idx] = C;
930 return C;
931 }
932
getValueFwdRef(unsigned Idx,Type * Ty)933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
934 // Bail out for a clearly invalid value. This would make us call resize(0)
935 if (Idx == UINT_MAX)
936 return nullptr;
937
938 if (Idx >= size())
939 resize(Idx + 1);
940
941 if (Value *V = ValuePtrs[Idx]) {
942 // If the types don't match, it's invalid.
943 if (Ty && Ty != V->getType())
944 return nullptr;
945 return V;
946 }
947
948 // No type specified, must be invalid reference.
949 if (!Ty) return nullptr;
950
951 // Create and return a placeholder, which will later be RAUW'd.
952 Value *V = new Argument(Ty);
953 ValuePtrs[Idx] = V;
954 return V;
955 }
956
957 /// Once all constants are read, this method bulk resolves any forward
958 /// references. The idea behind this is that we sometimes get constants (such
959 /// as large arrays) which reference *many* forward ref constants. Replacing
960 /// each of these causes a lot of thrashing when building/reuniquing the
961 /// constant. Instead of doing this, we look at all the uses and rewrite all
962 /// the place holders at once for any constant that uses a placeholder.
resolveConstantForwardRefs()963 void BitcodeReaderValueList::resolveConstantForwardRefs() {
964 // Sort the values by-pointer so that they are efficient to look up with a
965 // binary search.
966 std::sort(ResolveConstants.begin(), ResolveConstants.end());
967
968 SmallVector<Constant*, 64> NewOps;
969
970 while (!ResolveConstants.empty()) {
971 Value *RealVal = operator[](ResolveConstants.back().second);
972 Constant *Placeholder = ResolveConstants.back().first;
973 ResolveConstants.pop_back();
974
975 // Loop over all users of the placeholder, updating them to reference the
976 // new value. If they reference more than one placeholder, update them all
977 // at once.
978 while (!Placeholder->use_empty()) {
979 auto UI = Placeholder->user_begin();
980 User *U = *UI;
981
982 // If the using object isn't uniqued, just update the operands. This
983 // handles instructions and initializers for global variables.
984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
985 UI.getUse().set(RealVal);
986 continue;
987 }
988
989 // Otherwise, we have a constant that uses the placeholder. Replace that
990 // constant with a new constant that has *all* placeholder uses updated.
991 Constant *UserC = cast<Constant>(U);
992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
993 I != E; ++I) {
994 Value *NewOp;
995 if (!isa<ConstantPlaceHolder>(*I)) {
996 // Not a placeholder reference.
997 NewOp = *I;
998 } else if (*I == Placeholder) {
999 // Common case is that it just references this one placeholder.
1000 NewOp = RealVal;
1001 } else {
1002 // Otherwise, look up the placeholder in ResolveConstants.
1003 ResolveConstantsTy::iterator It =
1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1005 std::pair<Constant*, unsigned>(cast<Constant>(*I),
1006 0));
1007 assert(It != ResolveConstants.end() && It->first == *I);
1008 NewOp = operator[](It->second);
1009 }
1010
1011 NewOps.push_back(cast<Constant>(NewOp));
1012 }
1013
1014 // Make the new constant.
1015 Constant *NewC;
1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1017 NewC = ConstantArray::get(UserCA->getType(), NewOps);
1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1020 } else if (isa<ConstantVector>(UserC)) {
1021 NewC = ConstantVector::get(NewOps);
1022 } else {
1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1025 }
1026
1027 UserC->replaceAllUsesWith(NewC);
1028 UserC->destroyConstant();
1029 NewOps.clear();
1030 }
1031
1032 // Update all ValueHandles, they should be the only users at this point.
1033 Placeholder->replaceAllUsesWith(RealVal);
1034 delete Placeholder;
1035 }
1036 }
1037
assignValue(Metadata * MD,unsigned Idx)1038 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) {
1039 if (Idx == size()) {
1040 push_back(MD);
1041 return;
1042 }
1043
1044 if (Idx >= size())
1045 resize(Idx+1);
1046
1047 TrackingMDRef &OldMD = MDValuePtrs[Idx];
1048 if (!OldMD) {
1049 OldMD.reset(MD);
1050 return;
1051 }
1052
1053 // If there was a forward reference to this value, replace it.
1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1055 PrevMD->replaceAllUsesWith(MD);
1056 --NumFwdRefs;
1057 }
1058
getValueFwdRef(unsigned Idx)1059 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1060 if (Idx >= size())
1061 resize(Idx + 1);
1062
1063 if (Metadata *MD = MDValuePtrs[Idx])
1064 return MD;
1065
1066 // Track forward refs to be resolved later.
1067 if (AnyFwdRefs) {
1068 MinFwdRef = std::min(MinFwdRef, Idx);
1069 MaxFwdRef = std::max(MaxFwdRef, Idx);
1070 } else {
1071 AnyFwdRefs = true;
1072 MinFwdRef = MaxFwdRef = Idx;
1073 }
1074 ++NumFwdRefs;
1075
1076 // Create and return a placeholder, which will later be RAUW'd.
1077 Metadata *MD = MDNode::getTemporary(Context, None).release();
1078 MDValuePtrs[Idx].reset(MD);
1079 return MD;
1080 }
1081
tryToResolveCycles()1082 void BitcodeReaderMDValueList::tryToResolveCycles() {
1083 if (!AnyFwdRefs)
1084 // Nothing to do.
1085 return;
1086
1087 if (NumFwdRefs)
1088 // Still forward references... can't resolve cycles.
1089 return;
1090
1091 // Resolve any cycles.
1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1093 auto &MD = MDValuePtrs[I];
1094 auto *N = dyn_cast_or_null<MDNode>(MD);
1095 if (!N)
1096 continue;
1097
1098 assert(!N->isTemporary() && "Unexpected forward reference");
1099 N->resolveCycles();
1100 }
1101
1102 // Make sure we return early again until there's another forward ref.
1103 AnyFwdRefs = false;
1104 }
1105
getTypeByID(unsigned ID)1106 Type *BitcodeReader::getTypeByID(unsigned ID) {
1107 // The type table size is always specified correctly.
1108 if (ID >= TypeList.size())
1109 return nullptr;
1110
1111 if (Type *Ty = TypeList[ID])
1112 return Ty;
1113
1114 // If we have a forward reference, the only possible case is when it is to a
1115 // named struct. Just create a placeholder for now.
1116 return TypeList[ID] = createIdentifiedStructType(Context);
1117 }
1118
createIdentifiedStructType(LLVMContext & Context,StringRef Name)1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1120 StringRef Name) {
1121 auto *Ret = StructType::create(Context, Name);
1122 IdentifiedStructTypes.push_back(Ret);
1123 return Ret;
1124 }
1125
createIdentifiedStructType(LLVMContext & Context)1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1127 auto *Ret = StructType::create(Context);
1128 IdentifiedStructTypes.push_back(Ret);
1129 return Ret;
1130 }
1131
1132
1133 //===----------------------------------------------------------------------===//
1134 // Functions for parsing blocks from the bitcode file
1135 //===----------------------------------------------------------------------===//
1136
1137
1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1139 /// been decoded from the given integer. This function must stay in sync with
1140 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1142 uint64_t EncodedAttrs) {
1143 // FIXME: Remove in 4.0.
1144
1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1146 // the bits above 31 down by 11 bits.
1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1148 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1149 "Alignment must be a power of two.");
1150
1151 if (Alignment)
1152 B.addAlignmentAttr(Alignment);
1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1154 (EncodedAttrs & 0xffff));
1155 }
1156
parseAttributeBlock()1157 std::error_code BitcodeReader::parseAttributeBlock() {
1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1159 return error("Invalid record");
1160
1161 if (!MAttributes.empty())
1162 return error("Invalid multiple blocks");
1163
1164 SmallVector<uint64_t, 64> Record;
1165
1166 SmallVector<AttributeSet, 8> Attrs;
1167
1168 // Read all the records.
1169 while (1) {
1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1171
1172 switch (Entry.Kind) {
1173 case BitstreamEntry::SubBlock: // Handled for us already.
1174 case BitstreamEntry::Error:
1175 return error("Malformed block");
1176 case BitstreamEntry::EndBlock:
1177 return std::error_code();
1178 case BitstreamEntry::Record:
1179 // The interesting case.
1180 break;
1181 }
1182
1183 // Read a record.
1184 Record.clear();
1185 switch (Stream.readRecord(Entry.ID, Record)) {
1186 default: // Default behavior: ignore.
1187 break;
1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1189 // FIXME: Remove in 4.0.
1190 if (Record.size() & 1)
1191 return error("Invalid record");
1192
1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1194 AttrBuilder B;
1195 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1197 }
1198
1199 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1200 Attrs.clear();
1201 break;
1202 }
1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1204 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1205 Attrs.push_back(MAttributeGroups[Record[i]]);
1206
1207 MAttributes.push_back(AttributeSet::get(Context, Attrs));
1208 Attrs.clear();
1209 break;
1210 }
1211 }
1212 }
1213 }
1214
1215 // Returns Attribute::None on unrecognized codes.
getAttrFromCode(uint64_t Code)1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1217 switch (Code) {
1218 default:
1219 return Attribute::None;
1220 case bitc::ATTR_KIND_ALIGNMENT:
1221 return Attribute::Alignment;
1222 case bitc::ATTR_KIND_ALWAYS_INLINE:
1223 return Attribute::AlwaysInline;
1224 case bitc::ATTR_KIND_ARGMEMONLY:
1225 return Attribute::ArgMemOnly;
1226 case bitc::ATTR_KIND_BUILTIN:
1227 return Attribute::Builtin;
1228 case bitc::ATTR_KIND_BY_VAL:
1229 return Attribute::ByVal;
1230 case bitc::ATTR_KIND_IN_ALLOCA:
1231 return Attribute::InAlloca;
1232 case bitc::ATTR_KIND_COLD:
1233 return Attribute::Cold;
1234 case bitc::ATTR_KIND_CONVERGENT:
1235 return Attribute::Convergent;
1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1237 return Attribute::InaccessibleMemOnly;
1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1239 return Attribute::InaccessibleMemOrArgMemOnly;
1240 case bitc::ATTR_KIND_INLINE_HINT:
1241 return Attribute::InlineHint;
1242 case bitc::ATTR_KIND_IN_REG:
1243 return Attribute::InReg;
1244 case bitc::ATTR_KIND_JUMP_TABLE:
1245 return Attribute::JumpTable;
1246 case bitc::ATTR_KIND_MIN_SIZE:
1247 return Attribute::MinSize;
1248 case bitc::ATTR_KIND_NAKED:
1249 return Attribute::Naked;
1250 case bitc::ATTR_KIND_NEST:
1251 return Attribute::Nest;
1252 case bitc::ATTR_KIND_NO_ALIAS:
1253 return Attribute::NoAlias;
1254 case bitc::ATTR_KIND_NO_BUILTIN:
1255 return Attribute::NoBuiltin;
1256 case bitc::ATTR_KIND_NO_CAPTURE:
1257 return Attribute::NoCapture;
1258 case bitc::ATTR_KIND_NO_DUPLICATE:
1259 return Attribute::NoDuplicate;
1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1261 return Attribute::NoImplicitFloat;
1262 case bitc::ATTR_KIND_NO_INLINE:
1263 return Attribute::NoInline;
1264 case bitc::ATTR_KIND_NO_RECURSE:
1265 return Attribute::NoRecurse;
1266 case bitc::ATTR_KIND_NON_LAZY_BIND:
1267 return Attribute::NonLazyBind;
1268 case bitc::ATTR_KIND_NON_NULL:
1269 return Attribute::NonNull;
1270 case bitc::ATTR_KIND_DEREFERENCEABLE:
1271 return Attribute::Dereferenceable;
1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1273 return Attribute::DereferenceableOrNull;
1274 case bitc::ATTR_KIND_NO_RED_ZONE:
1275 return Attribute::NoRedZone;
1276 case bitc::ATTR_KIND_NO_RETURN:
1277 return Attribute::NoReturn;
1278 case bitc::ATTR_KIND_NO_UNWIND:
1279 return Attribute::NoUnwind;
1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1281 return Attribute::OptimizeForSize;
1282 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1283 return Attribute::OptimizeNone;
1284 case bitc::ATTR_KIND_READ_NONE:
1285 return Attribute::ReadNone;
1286 case bitc::ATTR_KIND_READ_ONLY:
1287 return Attribute::ReadOnly;
1288 case bitc::ATTR_KIND_RETURNED:
1289 return Attribute::Returned;
1290 case bitc::ATTR_KIND_RETURNS_TWICE:
1291 return Attribute::ReturnsTwice;
1292 case bitc::ATTR_KIND_S_EXT:
1293 return Attribute::SExt;
1294 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1295 return Attribute::StackAlignment;
1296 case bitc::ATTR_KIND_STACK_PROTECT:
1297 return Attribute::StackProtect;
1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1299 return Attribute::StackProtectReq;
1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1301 return Attribute::StackProtectStrong;
1302 case bitc::ATTR_KIND_SAFESTACK:
1303 return Attribute::SafeStack;
1304 case bitc::ATTR_KIND_STRUCT_RET:
1305 return Attribute::StructRet;
1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1307 return Attribute::SanitizeAddress;
1308 case bitc::ATTR_KIND_SANITIZE_THREAD:
1309 return Attribute::SanitizeThread;
1310 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1311 return Attribute::SanitizeMemory;
1312 case bitc::ATTR_KIND_UW_TABLE:
1313 return Attribute::UWTable;
1314 case bitc::ATTR_KIND_Z_EXT:
1315 return Attribute::ZExt;
1316 }
1317 }
1318
parseAlignmentValue(uint64_t Exponent,unsigned & Alignment)1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1320 unsigned &Alignment) {
1321 // Note: Alignment in bitcode files is incremented by 1, so that zero
1322 // can be used for default alignment.
1323 if (Exponent > Value::MaxAlignmentExponent + 1)
1324 return error("Invalid alignment value");
1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1326 return std::error_code();
1327 }
1328
parseAttrKind(uint64_t Code,Attribute::AttrKind * Kind)1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1330 Attribute::AttrKind *Kind) {
1331 *Kind = getAttrFromCode(Code);
1332 if (*Kind == Attribute::None)
1333 return error(BitcodeError::CorruptedBitcode,
1334 "Unknown attribute kind (" + Twine(Code) + ")");
1335 return std::error_code();
1336 }
1337
parseAttributeGroupBlock()1338 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1340 return error("Invalid record");
1341
1342 if (!MAttributeGroups.empty())
1343 return error("Invalid multiple blocks");
1344
1345 SmallVector<uint64_t, 64> Record;
1346
1347 // Read all the records.
1348 while (1) {
1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1350
1351 switch (Entry.Kind) {
1352 case BitstreamEntry::SubBlock: // Handled for us already.
1353 case BitstreamEntry::Error:
1354 return error("Malformed block");
1355 case BitstreamEntry::EndBlock:
1356 return std::error_code();
1357 case BitstreamEntry::Record:
1358 // The interesting case.
1359 break;
1360 }
1361
1362 // Read a record.
1363 Record.clear();
1364 switch (Stream.readRecord(Entry.ID, Record)) {
1365 default: // Default behavior: ignore.
1366 break;
1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1368 if (Record.size() < 3)
1369 return error("Invalid record");
1370
1371 uint64_t GrpID = Record[0];
1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1373
1374 AttrBuilder B;
1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1376 if (Record[i] == 0) { // Enum attribute
1377 Attribute::AttrKind Kind;
1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1379 return EC;
1380
1381 B.addAttribute(Kind);
1382 } else if (Record[i] == 1) { // Integer attribute
1383 Attribute::AttrKind Kind;
1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1385 return EC;
1386 if (Kind == Attribute::Alignment)
1387 B.addAlignmentAttr(Record[++i]);
1388 else if (Kind == Attribute::StackAlignment)
1389 B.addStackAlignmentAttr(Record[++i]);
1390 else if (Kind == Attribute::Dereferenceable)
1391 B.addDereferenceableAttr(Record[++i]);
1392 else if (Kind == Attribute::DereferenceableOrNull)
1393 B.addDereferenceableOrNullAttr(Record[++i]);
1394 } else { // String attribute
1395 assert((Record[i] == 3 || Record[i] == 4) &&
1396 "Invalid attribute group entry");
1397 bool HasValue = (Record[i++] == 4);
1398 SmallString<64> KindStr;
1399 SmallString<64> ValStr;
1400
1401 while (Record[i] != 0 && i != e)
1402 KindStr += Record[i++];
1403 assert(Record[i] == 0 && "Kind string not null terminated");
1404
1405 if (HasValue) {
1406 // Has a value associated with it.
1407 ++i; // Skip the '0' that terminates the "kind" string.
1408 while (Record[i] != 0 && i != e)
1409 ValStr += Record[i++];
1410 assert(Record[i] == 0 && "Value string not null terminated");
1411 }
1412
1413 B.addAttribute(KindStr.str(), ValStr.str());
1414 }
1415 }
1416
1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1418 break;
1419 }
1420 }
1421 }
1422 }
1423
parseTypeTable()1424 std::error_code BitcodeReader::parseTypeTable() {
1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1426 return error("Invalid record");
1427
1428 return parseTypeTableBody();
1429 }
1430
parseTypeTableBody()1431 std::error_code BitcodeReader::parseTypeTableBody() {
1432 if (!TypeList.empty())
1433 return error("Invalid multiple blocks");
1434
1435 SmallVector<uint64_t, 64> Record;
1436 unsigned NumRecords = 0;
1437
1438 SmallString<64> TypeName;
1439
1440 // Read all the records for this type table.
1441 while (1) {
1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1443
1444 switch (Entry.Kind) {
1445 case BitstreamEntry::SubBlock: // Handled for us already.
1446 case BitstreamEntry::Error:
1447 return error("Malformed block");
1448 case BitstreamEntry::EndBlock:
1449 if (NumRecords != TypeList.size())
1450 return error("Malformed block");
1451 return std::error_code();
1452 case BitstreamEntry::Record:
1453 // The interesting case.
1454 break;
1455 }
1456
1457 // Read a record.
1458 Record.clear();
1459 Type *ResultTy = nullptr;
1460 switch (Stream.readRecord(Entry.ID, Record)) {
1461 default:
1462 return error("Invalid value");
1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1465 // type list. This allows us to reserve space.
1466 if (Record.size() < 1)
1467 return error("Invalid record");
1468 TypeList.resize(Record[0]);
1469 continue;
1470 case bitc::TYPE_CODE_VOID: // VOID
1471 ResultTy = Type::getVoidTy(Context);
1472 break;
1473 case bitc::TYPE_CODE_HALF: // HALF
1474 ResultTy = Type::getHalfTy(Context);
1475 break;
1476 case bitc::TYPE_CODE_FLOAT: // FLOAT
1477 ResultTy = Type::getFloatTy(Context);
1478 break;
1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1480 ResultTy = Type::getDoubleTy(Context);
1481 break;
1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1483 ResultTy = Type::getX86_FP80Ty(Context);
1484 break;
1485 case bitc::TYPE_CODE_FP128: // FP128
1486 ResultTy = Type::getFP128Ty(Context);
1487 break;
1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1489 ResultTy = Type::getPPC_FP128Ty(Context);
1490 break;
1491 case bitc::TYPE_CODE_LABEL: // LABEL
1492 ResultTy = Type::getLabelTy(Context);
1493 break;
1494 case bitc::TYPE_CODE_METADATA: // METADATA
1495 ResultTy = Type::getMetadataTy(Context);
1496 break;
1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1498 ResultTy = Type::getX86_MMXTy(Context);
1499 break;
1500 case bitc::TYPE_CODE_TOKEN: // TOKEN
1501 ResultTy = Type::getTokenTy(Context);
1502 break;
1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1504 if (Record.size() < 1)
1505 return error("Invalid record");
1506
1507 uint64_t NumBits = Record[0];
1508 if (NumBits < IntegerType::MIN_INT_BITS ||
1509 NumBits > IntegerType::MAX_INT_BITS)
1510 return error("Bitwidth for integer type out of range");
1511 ResultTy = IntegerType::get(Context, NumBits);
1512 break;
1513 }
1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1515 // [pointee type, address space]
1516 if (Record.size() < 1)
1517 return error("Invalid record");
1518 unsigned AddressSpace = 0;
1519 if (Record.size() == 2)
1520 AddressSpace = Record[1];
1521 ResultTy = getTypeByID(Record[0]);
1522 if (!ResultTy ||
1523 !PointerType::isValidElementType(ResultTy))
1524 return error("Invalid type");
1525 ResultTy = PointerType::get(ResultTy, AddressSpace);
1526 break;
1527 }
1528 case bitc::TYPE_CODE_FUNCTION_OLD: {
1529 // FIXME: attrid is dead, remove it in LLVM 4.0
1530 // FUNCTION: [vararg, attrid, retty, paramty x N]
1531 if (Record.size() < 3)
1532 return error("Invalid record");
1533 SmallVector<Type*, 8> ArgTys;
1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1535 if (Type *T = getTypeByID(Record[i]))
1536 ArgTys.push_back(T);
1537 else
1538 break;
1539 }
1540
1541 ResultTy = getTypeByID(Record[2]);
1542 if (!ResultTy || ArgTys.size() < Record.size()-3)
1543 return error("Invalid type");
1544
1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1546 break;
1547 }
1548 case bitc::TYPE_CODE_FUNCTION: {
1549 // FUNCTION: [vararg, retty, paramty x N]
1550 if (Record.size() < 2)
1551 return error("Invalid record");
1552 SmallVector<Type*, 8> ArgTys;
1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1554 if (Type *T = getTypeByID(Record[i])) {
1555 if (!FunctionType::isValidArgumentType(T))
1556 return error("Invalid function argument type");
1557 ArgTys.push_back(T);
1558 }
1559 else
1560 break;
1561 }
1562
1563 ResultTy = getTypeByID(Record[1]);
1564 if (!ResultTy || ArgTys.size() < Record.size()-2)
1565 return error("Invalid type");
1566
1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1568 break;
1569 }
1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1571 if (Record.size() < 1)
1572 return error("Invalid record");
1573 SmallVector<Type*, 8> EltTys;
1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1575 if (Type *T = getTypeByID(Record[i]))
1576 EltTys.push_back(T);
1577 else
1578 break;
1579 }
1580 if (EltTys.size() != Record.size()-1)
1581 return error("Invalid type");
1582 ResultTy = StructType::get(Context, EltTys, Record[0]);
1583 break;
1584 }
1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1586 if (convertToString(Record, 0, TypeName))
1587 return error("Invalid record");
1588 continue;
1589
1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1591 if (Record.size() < 1)
1592 return error("Invalid record");
1593
1594 if (NumRecords >= TypeList.size())
1595 return error("Invalid TYPE table");
1596
1597 // Check to see if this was forward referenced, if so fill in the temp.
1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1599 if (Res) {
1600 Res->setName(TypeName);
1601 TypeList[NumRecords] = nullptr;
1602 } else // Otherwise, create a new struct.
1603 Res = createIdentifiedStructType(Context, TypeName);
1604 TypeName.clear();
1605
1606 SmallVector<Type*, 8> EltTys;
1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1608 if (Type *T = getTypeByID(Record[i]))
1609 EltTys.push_back(T);
1610 else
1611 break;
1612 }
1613 if (EltTys.size() != Record.size()-1)
1614 return error("Invalid record");
1615 Res->setBody(EltTys, Record[0]);
1616 ResultTy = Res;
1617 break;
1618 }
1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1620 if (Record.size() != 1)
1621 return error("Invalid record");
1622
1623 if (NumRecords >= TypeList.size())
1624 return error("Invalid TYPE table");
1625
1626 // Check to see if this was forward referenced, if so fill in the temp.
1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1628 if (Res) {
1629 Res->setName(TypeName);
1630 TypeList[NumRecords] = nullptr;
1631 } else // Otherwise, create a new struct with no body.
1632 Res = createIdentifiedStructType(Context, TypeName);
1633 TypeName.clear();
1634 ResultTy = Res;
1635 break;
1636 }
1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1638 if (Record.size() < 2)
1639 return error("Invalid record");
1640 ResultTy = getTypeByID(Record[1]);
1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1642 return error("Invalid type");
1643 ResultTy = ArrayType::get(ResultTy, Record[0]);
1644 break;
1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1646 if (Record.size() < 2)
1647 return error("Invalid record");
1648 if (Record[0] == 0)
1649 return error("Invalid vector length");
1650 ResultTy = getTypeByID(Record[1]);
1651 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1652 return error("Invalid type");
1653 ResultTy = VectorType::get(ResultTy, Record[0]);
1654 break;
1655 }
1656
1657 if (NumRecords >= TypeList.size())
1658 return error("Invalid TYPE table");
1659 if (TypeList[NumRecords])
1660 return error(
1661 "Invalid TYPE table: Only named structs can be forward referenced");
1662 assert(ResultTy && "Didn't read a type?");
1663 TypeList[NumRecords++] = ResultTy;
1664 }
1665 }
1666
parseOperandBundleTags()1667 std::error_code BitcodeReader::parseOperandBundleTags() {
1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1669 return error("Invalid record");
1670
1671 if (!BundleTags.empty())
1672 return error("Invalid multiple blocks");
1673
1674 SmallVector<uint64_t, 64> Record;
1675
1676 while (1) {
1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1678
1679 switch (Entry.Kind) {
1680 case BitstreamEntry::SubBlock: // Handled for us already.
1681 case BitstreamEntry::Error:
1682 return error("Malformed block");
1683 case BitstreamEntry::EndBlock:
1684 return std::error_code();
1685 case BitstreamEntry::Record:
1686 // The interesting case.
1687 break;
1688 }
1689
1690 // Tags are implicitly mapped to integers by their order.
1691
1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1693 return error("Invalid record");
1694
1695 // OPERAND_BUNDLE_TAG: [strchr x N]
1696 BundleTags.emplace_back();
1697 if (convertToString(Record, 0, BundleTags.back()))
1698 return error("Invalid record");
1699 Record.clear();
1700 }
1701 }
1702
1703 /// Associate a value with its name from the given index in the provided record.
recordValue(SmallVectorImpl<uint64_t> & Record,unsigned NameIndex,Triple & TT)1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1705 unsigned NameIndex, Triple &TT) {
1706 SmallString<128> ValueName;
1707 if (convertToString(Record, NameIndex, ValueName))
1708 return error("Invalid record");
1709 unsigned ValueID = Record[0];
1710 if (ValueID >= ValueList.size() || !ValueList[ValueID])
1711 return error("Invalid record");
1712 Value *V = ValueList[ValueID];
1713
1714 StringRef NameStr(ValueName.data(), ValueName.size());
1715 if (NameStr.find_first_of(0) != StringRef::npos)
1716 return error("Invalid value name");
1717 V->setName(NameStr);
1718 auto *GO = dyn_cast<GlobalObject>(V);
1719 if (GO) {
1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1721 if (TT.isOSBinFormatMachO())
1722 GO->setComdat(nullptr);
1723 else
1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1725 }
1726 }
1727 return V;
1728 }
1729
1730 /// Parse the value symbol table at either the current parsing location or
1731 /// at the given bit offset if provided.
parseValueSymbolTable(uint64_t Offset)1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1733 uint64_t CurrentBit;
1734 // Pass in the Offset to distinguish between calling for the module-level
1735 // VST (where we want to jump to the VST offset) and the function-level
1736 // VST (where we don't).
1737 if (Offset > 0) {
1738 // Save the current parsing location so we can jump back at the end
1739 // of the VST read.
1740 CurrentBit = Stream.GetCurrentBitNo();
1741 Stream.JumpToBit(Offset * 32);
1742 #ifndef NDEBUG
1743 // Do some checking if we are in debug mode.
1744 BitstreamEntry Entry = Stream.advance();
1745 assert(Entry.Kind == BitstreamEntry::SubBlock);
1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1747 #else
1748 // In NDEBUG mode ignore the output so we don't get an unused variable
1749 // warning.
1750 Stream.advance();
1751 #endif
1752 }
1753
1754 // Compute the delta between the bitcode indices in the VST (the word offset
1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have
1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1759 // just before entering the VST subblock because: 1) the EnterSubBlock
1760 // changes the AbbrevID width; 2) the VST block is nested within the same
1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want
1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1765 unsigned FuncBitcodeOffsetDelta =
1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1767
1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1769 return error("Invalid record");
1770
1771 SmallVector<uint64_t, 64> Record;
1772
1773 Triple TT(TheModule->getTargetTriple());
1774
1775 // Read all the records for this value table.
1776 SmallString<128> ValueName;
1777 while (1) {
1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1779
1780 switch (Entry.Kind) {
1781 case BitstreamEntry::SubBlock: // Handled for us already.
1782 case BitstreamEntry::Error:
1783 return error("Malformed block");
1784 case BitstreamEntry::EndBlock:
1785 if (Offset > 0)
1786 Stream.JumpToBit(CurrentBit);
1787 return std::error_code();
1788 case BitstreamEntry::Record:
1789 // The interesting case.
1790 break;
1791 }
1792
1793 // Read a record.
1794 Record.clear();
1795 switch (Stream.readRecord(Entry.ID, Record)) {
1796 default: // Default behavior: unknown type.
1797 break;
1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1800 if (std::error_code EC = ValOrErr.getError())
1801 return EC;
1802 ValOrErr.get();
1803 break;
1804 }
1805 case bitc::VST_CODE_FNENTRY: {
1806 // VST_FNENTRY: [valueid, offset, namechar x N]
1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1808 if (std::error_code EC = ValOrErr.getError())
1809 return EC;
1810 Value *V = ValOrErr.get();
1811
1812 auto *GO = dyn_cast<GlobalObject>(V);
1813 if (!GO) {
1814 // If this is an alias, need to get the actual Function object
1815 // it aliases, in order to set up the DeferredFunctionInfo entry below.
1816 auto *GA = dyn_cast<GlobalAlias>(V);
1817 if (GA)
1818 GO = GA->getBaseObject();
1819 assert(GO);
1820 }
1821
1822 uint64_t FuncWordOffset = Record[1];
1823 Function *F = dyn_cast<Function>(GO);
1824 assert(F);
1825 uint64_t FuncBitOffset = FuncWordOffset * 32;
1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1827 // Set the LastFunctionBlockBit to point to the last function block.
1828 // Later when parsing is resumed after function materialization,
1829 // we can simply skip that last function block.
1830 if (FuncBitOffset > LastFunctionBlockBit)
1831 LastFunctionBlockBit = FuncBitOffset;
1832 break;
1833 }
1834 case bitc::VST_CODE_BBENTRY: {
1835 if (convertToString(Record, 1, ValueName))
1836 return error("Invalid record");
1837 BasicBlock *BB = getBasicBlock(Record[0]);
1838 if (!BB)
1839 return error("Invalid record");
1840
1841 BB->setName(StringRef(ValueName.data(), ValueName.size()));
1842 ValueName.clear();
1843 break;
1844 }
1845 }
1846 }
1847 }
1848
1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1850 std::error_code
parseMetadataKindRecord(SmallVectorImpl<uint64_t> & Record)1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1852 if (Record.size() < 2)
1853 return error("Invalid record");
1854
1855 unsigned Kind = Record[0];
1856 SmallString<8> Name(Record.begin() + 1, Record.end());
1857
1858 unsigned NewKind = TheModule->getMDKindID(Name.str());
1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1860 return error("Conflicting METADATA_KIND records");
1861 return std::error_code();
1862 }
1863
unrotateSign(uint64_t U)1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1865
1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1867 /// module level metadata.
parseMetadata(bool ModuleLevel)1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1869 IsMetadataMaterialized = true;
1870 unsigned NextMDValueNo = MDValueList.size();
1871 if (ModuleLevel && SeenModuleValuesRecord) {
1872 // Now that we are parsing the module level metadata, we want to restart
1873 // the numbering of the MD values, and replace temp MD created earlier
1874 // with their real values. If we saw a METADATA_VALUE record then we
1875 // would have set the MDValueList size to the number specified in that
1876 // record, to support parsing function-level metadata first, and we need
1877 // to reset back to 0 to fill the MDValueList in with the parsed module
1878 // The function-level metadata parsing should have reset the MDValueList
1879 // size back to the value reported by the METADATA_VALUE record, saved in
1880 // NumModuleMDs.
1881 assert(NumModuleMDs == MDValueList.size() &&
1882 "Expected MDValueList to only contain module level values");
1883 NextMDValueNo = 0;
1884 }
1885
1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1887 return error("Invalid record");
1888
1889 SmallVector<uint64_t, 64> Record;
1890
1891 auto getMD =
1892 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
1893 auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1894 if (ID)
1895 return getMD(ID - 1);
1896 return nullptr;
1897 };
1898 auto getMDString = [&](unsigned ID) -> MDString *{
1899 // This requires that the ID is not really a forward reference. In
1900 // particular, the MDString must already have been resolved.
1901 return cast_or_null<MDString>(getMDOrNull(ID));
1902 };
1903
1904 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \
1905 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1906
1907 // Read all the records.
1908 while (1) {
1909 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1910
1911 switch (Entry.Kind) {
1912 case BitstreamEntry::SubBlock: // Handled for us already.
1913 case BitstreamEntry::Error:
1914 return error("Malformed block");
1915 case BitstreamEntry::EndBlock:
1916 MDValueList.tryToResolveCycles();
1917 assert((!(ModuleLevel && SeenModuleValuesRecord) ||
1918 NumModuleMDs == MDValueList.size()) &&
1919 "Inconsistent bitcode: METADATA_VALUES mismatch");
1920 return std::error_code();
1921 case BitstreamEntry::Record:
1922 // The interesting case.
1923 break;
1924 }
1925
1926 // Read a record.
1927 Record.clear();
1928 unsigned Code = Stream.readRecord(Entry.ID, Record);
1929 bool IsDistinct = false;
1930 switch (Code) {
1931 default: // Default behavior: ignore.
1932 break;
1933 case bitc::METADATA_NAME: {
1934 // Read name of the named metadata.
1935 SmallString<8> Name(Record.begin(), Record.end());
1936 Record.clear();
1937 Code = Stream.ReadCode();
1938
1939 unsigned NextBitCode = Stream.readRecord(Code, Record);
1940 if (NextBitCode != bitc::METADATA_NAMED_NODE)
1941 return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1942
1943 // Read named metadata elements.
1944 unsigned Size = Record.size();
1945 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1946 for (unsigned i = 0; i != Size; ++i) {
1947 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1948 if (!MD)
1949 return error("Invalid record");
1950 NMD->addOperand(MD);
1951 }
1952 break;
1953 }
1954 case bitc::METADATA_OLD_FN_NODE: {
1955 // FIXME: Remove in 4.0.
1956 // This is a LocalAsMetadata record, the only type of function-local
1957 // metadata.
1958 if (Record.size() % 2 == 1)
1959 return error("Invalid record");
1960
1961 // If this isn't a LocalAsMetadata record, we're dropping it. This used
1962 // to be legal, but there's no upgrade path.
1963 auto dropRecord = [&] {
1964 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++);
1965 };
1966 if (Record.size() != 2) {
1967 dropRecord();
1968 break;
1969 }
1970
1971 Type *Ty = getTypeByID(Record[0]);
1972 if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1973 dropRecord();
1974 break;
1975 }
1976
1977 MDValueList.assignValue(
1978 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1979 NextMDValueNo++);
1980 break;
1981 }
1982 case bitc::METADATA_OLD_NODE: {
1983 // FIXME: Remove in 4.0.
1984 if (Record.size() % 2 == 1)
1985 return error("Invalid record");
1986
1987 unsigned Size = Record.size();
1988 SmallVector<Metadata *, 8> Elts;
1989 for (unsigned i = 0; i != Size; i += 2) {
1990 Type *Ty = getTypeByID(Record[i]);
1991 if (!Ty)
1992 return error("Invalid record");
1993 if (Ty->isMetadataTy())
1994 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1995 else if (!Ty->isVoidTy()) {
1996 auto *MD =
1997 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1998 assert(isa<ConstantAsMetadata>(MD) &&
1999 "Expected non-function-local metadata");
2000 Elts.push_back(MD);
2001 } else
2002 Elts.push_back(nullptr);
2003 }
2004 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++);
2005 break;
2006 }
2007 case bitc::METADATA_VALUE: {
2008 if (Record.size() != 2)
2009 return error("Invalid record");
2010
2011 Type *Ty = getTypeByID(Record[0]);
2012 if (Ty->isMetadataTy() || Ty->isVoidTy())
2013 return error("Invalid record");
2014
2015 MDValueList.assignValue(
2016 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2017 NextMDValueNo++);
2018 break;
2019 }
2020 case bitc::METADATA_DISTINCT_NODE:
2021 IsDistinct = true;
2022 // fallthrough...
2023 case bitc::METADATA_NODE: {
2024 SmallVector<Metadata *, 8> Elts;
2025 Elts.reserve(Record.size());
2026 for (unsigned ID : Record)
2027 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
2028 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2029 : MDNode::get(Context, Elts),
2030 NextMDValueNo++);
2031 break;
2032 }
2033 case bitc::METADATA_LOCATION: {
2034 if (Record.size() != 5)
2035 return error("Invalid record");
2036
2037 unsigned Line = Record[1];
2038 unsigned Column = Record[2];
2039 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
2040 Metadata *InlinedAt =
2041 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
2042 MDValueList.assignValue(
2043 GET_OR_DISTINCT(DILocation, Record[0],
2044 (Context, Line, Column, Scope, InlinedAt)),
2045 NextMDValueNo++);
2046 break;
2047 }
2048 case bitc::METADATA_GENERIC_DEBUG: {
2049 if (Record.size() < 4)
2050 return error("Invalid record");
2051
2052 unsigned Tag = Record[1];
2053 unsigned Version = Record[2];
2054
2055 if (Tag >= 1u << 16 || Version != 0)
2056 return error("Invalid record");
2057
2058 auto *Header = getMDString(Record[3]);
2059 SmallVector<Metadata *, 8> DwarfOps;
2060 for (unsigned I = 4, E = Record.size(); I != E; ++I)
2061 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
2062 : nullptr);
2063 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0],
2064 (Context, Tag, Header, DwarfOps)),
2065 NextMDValueNo++);
2066 break;
2067 }
2068 case bitc::METADATA_SUBRANGE: {
2069 if (Record.size() != 3)
2070 return error("Invalid record");
2071
2072 MDValueList.assignValue(
2073 GET_OR_DISTINCT(DISubrange, Record[0],
2074 (Context, Record[1], unrotateSign(Record[2]))),
2075 NextMDValueNo++);
2076 break;
2077 }
2078 case bitc::METADATA_ENUMERATOR: {
2079 if (Record.size() != 3)
2080 return error("Invalid record");
2081
2082 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0],
2083 (Context, unrotateSign(Record[1]),
2084 getMDString(Record[2]))),
2085 NextMDValueNo++);
2086 break;
2087 }
2088 case bitc::METADATA_BASIC_TYPE: {
2089 if (Record.size() != 6)
2090 return error("Invalid record");
2091
2092 MDValueList.assignValue(
2093 GET_OR_DISTINCT(DIBasicType, Record[0],
2094 (Context, Record[1], getMDString(Record[2]),
2095 Record[3], Record[4], Record[5])),
2096 NextMDValueNo++);
2097 break;
2098 }
2099 case bitc::METADATA_DERIVED_TYPE: {
2100 if (Record.size() != 12)
2101 return error("Invalid record");
2102
2103 MDValueList.assignValue(
2104 GET_OR_DISTINCT(DIDerivedType, Record[0],
2105 (Context, Record[1], getMDString(Record[2]),
2106 getMDOrNull(Record[3]), Record[4],
2107 getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2108 Record[7], Record[8], Record[9], Record[10],
2109 getMDOrNull(Record[11]))),
2110 NextMDValueNo++);
2111 break;
2112 }
2113 case bitc::METADATA_COMPOSITE_TYPE: {
2114 if (Record.size() != 16)
2115 return error("Invalid record");
2116
2117 MDValueList.assignValue(
2118 GET_OR_DISTINCT(DICompositeType, Record[0],
2119 (Context, Record[1], getMDString(Record[2]),
2120 getMDOrNull(Record[3]), Record[4],
2121 getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2122 Record[7], Record[8], Record[9], Record[10],
2123 getMDOrNull(Record[11]), Record[12],
2124 getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2125 getMDString(Record[15]))),
2126 NextMDValueNo++);
2127 break;
2128 }
2129 case bitc::METADATA_SUBROUTINE_TYPE: {
2130 if (Record.size() != 3)
2131 return error("Invalid record");
2132
2133 MDValueList.assignValue(
2134 GET_OR_DISTINCT(DISubroutineType, Record[0],
2135 (Context, Record[1], getMDOrNull(Record[2]))),
2136 NextMDValueNo++);
2137 break;
2138 }
2139
2140 case bitc::METADATA_MODULE: {
2141 if (Record.size() != 6)
2142 return error("Invalid record");
2143
2144 MDValueList.assignValue(
2145 GET_OR_DISTINCT(DIModule, Record[0],
2146 (Context, getMDOrNull(Record[1]),
2147 getMDString(Record[2]), getMDString(Record[3]),
2148 getMDString(Record[4]), getMDString(Record[5]))),
2149 NextMDValueNo++);
2150 break;
2151 }
2152
2153 case bitc::METADATA_FILE: {
2154 if (Record.size() != 3)
2155 return error("Invalid record");
2156
2157 MDValueList.assignValue(
2158 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2159 getMDString(Record[2]))),
2160 NextMDValueNo++);
2161 break;
2162 }
2163 case bitc::METADATA_COMPILE_UNIT: {
2164 if (Record.size() < 14 || Record.size() > 16)
2165 return error("Invalid record");
2166
2167 // Ignore Record[0], which indicates whether this compile unit is
2168 // distinct. It's always distinct.
2169 MDValueList.assignValue(
2170 DICompileUnit::getDistinct(
2171 Context, Record[1], getMDOrNull(Record[2]),
2172 getMDString(Record[3]), Record[4], getMDString(Record[5]),
2173 Record[6], getMDString(Record[7]), Record[8],
2174 getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2175 getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2176 getMDOrNull(Record[13]),
2177 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]),
2178 Record.size() <= 14 ? 0 : Record[14]),
2179 NextMDValueNo++);
2180 break;
2181 }
2182 case bitc::METADATA_SUBPROGRAM: {
2183 if (Record.size() != 18 && Record.size() != 19)
2184 return error("Invalid record");
2185
2186 bool HasFn = Record.size() == 19;
2187 DISubprogram *SP = GET_OR_DISTINCT(
2188 DISubprogram,
2189 Record[0] || Record[8], // All definitions should be distinct.
2190 (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2191 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2192 getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2193 getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2194 Record[14], getMDOrNull(Record[15 + HasFn]),
2195 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2196 MDValueList.assignValue(SP, NextMDValueNo++);
2197
2198 // Upgrade sp->function mapping to function->sp mapping.
2199 if (HasFn && Record[15]) {
2200 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2201 if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2202 if (F->isMaterializable())
2203 // Defer until materialized; unmaterialized functions may not have
2204 // metadata.
2205 FunctionsWithSPs[F] = SP;
2206 else if (!F->empty())
2207 F->setSubprogram(SP);
2208 }
2209 }
2210 break;
2211 }
2212 case bitc::METADATA_LEXICAL_BLOCK: {
2213 if (Record.size() != 5)
2214 return error("Invalid record");
2215
2216 MDValueList.assignValue(
2217 GET_OR_DISTINCT(DILexicalBlock, Record[0],
2218 (Context, getMDOrNull(Record[1]),
2219 getMDOrNull(Record[2]), Record[3], Record[4])),
2220 NextMDValueNo++);
2221 break;
2222 }
2223 case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2224 if (Record.size() != 4)
2225 return error("Invalid record");
2226
2227 MDValueList.assignValue(
2228 GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2229 (Context, getMDOrNull(Record[1]),
2230 getMDOrNull(Record[2]), Record[3])),
2231 NextMDValueNo++);
2232 break;
2233 }
2234 case bitc::METADATA_NAMESPACE: {
2235 if (Record.size() != 5)
2236 return error("Invalid record");
2237
2238 MDValueList.assignValue(
2239 GET_OR_DISTINCT(DINamespace, Record[0],
2240 (Context, getMDOrNull(Record[1]),
2241 getMDOrNull(Record[2]), getMDString(Record[3]),
2242 Record[4])),
2243 NextMDValueNo++);
2244 break;
2245 }
2246 case bitc::METADATA_MACRO: {
2247 if (Record.size() != 5)
2248 return error("Invalid record");
2249
2250 MDValueList.assignValue(
2251 GET_OR_DISTINCT(DIMacro, Record[0],
2252 (Context, Record[1], Record[2],
2253 getMDString(Record[3]), getMDString(Record[4]))),
2254 NextMDValueNo++);
2255 break;
2256 }
2257 case bitc::METADATA_MACRO_FILE: {
2258 if (Record.size() != 5)
2259 return error("Invalid record");
2260
2261 MDValueList.assignValue(
2262 GET_OR_DISTINCT(DIMacroFile, Record[0],
2263 (Context, Record[1], Record[2],
2264 getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2265 NextMDValueNo++);
2266 break;
2267 }
2268 case bitc::METADATA_TEMPLATE_TYPE: {
2269 if (Record.size() != 3)
2270 return error("Invalid record");
2271
2272 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2273 Record[0],
2274 (Context, getMDString(Record[1]),
2275 getMDOrNull(Record[2]))),
2276 NextMDValueNo++);
2277 break;
2278 }
2279 case bitc::METADATA_TEMPLATE_VALUE: {
2280 if (Record.size() != 5)
2281 return error("Invalid record");
2282
2283 MDValueList.assignValue(
2284 GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2285 (Context, Record[1], getMDString(Record[2]),
2286 getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2287 NextMDValueNo++);
2288 break;
2289 }
2290 case bitc::METADATA_GLOBAL_VAR: {
2291 if (Record.size() != 11)
2292 return error("Invalid record");
2293
2294 MDValueList.assignValue(
2295 GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2296 (Context, getMDOrNull(Record[1]),
2297 getMDString(Record[2]), getMDString(Record[3]),
2298 getMDOrNull(Record[4]), Record[5],
2299 getMDOrNull(Record[6]), Record[7], Record[8],
2300 getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2301 NextMDValueNo++);
2302 break;
2303 }
2304 case bitc::METADATA_LOCAL_VAR: {
2305 // 10th field is for the obseleted 'inlinedAt:' field.
2306 if (Record.size() < 8 || Record.size() > 10)
2307 return error("Invalid record");
2308
2309 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2310 // DW_TAG_arg_variable.
2311 bool HasTag = Record.size() > 8;
2312 MDValueList.assignValue(
2313 GET_OR_DISTINCT(DILocalVariable, Record[0],
2314 (Context, getMDOrNull(Record[1 + HasTag]),
2315 getMDString(Record[2 + HasTag]),
2316 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2317 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2318 Record[7 + HasTag])),
2319 NextMDValueNo++);
2320 break;
2321 }
2322 case bitc::METADATA_EXPRESSION: {
2323 if (Record.size() < 1)
2324 return error("Invalid record");
2325
2326 MDValueList.assignValue(
2327 GET_OR_DISTINCT(DIExpression, Record[0],
2328 (Context, makeArrayRef(Record).slice(1))),
2329 NextMDValueNo++);
2330 break;
2331 }
2332 case bitc::METADATA_OBJC_PROPERTY: {
2333 if (Record.size() != 8)
2334 return error("Invalid record");
2335
2336 MDValueList.assignValue(
2337 GET_OR_DISTINCT(DIObjCProperty, Record[0],
2338 (Context, getMDString(Record[1]),
2339 getMDOrNull(Record[2]), Record[3],
2340 getMDString(Record[4]), getMDString(Record[5]),
2341 Record[6], getMDOrNull(Record[7]))),
2342 NextMDValueNo++);
2343 break;
2344 }
2345 case bitc::METADATA_IMPORTED_ENTITY: {
2346 if (Record.size() != 6)
2347 return error("Invalid record");
2348
2349 MDValueList.assignValue(
2350 GET_OR_DISTINCT(DIImportedEntity, Record[0],
2351 (Context, Record[1], getMDOrNull(Record[2]),
2352 getMDOrNull(Record[3]), Record[4],
2353 getMDString(Record[5]))),
2354 NextMDValueNo++);
2355 break;
2356 }
2357 case bitc::METADATA_STRING: {
2358 std::string String(Record.begin(), Record.end());
2359 llvm::UpgradeMDStringConstant(String);
2360 Metadata *MD = MDString::get(Context, String);
2361 MDValueList.assignValue(MD, NextMDValueNo++);
2362 break;
2363 }
2364 case bitc::METADATA_KIND: {
2365 // Support older bitcode files that had METADATA_KIND records in a
2366 // block with METADATA_BLOCK_ID.
2367 if (std::error_code EC = parseMetadataKindRecord(Record))
2368 return EC;
2369 break;
2370 }
2371 }
2372 }
2373 #undef GET_OR_DISTINCT
2374 }
2375
2376 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
parseMetadataKinds()2377 std::error_code BitcodeReader::parseMetadataKinds() {
2378 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2379 return error("Invalid record");
2380
2381 SmallVector<uint64_t, 64> Record;
2382
2383 // Read all the records.
2384 while (1) {
2385 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2386
2387 switch (Entry.Kind) {
2388 case BitstreamEntry::SubBlock: // Handled for us already.
2389 case BitstreamEntry::Error:
2390 return error("Malformed block");
2391 case BitstreamEntry::EndBlock:
2392 return std::error_code();
2393 case BitstreamEntry::Record:
2394 // The interesting case.
2395 break;
2396 }
2397
2398 // Read a record.
2399 Record.clear();
2400 unsigned Code = Stream.readRecord(Entry.ID, Record);
2401 switch (Code) {
2402 default: // Default behavior: ignore.
2403 break;
2404 case bitc::METADATA_KIND: {
2405 if (std::error_code EC = parseMetadataKindRecord(Record))
2406 return EC;
2407 break;
2408 }
2409 }
2410 }
2411 }
2412
2413 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2414 /// encoding.
decodeSignRotatedValue(uint64_t V)2415 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2416 if ((V & 1) == 0)
2417 return V >> 1;
2418 if (V != 1)
2419 return -(V >> 1);
2420 // There is no such thing as -0 with integers. "-0" really means MININT.
2421 return 1ULL << 63;
2422 }
2423
2424 /// Resolve all of the initializers for global values and aliases that we can.
resolveGlobalAndAliasInits()2425 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2426 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2427 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2428 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2429 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2430 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2431
2432 GlobalInitWorklist.swap(GlobalInits);
2433 AliasInitWorklist.swap(AliasInits);
2434 FunctionPrefixWorklist.swap(FunctionPrefixes);
2435 FunctionPrologueWorklist.swap(FunctionPrologues);
2436 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2437
2438 while (!GlobalInitWorklist.empty()) {
2439 unsigned ValID = GlobalInitWorklist.back().second;
2440 if (ValID >= ValueList.size()) {
2441 // Not ready to resolve this yet, it requires something later in the file.
2442 GlobalInits.push_back(GlobalInitWorklist.back());
2443 } else {
2444 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2445 GlobalInitWorklist.back().first->setInitializer(C);
2446 else
2447 return error("Expected a constant");
2448 }
2449 GlobalInitWorklist.pop_back();
2450 }
2451
2452 while (!AliasInitWorklist.empty()) {
2453 unsigned ValID = AliasInitWorklist.back().second;
2454 if (ValID >= ValueList.size()) {
2455 AliasInits.push_back(AliasInitWorklist.back());
2456 } else {
2457 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2458 if (!C)
2459 return error("Expected a constant");
2460 GlobalAlias *Alias = AliasInitWorklist.back().first;
2461 if (C->getType() != Alias->getType())
2462 return error("Alias and aliasee types don't match");
2463 Alias->setAliasee(C);
2464 }
2465 AliasInitWorklist.pop_back();
2466 }
2467
2468 while (!FunctionPrefixWorklist.empty()) {
2469 unsigned ValID = FunctionPrefixWorklist.back().second;
2470 if (ValID >= ValueList.size()) {
2471 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2472 } else {
2473 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2474 FunctionPrefixWorklist.back().first->setPrefixData(C);
2475 else
2476 return error("Expected a constant");
2477 }
2478 FunctionPrefixWorklist.pop_back();
2479 }
2480
2481 while (!FunctionPrologueWorklist.empty()) {
2482 unsigned ValID = FunctionPrologueWorklist.back().second;
2483 if (ValID >= ValueList.size()) {
2484 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2485 } else {
2486 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2487 FunctionPrologueWorklist.back().first->setPrologueData(C);
2488 else
2489 return error("Expected a constant");
2490 }
2491 FunctionPrologueWorklist.pop_back();
2492 }
2493
2494 while (!FunctionPersonalityFnWorklist.empty()) {
2495 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2496 if (ValID >= ValueList.size()) {
2497 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2498 } else {
2499 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2500 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2501 else
2502 return error("Expected a constant");
2503 }
2504 FunctionPersonalityFnWorklist.pop_back();
2505 }
2506
2507 return std::error_code();
2508 }
2509
readWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)2510 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2511 SmallVector<uint64_t, 8> Words(Vals.size());
2512 std::transform(Vals.begin(), Vals.end(), Words.begin(),
2513 BitcodeReader::decodeSignRotatedValue);
2514
2515 return APInt(TypeBits, Words);
2516 }
2517
parseConstants()2518 std::error_code BitcodeReader::parseConstants() {
2519 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2520 return error("Invalid record");
2521
2522 SmallVector<uint64_t, 64> Record;
2523
2524 // Read all the records for this value table.
2525 Type *CurTy = Type::getInt32Ty(Context);
2526 unsigned NextCstNo = ValueList.size();
2527 while (1) {
2528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2529
2530 switch (Entry.Kind) {
2531 case BitstreamEntry::SubBlock: // Handled for us already.
2532 case BitstreamEntry::Error:
2533 return error("Malformed block");
2534 case BitstreamEntry::EndBlock:
2535 if (NextCstNo != ValueList.size())
2536 return error("Invalid ronstant reference");
2537
2538 // Once all the constants have been read, go through and resolve forward
2539 // references.
2540 ValueList.resolveConstantForwardRefs();
2541 return std::error_code();
2542 case BitstreamEntry::Record:
2543 // The interesting case.
2544 break;
2545 }
2546
2547 // Read a record.
2548 Record.clear();
2549 Value *V = nullptr;
2550 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2551 switch (BitCode) {
2552 default: // Default behavior: unknown constant
2553 case bitc::CST_CODE_UNDEF: // UNDEF
2554 V = UndefValue::get(CurTy);
2555 break;
2556 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2557 if (Record.empty())
2558 return error("Invalid record");
2559 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2560 return error("Invalid record");
2561 CurTy = TypeList[Record[0]];
2562 continue; // Skip the ValueList manipulation.
2563 case bitc::CST_CODE_NULL: // NULL
2564 V = Constant::getNullValue(CurTy);
2565 break;
2566 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2567 if (!CurTy->isIntegerTy() || Record.empty())
2568 return error("Invalid record");
2569 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2570 break;
2571 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2572 if (!CurTy->isIntegerTy() || Record.empty())
2573 return error("Invalid record");
2574
2575 APInt VInt =
2576 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2577 V = ConstantInt::get(Context, VInt);
2578
2579 break;
2580 }
2581 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2582 if (Record.empty())
2583 return error("Invalid record");
2584 if (CurTy->isHalfTy())
2585 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2586 APInt(16, (uint16_t)Record[0])));
2587 else if (CurTy->isFloatTy())
2588 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2589 APInt(32, (uint32_t)Record[0])));
2590 else if (CurTy->isDoubleTy())
2591 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2592 APInt(64, Record[0])));
2593 else if (CurTy->isX86_FP80Ty()) {
2594 // Bits are not stored the same way as a normal i80 APInt, compensate.
2595 uint64_t Rearrange[2];
2596 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2597 Rearrange[1] = Record[0] >> 48;
2598 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2599 APInt(80, Rearrange)));
2600 } else if (CurTy->isFP128Ty())
2601 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2602 APInt(128, Record)));
2603 else if (CurTy->isPPC_FP128Ty())
2604 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2605 APInt(128, Record)));
2606 else
2607 V = UndefValue::get(CurTy);
2608 break;
2609 }
2610
2611 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2612 if (Record.empty())
2613 return error("Invalid record");
2614
2615 unsigned Size = Record.size();
2616 SmallVector<Constant*, 16> Elts;
2617
2618 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2619 for (unsigned i = 0; i != Size; ++i)
2620 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2621 STy->getElementType(i)));
2622 V = ConstantStruct::get(STy, Elts);
2623 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2624 Type *EltTy = ATy->getElementType();
2625 for (unsigned i = 0; i != Size; ++i)
2626 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2627 V = ConstantArray::get(ATy, Elts);
2628 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2629 Type *EltTy = VTy->getElementType();
2630 for (unsigned i = 0; i != Size; ++i)
2631 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2632 V = ConstantVector::get(Elts);
2633 } else {
2634 V = UndefValue::get(CurTy);
2635 }
2636 break;
2637 }
2638 case bitc::CST_CODE_STRING: // STRING: [values]
2639 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2640 if (Record.empty())
2641 return error("Invalid record");
2642
2643 SmallString<16> Elts(Record.begin(), Record.end());
2644 V = ConstantDataArray::getString(Context, Elts,
2645 BitCode == bitc::CST_CODE_CSTRING);
2646 break;
2647 }
2648 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2649 if (Record.empty())
2650 return error("Invalid record");
2651
2652 Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2653 if (EltTy->isIntegerTy(8)) {
2654 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2655 if (isa<VectorType>(CurTy))
2656 V = ConstantDataVector::get(Context, Elts);
2657 else
2658 V = ConstantDataArray::get(Context, Elts);
2659 } else if (EltTy->isIntegerTy(16)) {
2660 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2661 if (isa<VectorType>(CurTy))
2662 V = ConstantDataVector::get(Context, Elts);
2663 else
2664 V = ConstantDataArray::get(Context, Elts);
2665 } else if (EltTy->isIntegerTy(32)) {
2666 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2667 if (isa<VectorType>(CurTy))
2668 V = ConstantDataVector::get(Context, Elts);
2669 else
2670 V = ConstantDataArray::get(Context, Elts);
2671 } else if (EltTy->isIntegerTy(64)) {
2672 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2673 if (isa<VectorType>(CurTy))
2674 V = ConstantDataVector::get(Context, Elts);
2675 else
2676 V = ConstantDataArray::get(Context, Elts);
2677 } else if (EltTy->isHalfTy()) {
2678 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2679 if (isa<VectorType>(CurTy))
2680 V = ConstantDataVector::getFP(Context, Elts);
2681 else
2682 V = ConstantDataArray::getFP(Context, Elts);
2683 } else if (EltTy->isFloatTy()) {
2684 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2685 if (isa<VectorType>(CurTy))
2686 V = ConstantDataVector::getFP(Context, Elts);
2687 else
2688 V = ConstantDataArray::getFP(Context, Elts);
2689 } else if (EltTy->isDoubleTy()) {
2690 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2691 if (isa<VectorType>(CurTy))
2692 V = ConstantDataVector::getFP(Context, Elts);
2693 else
2694 V = ConstantDataArray::getFP(Context, Elts);
2695 } else {
2696 return error("Invalid type for value");
2697 }
2698 break;
2699 }
2700
2701 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2702 if (Record.size() < 3)
2703 return error("Invalid record");
2704 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2705 if (Opc < 0) {
2706 V = UndefValue::get(CurTy); // Unknown binop.
2707 } else {
2708 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2709 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2710 unsigned Flags = 0;
2711 if (Record.size() >= 4) {
2712 if (Opc == Instruction::Add ||
2713 Opc == Instruction::Sub ||
2714 Opc == Instruction::Mul ||
2715 Opc == Instruction::Shl) {
2716 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2717 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2718 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2719 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2720 } else if (Opc == Instruction::SDiv ||
2721 Opc == Instruction::UDiv ||
2722 Opc == Instruction::LShr ||
2723 Opc == Instruction::AShr) {
2724 if (Record[3] & (1 << bitc::PEO_EXACT))
2725 Flags |= SDivOperator::IsExact;
2726 }
2727 }
2728 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2729 }
2730 break;
2731 }
2732 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2733 if (Record.size() < 3)
2734 return error("Invalid record");
2735 int Opc = getDecodedCastOpcode(Record[0]);
2736 if (Opc < 0) {
2737 V = UndefValue::get(CurTy); // Unknown cast.
2738 } else {
2739 Type *OpTy = getTypeByID(Record[1]);
2740 if (!OpTy)
2741 return error("Invalid record");
2742 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2743 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2744 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2745 }
2746 break;
2747 }
2748 case bitc::CST_CODE_CE_INBOUNDS_GEP:
2749 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
2750 unsigned OpNum = 0;
2751 Type *PointeeType = nullptr;
2752 if (Record.size() % 2)
2753 PointeeType = getTypeByID(Record[OpNum++]);
2754 SmallVector<Constant*, 16> Elts;
2755 while (OpNum != Record.size()) {
2756 Type *ElTy = getTypeByID(Record[OpNum++]);
2757 if (!ElTy)
2758 return error("Invalid record");
2759 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2760 }
2761
2762 if (PointeeType &&
2763 PointeeType !=
2764 cast<SequentialType>(Elts[0]->getType()->getScalarType())
2765 ->getElementType())
2766 return error("Explicit gep operator type does not match pointee type "
2767 "of pointer operand");
2768
2769 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2770 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2771 BitCode ==
2772 bitc::CST_CODE_CE_INBOUNDS_GEP);
2773 break;
2774 }
2775 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2776 if (Record.size() < 3)
2777 return error("Invalid record");
2778
2779 Type *SelectorTy = Type::getInt1Ty(Context);
2780
2781 // The selector might be an i1 or an <n x i1>
2782 // Get the type from the ValueList before getting a forward ref.
2783 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2784 if (Value *V = ValueList[Record[0]])
2785 if (SelectorTy != V->getType())
2786 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2787
2788 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2789 SelectorTy),
2790 ValueList.getConstantFwdRef(Record[1],CurTy),
2791 ValueList.getConstantFwdRef(Record[2],CurTy));
2792 break;
2793 }
2794 case bitc::CST_CODE_CE_EXTRACTELT
2795 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2796 if (Record.size() < 3)
2797 return error("Invalid record");
2798 VectorType *OpTy =
2799 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2800 if (!OpTy)
2801 return error("Invalid record");
2802 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2803 Constant *Op1 = nullptr;
2804 if (Record.size() == 4) {
2805 Type *IdxTy = getTypeByID(Record[2]);
2806 if (!IdxTy)
2807 return error("Invalid record");
2808 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2809 } else // TODO: Remove with llvm 4.0
2810 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2811 if (!Op1)
2812 return error("Invalid record");
2813 V = ConstantExpr::getExtractElement(Op0, Op1);
2814 break;
2815 }
2816 case bitc::CST_CODE_CE_INSERTELT
2817 : { // CE_INSERTELT: [opval, opval, opty, opval]
2818 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2819 if (Record.size() < 3 || !OpTy)
2820 return error("Invalid record");
2821 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2822 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2823 OpTy->getElementType());
2824 Constant *Op2 = nullptr;
2825 if (Record.size() == 4) {
2826 Type *IdxTy = getTypeByID(Record[2]);
2827 if (!IdxTy)
2828 return error("Invalid record");
2829 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2830 } else // TODO: Remove with llvm 4.0
2831 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2832 if (!Op2)
2833 return error("Invalid record");
2834 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2835 break;
2836 }
2837 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2838 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2839 if (Record.size() < 3 || !OpTy)
2840 return error("Invalid record");
2841 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2842 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2843 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2844 OpTy->getNumElements());
2845 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2846 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2847 break;
2848 }
2849 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2850 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2851 VectorType *OpTy =
2852 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2853 if (Record.size() < 4 || !RTy || !OpTy)
2854 return error("Invalid record");
2855 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2856 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2857 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2858 RTy->getNumElements());
2859 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2860 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2861 break;
2862 }
2863 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2864 if (Record.size() < 4)
2865 return error("Invalid record");
2866 Type *OpTy = getTypeByID(Record[0]);
2867 if (!OpTy)
2868 return error("Invalid record");
2869 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2870 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2871
2872 if (OpTy->isFPOrFPVectorTy())
2873 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2874 else
2875 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2876 break;
2877 }
2878 // This maintains backward compatibility, pre-asm dialect keywords.
2879 // FIXME: Remove with the 4.0 release.
2880 case bitc::CST_CODE_INLINEASM_OLD: {
2881 if (Record.size() < 2)
2882 return error("Invalid record");
2883 std::string AsmStr, ConstrStr;
2884 bool HasSideEffects = Record[0] & 1;
2885 bool IsAlignStack = Record[0] >> 1;
2886 unsigned AsmStrSize = Record[1];
2887 if (2+AsmStrSize >= Record.size())
2888 return error("Invalid record");
2889 unsigned ConstStrSize = Record[2+AsmStrSize];
2890 if (3+AsmStrSize+ConstStrSize > Record.size())
2891 return error("Invalid record");
2892
2893 for (unsigned i = 0; i != AsmStrSize; ++i)
2894 AsmStr += (char)Record[2+i];
2895 for (unsigned i = 0; i != ConstStrSize; ++i)
2896 ConstrStr += (char)Record[3+AsmStrSize+i];
2897 PointerType *PTy = cast<PointerType>(CurTy);
2898 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2899 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2900 break;
2901 }
2902 // This version adds support for the asm dialect keywords (e.g.,
2903 // inteldialect).
2904 case bitc::CST_CODE_INLINEASM: {
2905 if (Record.size() < 2)
2906 return error("Invalid record");
2907 std::string AsmStr, ConstrStr;
2908 bool HasSideEffects = Record[0] & 1;
2909 bool IsAlignStack = (Record[0] >> 1) & 1;
2910 unsigned AsmDialect = Record[0] >> 2;
2911 unsigned AsmStrSize = Record[1];
2912 if (2+AsmStrSize >= Record.size())
2913 return error("Invalid record");
2914 unsigned ConstStrSize = Record[2+AsmStrSize];
2915 if (3+AsmStrSize+ConstStrSize > Record.size())
2916 return error("Invalid record");
2917
2918 for (unsigned i = 0; i != AsmStrSize; ++i)
2919 AsmStr += (char)Record[2+i];
2920 for (unsigned i = 0; i != ConstStrSize; ++i)
2921 ConstrStr += (char)Record[3+AsmStrSize+i];
2922 PointerType *PTy = cast<PointerType>(CurTy);
2923 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2924 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2925 InlineAsm::AsmDialect(AsmDialect));
2926 break;
2927 }
2928 case bitc::CST_CODE_BLOCKADDRESS:{
2929 if (Record.size() < 3)
2930 return error("Invalid record");
2931 Type *FnTy = getTypeByID(Record[0]);
2932 if (!FnTy)
2933 return error("Invalid record");
2934 Function *Fn =
2935 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2936 if (!Fn)
2937 return error("Invalid record");
2938
2939 // If the function is already parsed we can insert the block address right
2940 // away.
2941 BasicBlock *BB;
2942 unsigned BBID = Record[2];
2943 if (!BBID)
2944 // Invalid reference to entry block.
2945 return error("Invalid ID");
2946 if (!Fn->empty()) {
2947 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2948 for (size_t I = 0, E = BBID; I != E; ++I) {
2949 if (BBI == BBE)
2950 return error("Invalid ID");
2951 ++BBI;
2952 }
2953 BB = &*BBI;
2954 } else {
2955 // Otherwise insert a placeholder and remember it so it can be inserted
2956 // when the function is parsed.
2957 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2958 if (FwdBBs.empty())
2959 BasicBlockFwdRefQueue.push_back(Fn);
2960 if (FwdBBs.size() < BBID + 1)
2961 FwdBBs.resize(BBID + 1);
2962 if (!FwdBBs[BBID])
2963 FwdBBs[BBID] = BasicBlock::Create(Context);
2964 BB = FwdBBs[BBID];
2965 }
2966 V = BlockAddress::get(Fn, BB);
2967 break;
2968 }
2969 }
2970
2971 ValueList.assignValue(V, NextCstNo);
2972 ++NextCstNo;
2973 }
2974 }
2975
parseUseLists()2976 std::error_code BitcodeReader::parseUseLists() {
2977 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2978 return error("Invalid record");
2979
2980 // Read all the records.
2981 SmallVector<uint64_t, 64> Record;
2982 while (1) {
2983 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2984
2985 switch (Entry.Kind) {
2986 case BitstreamEntry::SubBlock: // Handled for us already.
2987 case BitstreamEntry::Error:
2988 return error("Malformed block");
2989 case BitstreamEntry::EndBlock:
2990 return std::error_code();
2991 case BitstreamEntry::Record:
2992 // The interesting case.
2993 break;
2994 }
2995
2996 // Read a use list record.
2997 Record.clear();
2998 bool IsBB = false;
2999 switch (Stream.readRecord(Entry.ID, Record)) {
3000 default: // Default behavior: unknown type.
3001 break;
3002 case bitc::USELIST_CODE_BB:
3003 IsBB = true;
3004 // fallthrough
3005 case bitc::USELIST_CODE_DEFAULT: {
3006 unsigned RecordLength = Record.size();
3007 if (RecordLength < 3)
3008 // Records should have at least an ID and two indexes.
3009 return error("Invalid record");
3010 unsigned ID = Record.back();
3011 Record.pop_back();
3012
3013 Value *V;
3014 if (IsBB) {
3015 assert(ID < FunctionBBs.size() && "Basic block not found");
3016 V = FunctionBBs[ID];
3017 } else
3018 V = ValueList[ID];
3019 unsigned NumUses = 0;
3020 SmallDenseMap<const Use *, unsigned, 16> Order;
3021 for (const Use &U : V->materialized_uses()) {
3022 if (++NumUses > Record.size())
3023 break;
3024 Order[&U] = Record[NumUses - 1];
3025 }
3026 if (Order.size() != Record.size() || NumUses > Record.size())
3027 // Mismatches can happen if the functions are being materialized lazily
3028 // (out-of-order), or a value has been upgraded.
3029 break;
3030
3031 V->sortUseList([&](const Use &L, const Use &R) {
3032 return Order.lookup(&L) < Order.lookup(&R);
3033 });
3034 break;
3035 }
3036 }
3037 }
3038 }
3039
3040 /// When we see the block for metadata, remember where it is and then skip it.
3041 /// This lets us lazily deserialize the metadata.
rememberAndSkipMetadata()3042 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3043 // Save the current stream state.
3044 uint64_t CurBit = Stream.GetCurrentBitNo();
3045 DeferredMetadataInfo.push_back(CurBit);
3046
3047 // Skip over the block for now.
3048 if (Stream.SkipBlock())
3049 return error("Invalid record");
3050 return std::error_code();
3051 }
3052
materializeMetadata()3053 std::error_code BitcodeReader::materializeMetadata() {
3054 for (uint64_t BitPos : DeferredMetadataInfo) {
3055 // Move the bit stream to the saved position.
3056 Stream.JumpToBit(BitPos);
3057 if (std::error_code EC = parseMetadata(true))
3058 return EC;
3059 }
3060 DeferredMetadataInfo.clear();
3061 return std::error_code();
3062 }
3063
setStripDebugInfo()3064 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3065
saveMDValueList(DenseMap<const Metadata *,unsigned> & MDValueToValIDMap,bool OnlyTempMD)3066 void BitcodeReader::saveMDValueList(
3067 DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, bool OnlyTempMD) {
3068 for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) {
3069 Metadata *MD = MDValueList[ValID];
3070 auto *N = dyn_cast_or_null<MDNode>(MD);
3071 // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3072 if (!OnlyTempMD || (N && N->isTemporary())) {
3073 // Will call this after materializing each function, in order to
3074 // handle remapping of the function's instructions/metadata.
3075 // See if we already have an entry in that case.
3076 if (OnlyTempMD && MDValueToValIDMap.count(MD)) {
3077 assert(MDValueToValIDMap[MD] == ValID &&
3078 "Inconsistent metadata value id");
3079 continue;
3080 }
3081 MDValueToValIDMap[MD] = ValID;
3082 }
3083 }
3084 }
3085
3086 /// When we see the block for a function body, remember where it is and then
3087 /// skip it. This lets us lazily deserialize the functions.
rememberAndSkipFunctionBody()3088 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3089 // Get the function we are talking about.
3090 if (FunctionsWithBodies.empty())
3091 return error("Insufficient function protos");
3092
3093 Function *Fn = FunctionsWithBodies.back();
3094 FunctionsWithBodies.pop_back();
3095
3096 // Save the current stream state.
3097 uint64_t CurBit = Stream.GetCurrentBitNo();
3098 assert(
3099 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3100 "Mismatch between VST and scanned function offsets");
3101 DeferredFunctionInfo[Fn] = CurBit;
3102
3103 // Skip over the function block for now.
3104 if (Stream.SkipBlock())
3105 return error("Invalid record");
3106 return std::error_code();
3107 }
3108
globalCleanup()3109 std::error_code BitcodeReader::globalCleanup() {
3110 // Patch the initializers for globals and aliases up.
3111 resolveGlobalAndAliasInits();
3112 if (!GlobalInits.empty() || !AliasInits.empty())
3113 return error("Malformed global initializer set");
3114
3115 // Look for intrinsic functions which need to be upgraded at some point
3116 for (Function &F : *TheModule) {
3117 Function *NewFn;
3118 if (UpgradeIntrinsicFunction(&F, NewFn))
3119 UpgradedIntrinsics[&F] = NewFn;
3120 }
3121
3122 // Look for global variables which need to be renamed.
3123 for (GlobalVariable &GV : TheModule->globals())
3124 UpgradeGlobalVariable(&GV);
3125
3126 // Force deallocation of memory for these vectors to favor the client that
3127 // want lazy deserialization.
3128 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3129 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3130 return std::error_code();
3131 }
3132
3133 /// Support for lazy parsing of function bodies. This is required if we
3134 /// either have an old bitcode file without a VST forward declaration record,
3135 /// or if we have an anonymous function being materialized, since anonymous
3136 /// functions do not have a name and are therefore not in the VST.
rememberAndSkipFunctionBodies()3137 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3138 Stream.JumpToBit(NextUnreadBit);
3139
3140 if (Stream.AtEndOfStream())
3141 return error("Could not find function in stream");
3142
3143 if (!SeenFirstFunctionBody)
3144 return error("Trying to materialize functions before seeing function blocks");
3145
3146 // An old bitcode file with the symbol table at the end would have
3147 // finished the parse greedily.
3148 assert(SeenValueSymbolTable);
3149
3150 SmallVector<uint64_t, 64> Record;
3151
3152 while (1) {
3153 BitstreamEntry Entry = Stream.advance();
3154 switch (Entry.Kind) {
3155 default:
3156 return error("Expect SubBlock");
3157 case BitstreamEntry::SubBlock:
3158 switch (Entry.ID) {
3159 default:
3160 return error("Expect function block");
3161 case bitc::FUNCTION_BLOCK_ID:
3162 if (std::error_code EC = rememberAndSkipFunctionBody())
3163 return EC;
3164 NextUnreadBit = Stream.GetCurrentBitNo();
3165 return std::error_code();
3166 }
3167 }
3168 }
3169 }
3170
parseBitcodeVersion()3171 std::error_code BitcodeReader::parseBitcodeVersion() {
3172 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3173 return error("Invalid record");
3174
3175 // Read all the records.
3176 SmallVector<uint64_t, 64> Record;
3177 while (1) {
3178 BitstreamEntry Entry = Stream.advance();
3179
3180 switch (Entry.Kind) {
3181 default:
3182 case BitstreamEntry::Error:
3183 return error("Malformed block");
3184 case BitstreamEntry::EndBlock:
3185 return std::error_code();
3186 case BitstreamEntry::Record:
3187 // The interesting case.
3188 break;
3189 }
3190
3191 // Read a record.
3192 Record.clear();
3193 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3194 switch (BitCode) {
3195 default: // Default behavior: reject
3196 return error("Invalid value");
3197 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x
3198 // N]
3199 convertToString(Record, 0, ProducerIdentification);
3200 break;
3201 }
3202 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
3203 unsigned epoch = (unsigned)Record[0];
3204 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3205 return error(
3206 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3207 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3208 }
3209 }
3210 }
3211 }
3212 }
3213
parseModule(uint64_t ResumeBit,bool ShouldLazyLoadMetadata)3214 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3215 bool ShouldLazyLoadMetadata) {
3216 if (ResumeBit)
3217 Stream.JumpToBit(ResumeBit);
3218 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3219 return error("Invalid record");
3220
3221 SmallVector<uint64_t, 64> Record;
3222 std::vector<std::string> SectionTable;
3223 std::vector<std::string> GCTable;
3224
3225 // Read all the records for this module.
3226 while (1) {
3227 BitstreamEntry Entry = Stream.advance();
3228
3229 switch (Entry.Kind) {
3230 case BitstreamEntry::Error:
3231 return error("Malformed block");
3232 case BitstreamEntry::EndBlock:
3233 return globalCleanup();
3234
3235 case BitstreamEntry::SubBlock:
3236 switch (Entry.ID) {
3237 default: // Skip unknown content.
3238 if (Stream.SkipBlock())
3239 return error("Invalid record");
3240 break;
3241 case bitc::BLOCKINFO_BLOCK_ID:
3242 if (Stream.ReadBlockInfoBlock())
3243 return error("Malformed block");
3244 break;
3245 case bitc::PARAMATTR_BLOCK_ID:
3246 if (std::error_code EC = parseAttributeBlock())
3247 return EC;
3248 break;
3249 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3250 if (std::error_code EC = parseAttributeGroupBlock())
3251 return EC;
3252 break;
3253 case bitc::TYPE_BLOCK_ID_NEW:
3254 if (std::error_code EC = parseTypeTable())
3255 return EC;
3256 break;
3257 case bitc::VALUE_SYMTAB_BLOCK_ID:
3258 if (!SeenValueSymbolTable) {
3259 // Either this is an old form VST without function index and an
3260 // associated VST forward declaration record (which would have caused
3261 // the VST to be jumped to and parsed before it was encountered
3262 // normally in the stream), or there were no function blocks to
3263 // trigger an earlier parsing of the VST.
3264 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3265 if (std::error_code EC = parseValueSymbolTable())
3266 return EC;
3267 SeenValueSymbolTable = true;
3268 } else {
3269 // We must have had a VST forward declaration record, which caused
3270 // the parser to jump to and parse the VST earlier.
3271 assert(VSTOffset > 0);
3272 if (Stream.SkipBlock())
3273 return error("Invalid record");
3274 }
3275 break;
3276 case bitc::CONSTANTS_BLOCK_ID:
3277 if (std::error_code EC = parseConstants())
3278 return EC;
3279 if (std::error_code EC = resolveGlobalAndAliasInits())
3280 return EC;
3281 break;
3282 case bitc::METADATA_BLOCK_ID:
3283 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3284 if (std::error_code EC = rememberAndSkipMetadata())
3285 return EC;
3286 break;
3287 }
3288 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3289 if (std::error_code EC = parseMetadata(true))
3290 return EC;
3291 break;
3292 case bitc::METADATA_KIND_BLOCK_ID:
3293 if (std::error_code EC = parseMetadataKinds())
3294 return EC;
3295 break;
3296 case bitc::FUNCTION_BLOCK_ID:
3297 // If this is the first function body we've seen, reverse the
3298 // FunctionsWithBodies list.
3299 if (!SeenFirstFunctionBody) {
3300 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3301 if (std::error_code EC = globalCleanup())
3302 return EC;
3303 SeenFirstFunctionBody = true;
3304 }
3305
3306 if (VSTOffset > 0) {
3307 // If we have a VST forward declaration record, make sure we
3308 // parse the VST now if we haven't already. It is needed to
3309 // set up the DeferredFunctionInfo vector for lazy reading.
3310 if (!SeenValueSymbolTable) {
3311 if (std::error_code EC =
3312 BitcodeReader::parseValueSymbolTable(VSTOffset))
3313 return EC;
3314 SeenValueSymbolTable = true;
3315 // Fall through so that we record the NextUnreadBit below.
3316 // This is necessary in case we have an anonymous function that
3317 // is later materialized. Since it will not have a VST entry we
3318 // need to fall back to the lazy parse to find its offset.
3319 } else {
3320 // If we have a VST forward declaration record, but have already
3321 // parsed the VST (just above, when the first function body was
3322 // encountered here), then we are resuming the parse after
3323 // materializing functions. The ResumeBit points to the
3324 // start of the last function block recorded in the
3325 // DeferredFunctionInfo map. Skip it.
3326 if (Stream.SkipBlock())
3327 return error("Invalid record");
3328 continue;
3329 }
3330 }
3331
3332 // Support older bitcode files that did not have the function
3333 // index in the VST, nor a VST forward declaration record, as
3334 // well as anonymous functions that do not have VST entries.
3335 // Build the DeferredFunctionInfo vector on the fly.
3336 if (std::error_code EC = rememberAndSkipFunctionBody())
3337 return EC;
3338
3339 // Suspend parsing when we reach the function bodies. Subsequent
3340 // materialization calls will resume it when necessary. If the bitcode
3341 // file is old, the symbol table will be at the end instead and will not
3342 // have been seen yet. In this case, just finish the parse now.
3343 if (SeenValueSymbolTable) {
3344 NextUnreadBit = Stream.GetCurrentBitNo();
3345 return std::error_code();
3346 }
3347 break;
3348 case bitc::USELIST_BLOCK_ID:
3349 if (std::error_code EC = parseUseLists())
3350 return EC;
3351 break;
3352 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3353 if (std::error_code EC = parseOperandBundleTags())
3354 return EC;
3355 break;
3356 }
3357 continue;
3358
3359 case BitstreamEntry::Record:
3360 // The interesting case.
3361 break;
3362 }
3363
3364
3365 // Read a record.
3366 auto BitCode = Stream.readRecord(Entry.ID, Record);
3367 switch (BitCode) {
3368 default: break; // Default behavior, ignore unknown content.
3369 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
3370 if (Record.size() < 1)
3371 return error("Invalid record");
3372 // Only version #0 and #1 are supported so far.
3373 unsigned module_version = Record[0];
3374 switch (module_version) {
3375 default:
3376 return error("Invalid value");
3377 case 0:
3378 UseRelativeIDs = false;
3379 break;
3380 case 1:
3381 UseRelativeIDs = true;
3382 break;
3383 }
3384 break;
3385 }
3386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3387 std::string S;
3388 if (convertToString(Record, 0, S))
3389 return error("Invalid record");
3390 TheModule->setTargetTriple(S);
3391 break;
3392 }
3393 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3394 std::string S;
3395 if (convertToString(Record, 0, S))
3396 return error("Invalid record");
3397 TheModule->setDataLayout(S);
3398 break;
3399 }
3400 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3401 std::string S;
3402 if (convertToString(Record, 0, S))
3403 return error("Invalid record");
3404 TheModule->setModuleInlineAsm(S);
3405 break;
3406 }
3407 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3408 // FIXME: Remove in 4.0.
3409 std::string S;
3410 if (convertToString(Record, 0, S))
3411 return error("Invalid record");
3412 // Ignore value.
3413 break;
3414 }
3415 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3416 std::string S;
3417 if (convertToString(Record, 0, S))
3418 return error("Invalid record");
3419 SectionTable.push_back(S);
3420 break;
3421 }
3422 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3423 std::string S;
3424 if (convertToString(Record, 0, S))
3425 return error("Invalid record");
3426 GCTable.push_back(S);
3427 break;
3428 }
3429 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3430 if (Record.size() < 2)
3431 return error("Invalid record");
3432 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3433 unsigned ComdatNameSize = Record[1];
3434 std::string ComdatName;
3435 ComdatName.reserve(ComdatNameSize);
3436 for (unsigned i = 0; i != ComdatNameSize; ++i)
3437 ComdatName += (char)Record[2 + i];
3438 Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3439 C->setSelectionKind(SK);
3440 ComdatList.push_back(C);
3441 break;
3442 }
3443 // GLOBALVAR: [pointer type, isconst, initid,
3444 // linkage, alignment, section, visibility, threadlocal,
3445 // unnamed_addr, externally_initialized, dllstorageclass,
3446 // comdat]
3447 case bitc::MODULE_CODE_GLOBALVAR: {
3448 if (Record.size() < 6)
3449 return error("Invalid record");
3450 Type *Ty = getTypeByID(Record[0]);
3451 if (!Ty)
3452 return error("Invalid record");
3453 bool isConstant = Record[1] & 1;
3454 bool explicitType = Record[1] & 2;
3455 unsigned AddressSpace;
3456 if (explicitType) {
3457 AddressSpace = Record[1] >> 2;
3458 } else {
3459 if (!Ty->isPointerTy())
3460 return error("Invalid type for value");
3461 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3462 Ty = cast<PointerType>(Ty)->getElementType();
3463 }
3464
3465 uint64_t RawLinkage = Record[3];
3466 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3467 unsigned Alignment;
3468 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3469 return EC;
3470 std::string Section;
3471 if (Record[5]) {
3472 if (Record[5]-1 >= SectionTable.size())
3473 return error("Invalid ID");
3474 Section = SectionTable[Record[5]-1];
3475 }
3476 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3477 // Local linkage must have default visibility.
3478 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3479 // FIXME: Change to an error if non-default in 4.0.
3480 Visibility = getDecodedVisibility(Record[6]);
3481
3482 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3483 if (Record.size() > 7)
3484 TLM = getDecodedThreadLocalMode(Record[7]);
3485
3486 bool UnnamedAddr = false;
3487 if (Record.size() > 8)
3488 UnnamedAddr = Record[8];
3489
3490 bool ExternallyInitialized = false;
3491 if (Record.size() > 9)
3492 ExternallyInitialized = Record[9];
3493
3494 GlobalVariable *NewGV =
3495 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3496 TLM, AddressSpace, ExternallyInitialized);
3497 NewGV->setAlignment(Alignment);
3498 if (!Section.empty())
3499 NewGV->setSection(Section);
3500 NewGV->setVisibility(Visibility);
3501 NewGV->setUnnamedAddr(UnnamedAddr);
3502
3503 if (Record.size() > 10)
3504 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3505 else
3506 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3507
3508 ValueList.push_back(NewGV);
3509
3510 // Remember which value to use for the global initializer.
3511 if (unsigned InitID = Record[2])
3512 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3513
3514 if (Record.size() > 11) {
3515 if (unsigned ComdatID = Record[11]) {
3516 if (ComdatID > ComdatList.size())
3517 return error("Invalid global variable comdat ID");
3518 NewGV->setComdat(ComdatList[ComdatID - 1]);
3519 }
3520 } else if (hasImplicitComdat(RawLinkage)) {
3521 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3522 }
3523 break;
3524 }
3525 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
3526 // alignment, section, visibility, gc, unnamed_addr,
3527 // prologuedata, dllstorageclass, comdat, prefixdata]
3528 case bitc::MODULE_CODE_FUNCTION: {
3529 if (Record.size() < 8)
3530 return error("Invalid record");
3531 Type *Ty = getTypeByID(Record[0]);
3532 if (!Ty)
3533 return error("Invalid record");
3534 if (auto *PTy = dyn_cast<PointerType>(Ty))
3535 Ty = PTy->getElementType();
3536 auto *FTy = dyn_cast<FunctionType>(Ty);
3537 if (!FTy)
3538 return error("Invalid type for value");
3539 auto CC = static_cast<CallingConv::ID>(Record[1]);
3540 if (CC & ~CallingConv::MaxID)
3541 return error("Invalid calling convention ID");
3542
3543 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3544 "", TheModule);
3545
3546 Func->setCallingConv(CC);
3547 bool isProto = Record[2];
3548 uint64_t RawLinkage = Record[3];
3549 Func->setLinkage(getDecodedLinkage(RawLinkage));
3550 Func->setAttributes(getAttributes(Record[4]));
3551
3552 unsigned Alignment;
3553 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3554 return EC;
3555 Func->setAlignment(Alignment);
3556 if (Record[6]) {
3557 if (Record[6]-1 >= SectionTable.size())
3558 return error("Invalid ID");
3559 Func->setSection(SectionTable[Record[6]-1]);
3560 }
3561 // Local linkage must have default visibility.
3562 if (!Func->hasLocalLinkage())
3563 // FIXME: Change to an error if non-default in 4.0.
3564 Func->setVisibility(getDecodedVisibility(Record[7]));
3565 if (Record.size() > 8 && Record[8]) {
3566 if (Record[8]-1 >= GCTable.size())
3567 return error("Invalid ID");
3568 Func->setGC(GCTable[Record[8]-1].c_str());
3569 }
3570 bool UnnamedAddr = false;
3571 if (Record.size() > 9)
3572 UnnamedAddr = Record[9];
3573 Func->setUnnamedAddr(UnnamedAddr);
3574 if (Record.size() > 10 && Record[10] != 0)
3575 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3576
3577 if (Record.size() > 11)
3578 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3579 else
3580 upgradeDLLImportExportLinkage(Func, RawLinkage);
3581
3582 if (Record.size() > 12) {
3583 if (unsigned ComdatID = Record[12]) {
3584 if (ComdatID > ComdatList.size())
3585 return error("Invalid function comdat ID");
3586 Func->setComdat(ComdatList[ComdatID - 1]);
3587 }
3588 } else if (hasImplicitComdat(RawLinkage)) {
3589 Func->setComdat(reinterpret_cast<Comdat *>(1));
3590 }
3591
3592 if (Record.size() > 13 && Record[13] != 0)
3593 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3594
3595 if (Record.size() > 14 && Record[14] != 0)
3596 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3597
3598 ValueList.push_back(Func);
3599
3600 // If this is a function with a body, remember the prototype we are
3601 // creating now, so that we can match up the body with them later.
3602 if (!isProto) {
3603 Func->setIsMaterializable(true);
3604 FunctionsWithBodies.push_back(Func);
3605 DeferredFunctionInfo[Func] = 0;
3606 }
3607 break;
3608 }
3609 // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3610 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3611 case bitc::MODULE_CODE_ALIAS:
3612 case bitc::MODULE_CODE_ALIAS_OLD: {
3613 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3614 if (Record.size() < (3 + (unsigned)NewRecord))
3615 return error("Invalid record");
3616 unsigned OpNum = 0;
3617 Type *Ty = getTypeByID(Record[OpNum++]);
3618 if (!Ty)
3619 return error("Invalid record");
3620
3621 unsigned AddrSpace;
3622 if (!NewRecord) {
3623 auto *PTy = dyn_cast<PointerType>(Ty);
3624 if (!PTy)
3625 return error("Invalid type for value");
3626 Ty = PTy->getElementType();
3627 AddrSpace = PTy->getAddressSpace();
3628 } else {
3629 AddrSpace = Record[OpNum++];
3630 }
3631
3632 auto Val = Record[OpNum++];
3633 auto Linkage = Record[OpNum++];
3634 auto *NewGA = GlobalAlias::create(
3635 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3636 // Old bitcode files didn't have visibility field.
3637 // Local linkage must have default visibility.
3638 if (OpNum != Record.size()) {
3639 auto VisInd = OpNum++;
3640 if (!NewGA->hasLocalLinkage())
3641 // FIXME: Change to an error if non-default in 4.0.
3642 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3643 }
3644 if (OpNum != Record.size())
3645 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3646 else
3647 upgradeDLLImportExportLinkage(NewGA, Linkage);
3648 if (OpNum != Record.size())
3649 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3650 if (OpNum != Record.size())
3651 NewGA->setUnnamedAddr(Record[OpNum++]);
3652 ValueList.push_back(NewGA);
3653 AliasInits.push_back(std::make_pair(NewGA, Val));
3654 break;
3655 }
3656 /// MODULE_CODE_PURGEVALS: [numvals]
3657 case bitc::MODULE_CODE_PURGEVALS:
3658 // Trim down the value list to the specified size.
3659 if (Record.size() < 1 || Record[0] > ValueList.size())
3660 return error("Invalid record");
3661 ValueList.shrinkTo(Record[0]);
3662 break;
3663 /// MODULE_CODE_VSTOFFSET: [offset]
3664 case bitc::MODULE_CODE_VSTOFFSET:
3665 if (Record.size() < 1)
3666 return error("Invalid record");
3667 VSTOffset = Record[0];
3668 break;
3669 /// MODULE_CODE_METADATA_VALUES: [numvals]
3670 case bitc::MODULE_CODE_METADATA_VALUES:
3671 if (Record.size() < 1)
3672 return error("Invalid record");
3673 assert(!IsMetadataMaterialized);
3674 // This record contains the number of metadata values in the module-level
3675 // METADATA_BLOCK. It is used to support lazy parsing of metadata as
3676 // a postpass, where we will parse function-level metadata first.
3677 // This is needed because the ids of metadata are assigned implicitly
3678 // based on their ordering in the bitcode, with the function-level
3679 // metadata ids starting after the module-level metadata ids. Otherwise,
3680 // we would have to parse the module-level metadata block to prime the
3681 // MDValueList when we are lazy loading metadata during function
3682 // importing. Initialize the MDValueList size here based on the
3683 // record value, regardless of whether we are doing lazy metadata
3684 // loading, so that we have consistent handling and assertion
3685 // checking in parseMetadata for module-level metadata.
3686 NumModuleMDs = Record[0];
3687 SeenModuleValuesRecord = true;
3688 assert(MDValueList.size() == 0);
3689 MDValueList.resize(NumModuleMDs);
3690 break;
3691 }
3692 Record.clear();
3693 }
3694 }
3695
3696 /// Helper to read the header common to all bitcode files.
hasValidBitcodeHeader(BitstreamCursor & Stream)3697 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3698 // Sniff for the signature.
3699 if (Stream.Read(8) != 'B' ||
3700 Stream.Read(8) != 'C' ||
3701 Stream.Read(4) != 0x0 ||
3702 Stream.Read(4) != 0xC ||
3703 Stream.Read(4) != 0xE ||
3704 Stream.Read(4) != 0xD)
3705 return false;
3706 return true;
3707 }
3708
3709 std::error_code
parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,Module * M,bool ShouldLazyLoadMetadata)3710 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3711 Module *M, bool ShouldLazyLoadMetadata) {
3712 TheModule = M;
3713
3714 if (std::error_code EC = initStream(std::move(Streamer)))
3715 return EC;
3716
3717 // Sniff for the signature.
3718 if (!hasValidBitcodeHeader(Stream))
3719 return error("Invalid bitcode signature");
3720
3721 // We expect a number of well-defined blocks, though we don't necessarily
3722 // need to understand them all.
3723 while (1) {
3724 if (Stream.AtEndOfStream()) {
3725 // We didn't really read a proper Module.
3726 return error("Malformed IR file");
3727 }
3728
3729 BitstreamEntry Entry =
3730 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3731
3732 if (Entry.Kind != BitstreamEntry::SubBlock)
3733 return error("Malformed block");
3734
3735 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3736 parseBitcodeVersion();
3737 continue;
3738 }
3739
3740 if (Entry.ID == bitc::MODULE_BLOCK_ID)
3741 return parseModule(0, ShouldLazyLoadMetadata);
3742
3743 if (Stream.SkipBlock())
3744 return error("Invalid record");
3745 }
3746 }
3747
parseModuleTriple()3748 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3749 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3750 return error("Invalid record");
3751
3752 SmallVector<uint64_t, 64> Record;
3753
3754 std::string Triple;
3755 // Read all the records for this module.
3756 while (1) {
3757 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3758
3759 switch (Entry.Kind) {
3760 case BitstreamEntry::SubBlock: // Handled for us already.
3761 case BitstreamEntry::Error:
3762 return error("Malformed block");
3763 case BitstreamEntry::EndBlock:
3764 return Triple;
3765 case BitstreamEntry::Record:
3766 // The interesting case.
3767 break;
3768 }
3769
3770 // Read a record.
3771 switch (Stream.readRecord(Entry.ID, Record)) {
3772 default: break; // Default behavior, ignore unknown content.
3773 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3774 std::string S;
3775 if (convertToString(Record, 0, S))
3776 return error("Invalid record");
3777 Triple = S;
3778 break;
3779 }
3780 }
3781 Record.clear();
3782 }
3783 llvm_unreachable("Exit infinite loop");
3784 }
3785
parseTriple()3786 ErrorOr<std::string> BitcodeReader::parseTriple() {
3787 if (std::error_code EC = initStream(nullptr))
3788 return EC;
3789
3790 // Sniff for the signature.
3791 if (!hasValidBitcodeHeader(Stream))
3792 return error("Invalid bitcode signature");
3793
3794 // We expect a number of well-defined blocks, though we don't necessarily
3795 // need to understand them all.
3796 while (1) {
3797 BitstreamEntry Entry = Stream.advance();
3798
3799 switch (Entry.Kind) {
3800 case BitstreamEntry::Error:
3801 return error("Malformed block");
3802 case BitstreamEntry::EndBlock:
3803 return std::error_code();
3804
3805 case BitstreamEntry::SubBlock:
3806 if (Entry.ID == bitc::MODULE_BLOCK_ID)
3807 return parseModuleTriple();
3808
3809 // Ignore other sub-blocks.
3810 if (Stream.SkipBlock())
3811 return error("Malformed block");
3812 continue;
3813
3814 case BitstreamEntry::Record:
3815 Stream.skipRecord(Entry.ID);
3816 continue;
3817 }
3818 }
3819 }
3820
parseIdentificationBlock()3821 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3822 if (std::error_code EC = initStream(nullptr))
3823 return EC;
3824
3825 // Sniff for the signature.
3826 if (!hasValidBitcodeHeader(Stream))
3827 return error("Invalid bitcode signature");
3828
3829 // We expect a number of well-defined blocks, though we don't necessarily
3830 // need to understand them all.
3831 while (1) {
3832 BitstreamEntry Entry = Stream.advance();
3833 switch (Entry.Kind) {
3834 case BitstreamEntry::Error:
3835 return error("Malformed block");
3836 case BitstreamEntry::EndBlock:
3837 return std::error_code();
3838
3839 case BitstreamEntry::SubBlock:
3840 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3841 if (std::error_code EC = parseBitcodeVersion())
3842 return EC;
3843 return ProducerIdentification;
3844 }
3845 // Ignore other sub-blocks.
3846 if (Stream.SkipBlock())
3847 return error("Malformed block");
3848 continue;
3849 case BitstreamEntry::Record:
3850 Stream.skipRecord(Entry.ID);
3851 continue;
3852 }
3853 }
3854 }
3855
3856 /// Parse metadata attachments.
parseMetadataAttachment(Function & F)3857 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3858 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3859 return error("Invalid record");
3860
3861 SmallVector<uint64_t, 64> Record;
3862 while (1) {
3863 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3864
3865 switch (Entry.Kind) {
3866 case BitstreamEntry::SubBlock: // Handled for us already.
3867 case BitstreamEntry::Error:
3868 return error("Malformed block");
3869 case BitstreamEntry::EndBlock:
3870 return std::error_code();
3871 case BitstreamEntry::Record:
3872 // The interesting case.
3873 break;
3874 }
3875
3876 // Read a metadata attachment record.
3877 Record.clear();
3878 switch (Stream.readRecord(Entry.ID, Record)) {
3879 default: // Default behavior: ignore.
3880 break;
3881 case bitc::METADATA_ATTACHMENT: {
3882 unsigned RecordLength = Record.size();
3883 if (Record.empty())
3884 return error("Invalid record");
3885 if (RecordLength % 2 == 0) {
3886 // A function attachment.
3887 for (unsigned I = 0; I != RecordLength; I += 2) {
3888 auto K = MDKindMap.find(Record[I]);
3889 if (K == MDKindMap.end())
3890 return error("Invalid ID");
3891 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]);
3892 F.setMetadata(K->second, cast<MDNode>(MD));
3893 }
3894 continue;
3895 }
3896
3897 // An instruction attachment.
3898 Instruction *Inst = InstructionList[Record[0]];
3899 for (unsigned i = 1; i != RecordLength; i = i+2) {
3900 unsigned Kind = Record[i];
3901 DenseMap<unsigned, unsigned>::iterator I =
3902 MDKindMap.find(Kind);
3903 if (I == MDKindMap.end())
3904 return error("Invalid ID");
3905 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
3906 if (isa<LocalAsMetadata>(Node))
3907 // Drop the attachment. This used to be legal, but there's no
3908 // upgrade path.
3909 break;
3910 Inst->setMetadata(I->second, cast<MDNode>(Node));
3911 if (I->second == LLVMContext::MD_tbaa)
3912 InstsWithTBAATag.push_back(Inst);
3913 }
3914 break;
3915 }
3916 }
3917 }
3918 }
3919
typeCheckLoadStoreInst(Type * ValType,Type * PtrType)3920 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3921 LLVMContext &Context = PtrType->getContext();
3922 if (!isa<PointerType>(PtrType))
3923 return error(Context, "Load/Store operand is not a pointer type");
3924 Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3925
3926 if (ValType && ValType != ElemType)
3927 return error(Context, "Explicit load/store type does not match pointee "
3928 "type of pointer operand");
3929 if (!PointerType::isLoadableOrStorableType(ElemType))
3930 return error(Context, "Cannot load/store from pointer");
3931 return std::error_code();
3932 }
3933
3934 /// Lazily parse the specified function body block.
parseFunctionBody(Function * F)3935 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3936 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3937 return error("Invalid record");
3938
3939 InstructionList.clear();
3940 unsigned ModuleValueListSize = ValueList.size();
3941 unsigned ModuleMDValueListSize = MDValueList.size();
3942
3943 // Add all the function arguments to the value table.
3944 for (Argument &I : F->args())
3945 ValueList.push_back(&I);
3946
3947 unsigned NextValueNo = ValueList.size();
3948 BasicBlock *CurBB = nullptr;
3949 unsigned CurBBNo = 0;
3950
3951 DebugLoc LastLoc;
3952 auto getLastInstruction = [&]() -> Instruction * {
3953 if (CurBB && !CurBB->empty())
3954 return &CurBB->back();
3955 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3956 !FunctionBBs[CurBBNo - 1]->empty())
3957 return &FunctionBBs[CurBBNo - 1]->back();
3958 return nullptr;
3959 };
3960
3961 std::vector<OperandBundleDef> OperandBundles;
3962
3963 // Read all the records.
3964 SmallVector<uint64_t, 64> Record;
3965 while (1) {
3966 BitstreamEntry Entry = Stream.advance();
3967
3968 switch (Entry.Kind) {
3969 case BitstreamEntry::Error:
3970 return error("Malformed block");
3971 case BitstreamEntry::EndBlock:
3972 goto OutOfRecordLoop;
3973
3974 case BitstreamEntry::SubBlock:
3975 switch (Entry.ID) {
3976 default: // Skip unknown content.
3977 if (Stream.SkipBlock())
3978 return error("Invalid record");
3979 break;
3980 case bitc::CONSTANTS_BLOCK_ID:
3981 if (std::error_code EC = parseConstants())
3982 return EC;
3983 NextValueNo = ValueList.size();
3984 break;
3985 case bitc::VALUE_SYMTAB_BLOCK_ID:
3986 if (std::error_code EC = parseValueSymbolTable())
3987 return EC;
3988 break;
3989 case bitc::METADATA_ATTACHMENT_ID:
3990 if (std::error_code EC = parseMetadataAttachment(*F))
3991 return EC;
3992 break;
3993 case bitc::METADATA_BLOCK_ID:
3994 if (std::error_code EC = parseMetadata())
3995 return EC;
3996 break;
3997 case bitc::USELIST_BLOCK_ID:
3998 if (std::error_code EC = parseUseLists())
3999 return EC;
4000 break;
4001 }
4002 continue;
4003
4004 case BitstreamEntry::Record:
4005 // The interesting case.
4006 break;
4007 }
4008
4009 // Read a record.
4010 Record.clear();
4011 Instruction *I = nullptr;
4012 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4013 switch (BitCode) {
4014 default: // Default behavior: reject
4015 return error("Invalid value");
4016 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4017 if (Record.size() < 1 || Record[0] == 0)
4018 return error("Invalid record");
4019 // Create all the basic blocks for the function.
4020 FunctionBBs.resize(Record[0]);
4021
4022 // See if anything took the address of blocks in this function.
4023 auto BBFRI = BasicBlockFwdRefs.find(F);
4024 if (BBFRI == BasicBlockFwdRefs.end()) {
4025 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4026 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4027 } else {
4028 auto &BBRefs = BBFRI->second;
4029 // Check for invalid basic block references.
4030 if (BBRefs.size() > FunctionBBs.size())
4031 return error("Invalid ID");
4032 assert(!BBRefs.empty() && "Unexpected empty array");
4033 assert(!BBRefs.front() && "Invalid reference to entry block");
4034 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4035 ++I)
4036 if (I < RE && BBRefs[I]) {
4037 BBRefs[I]->insertInto(F);
4038 FunctionBBs[I] = BBRefs[I];
4039 } else {
4040 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4041 }
4042
4043 // Erase from the table.
4044 BasicBlockFwdRefs.erase(BBFRI);
4045 }
4046
4047 CurBB = FunctionBBs[0];
4048 continue;
4049 }
4050
4051 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4052 // This record indicates that the last instruction is at the same
4053 // location as the previous instruction with a location.
4054 I = getLastInstruction();
4055
4056 if (!I)
4057 return error("Invalid record");
4058 I->setDebugLoc(LastLoc);
4059 I = nullptr;
4060 continue;
4061
4062 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4063 I = getLastInstruction();
4064 if (!I || Record.size() < 4)
4065 return error("Invalid record");
4066
4067 unsigned Line = Record[0], Col = Record[1];
4068 unsigned ScopeID = Record[2], IAID = Record[3];
4069
4070 MDNode *Scope = nullptr, *IA = nullptr;
4071 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
4072 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
4073 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4074 I->setDebugLoc(LastLoc);
4075 I = nullptr;
4076 continue;
4077 }
4078
4079 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4080 unsigned OpNum = 0;
4081 Value *LHS, *RHS;
4082 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4083 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4084 OpNum+1 > Record.size())
4085 return error("Invalid record");
4086
4087 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4088 if (Opc == -1)
4089 return error("Invalid record");
4090 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4091 InstructionList.push_back(I);
4092 if (OpNum < Record.size()) {
4093 if (Opc == Instruction::Add ||
4094 Opc == Instruction::Sub ||
4095 Opc == Instruction::Mul ||
4096 Opc == Instruction::Shl) {
4097 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4098 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4099 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4100 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4101 } else if (Opc == Instruction::SDiv ||
4102 Opc == Instruction::UDiv ||
4103 Opc == Instruction::LShr ||
4104 Opc == Instruction::AShr) {
4105 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4106 cast<BinaryOperator>(I)->setIsExact(true);
4107 } else if (isa<FPMathOperator>(I)) {
4108 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4109 if (FMF.any())
4110 I->setFastMathFlags(FMF);
4111 }
4112
4113 }
4114 break;
4115 }
4116 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4117 unsigned OpNum = 0;
4118 Value *Op;
4119 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4120 OpNum+2 != Record.size())
4121 return error("Invalid record");
4122
4123 Type *ResTy = getTypeByID(Record[OpNum]);
4124 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4125 if (Opc == -1 || !ResTy)
4126 return error("Invalid record");
4127 Instruction *Temp = nullptr;
4128 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4129 if (Temp) {
4130 InstructionList.push_back(Temp);
4131 CurBB->getInstList().push_back(Temp);
4132 }
4133 } else {
4134 auto CastOp = (Instruction::CastOps)Opc;
4135 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4136 return error("Invalid cast");
4137 I = CastInst::Create(CastOp, Op, ResTy);
4138 }
4139 InstructionList.push_back(I);
4140 break;
4141 }
4142 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4143 case bitc::FUNC_CODE_INST_GEP_OLD:
4144 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4145 unsigned OpNum = 0;
4146
4147 Type *Ty;
4148 bool InBounds;
4149
4150 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4151 InBounds = Record[OpNum++];
4152 Ty = getTypeByID(Record[OpNum++]);
4153 } else {
4154 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4155 Ty = nullptr;
4156 }
4157
4158 Value *BasePtr;
4159 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4160 return error("Invalid record");
4161
4162 if (!Ty)
4163 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4164 ->getElementType();
4165 else if (Ty !=
4166 cast<SequentialType>(BasePtr->getType()->getScalarType())
4167 ->getElementType())
4168 return error(
4169 "Explicit gep type does not match pointee type of pointer operand");
4170
4171 SmallVector<Value*, 16> GEPIdx;
4172 while (OpNum != Record.size()) {
4173 Value *Op;
4174 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4175 return error("Invalid record");
4176 GEPIdx.push_back(Op);
4177 }
4178
4179 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4180
4181 InstructionList.push_back(I);
4182 if (InBounds)
4183 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4184 break;
4185 }
4186
4187 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4188 // EXTRACTVAL: [opty, opval, n x indices]
4189 unsigned OpNum = 0;
4190 Value *Agg;
4191 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4192 return error("Invalid record");
4193
4194 unsigned RecSize = Record.size();
4195 if (OpNum == RecSize)
4196 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4197
4198 SmallVector<unsigned, 4> EXTRACTVALIdx;
4199 Type *CurTy = Agg->getType();
4200 for (; OpNum != RecSize; ++OpNum) {
4201 bool IsArray = CurTy->isArrayTy();
4202 bool IsStruct = CurTy->isStructTy();
4203 uint64_t Index = Record[OpNum];
4204
4205 if (!IsStruct && !IsArray)
4206 return error("EXTRACTVAL: Invalid type");
4207 if ((unsigned)Index != Index)
4208 return error("Invalid value");
4209 if (IsStruct && Index >= CurTy->subtypes().size())
4210 return error("EXTRACTVAL: Invalid struct index");
4211 if (IsArray && Index >= CurTy->getArrayNumElements())
4212 return error("EXTRACTVAL: Invalid array index");
4213 EXTRACTVALIdx.push_back((unsigned)Index);
4214
4215 if (IsStruct)
4216 CurTy = CurTy->subtypes()[Index];
4217 else
4218 CurTy = CurTy->subtypes()[0];
4219 }
4220
4221 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4222 InstructionList.push_back(I);
4223 break;
4224 }
4225
4226 case bitc::FUNC_CODE_INST_INSERTVAL: {
4227 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4228 unsigned OpNum = 0;
4229 Value *Agg;
4230 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4231 return error("Invalid record");
4232 Value *Val;
4233 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4234 return error("Invalid record");
4235
4236 unsigned RecSize = Record.size();
4237 if (OpNum == RecSize)
4238 return error("INSERTVAL: Invalid instruction with 0 indices");
4239
4240 SmallVector<unsigned, 4> INSERTVALIdx;
4241 Type *CurTy = Agg->getType();
4242 for (; OpNum != RecSize; ++OpNum) {
4243 bool IsArray = CurTy->isArrayTy();
4244 bool IsStruct = CurTy->isStructTy();
4245 uint64_t Index = Record[OpNum];
4246
4247 if (!IsStruct && !IsArray)
4248 return error("INSERTVAL: Invalid type");
4249 if ((unsigned)Index != Index)
4250 return error("Invalid value");
4251 if (IsStruct && Index >= CurTy->subtypes().size())
4252 return error("INSERTVAL: Invalid struct index");
4253 if (IsArray && Index >= CurTy->getArrayNumElements())
4254 return error("INSERTVAL: Invalid array index");
4255
4256 INSERTVALIdx.push_back((unsigned)Index);
4257 if (IsStruct)
4258 CurTy = CurTy->subtypes()[Index];
4259 else
4260 CurTy = CurTy->subtypes()[0];
4261 }
4262
4263 if (CurTy != Val->getType())
4264 return error("Inserted value type doesn't match aggregate type");
4265
4266 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4267 InstructionList.push_back(I);
4268 break;
4269 }
4270
4271 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4272 // obsolete form of select
4273 // handles select i1 ... in old bitcode
4274 unsigned OpNum = 0;
4275 Value *TrueVal, *FalseVal, *Cond;
4276 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4277 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4278 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4279 return error("Invalid record");
4280
4281 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4282 InstructionList.push_back(I);
4283 break;
4284 }
4285
4286 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4287 // new form of select
4288 // handles select i1 or select [N x i1]
4289 unsigned OpNum = 0;
4290 Value *TrueVal, *FalseVal, *Cond;
4291 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4292 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4293 getValueTypePair(Record, OpNum, NextValueNo, Cond))
4294 return error("Invalid record");
4295
4296 // select condition can be either i1 or [N x i1]
4297 if (VectorType* vector_type =
4298 dyn_cast<VectorType>(Cond->getType())) {
4299 // expect <n x i1>
4300 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4301 return error("Invalid type for value");
4302 } else {
4303 // expect i1
4304 if (Cond->getType() != Type::getInt1Ty(Context))
4305 return error("Invalid type for value");
4306 }
4307
4308 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4309 InstructionList.push_back(I);
4310 break;
4311 }
4312
4313 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4314 unsigned OpNum = 0;
4315 Value *Vec, *Idx;
4316 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4317 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4318 return error("Invalid record");
4319 if (!Vec->getType()->isVectorTy())
4320 return error("Invalid type for value");
4321 I = ExtractElementInst::Create(Vec, Idx);
4322 InstructionList.push_back(I);
4323 break;
4324 }
4325
4326 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4327 unsigned OpNum = 0;
4328 Value *Vec, *Elt, *Idx;
4329 if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4330 return error("Invalid record");
4331 if (!Vec->getType()->isVectorTy())
4332 return error("Invalid type for value");
4333 if (popValue(Record, OpNum, NextValueNo,
4334 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4335 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4336 return error("Invalid record");
4337 I = InsertElementInst::Create(Vec, Elt, Idx);
4338 InstructionList.push_back(I);
4339 break;
4340 }
4341
4342 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4343 unsigned OpNum = 0;
4344 Value *Vec1, *Vec2, *Mask;
4345 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4346 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4347 return error("Invalid record");
4348
4349 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4350 return error("Invalid record");
4351 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4352 return error("Invalid type for value");
4353 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4354 InstructionList.push_back(I);
4355 break;
4356 }
4357
4358 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4359 // Old form of ICmp/FCmp returning bool
4360 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4361 // both legal on vectors but had different behaviour.
4362 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4363 // FCmp/ICmp returning bool or vector of bool
4364
4365 unsigned OpNum = 0;
4366 Value *LHS, *RHS;
4367 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4368 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4369 return error("Invalid record");
4370
4371 unsigned PredVal = Record[OpNum];
4372 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4373 FastMathFlags FMF;
4374 if (IsFP && Record.size() > OpNum+1)
4375 FMF = getDecodedFastMathFlags(Record[++OpNum]);
4376
4377 if (OpNum+1 != Record.size())
4378 return error("Invalid record");
4379
4380 if (LHS->getType()->isFPOrFPVectorTy())
4381 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4382 else
4383 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4384
4385 if (FMF.any())
4386 I->setFastMathFlags(FMF);
4387 InstructionList.push_back(I);
4388 break;
4389 }
4390
4391 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4392 {
4393 unsigned Size = Record.size();
4394 if (Size == 0) {
4395 I = ReturnInst::Create(Context);
4396 InstructionList.push_back(I);
4397 break;
4398 }
4399
4400 unsigned OpNum = 0;
4401 Value *Op = nullptr;
4402 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4403 return error("Invalid record");
4404 if (OpNum != Record.size())
4405 return error("Invalid record");
4406
4407 I = ReturnInst::Create(Context, Op);
4408 InstructionList.push_back(I);
4409 break;
4410 }
4411 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4412 if (Record.size() != 1 && Record.size() != 3)
4413 return error("Invalid record");
4414 BasicBlock *TrueDest = getBasicBlock(Record[0]);
4415 if (!TrueDest)
4416 return error("Invalid record");
4417
4418 if (Record.size() == 1) {
4419 I = BranchInst::Create(TrueDest);
4420 InstructionList.push_back(I);
4421 }
4422 else {
4423 BasicBlock *FalseDest = getBasicBlock(Record[1]);
4424 Value *Cond = getValue(Record, 2, NextValueNo,
4425 Type::getInt1Ty(Context));
4426 if (!FalseDest || !Cond)
4427 return error("Invalid record");
4428 I = BranchInst::Create(TrueDest, FalseDest, Cond);
4429 InstructionList.push_back(I);
4430 }
4431 break;
4432 }
4433 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4434 if (Record.size() != 1 && Record.size() != 2)
4435 return error("Invalid record");
4436 unsigned Idx = 0;
4437 Value *CleanupPad =
4438 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4439 if (!CleanupPad)
4440 return error("Invalid record");
4441 BasicBlock *UnwindDest = nullptr;
4442 if (Record.size() == 2) {
4443 UnwindDest = getBasicBlock(Record[Idx++]);
4444 if (!UnwindDest)
4445 return error("Invalid record");
4446 }
4447
4448 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4449 InstructionList.push_back(I);
4450 break;
4451 }
4452 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4453 if (Record.size() != 2)
4454 return error("Invalid record");
4455 unsigned Idx = 0;
4456 Value *CatchPad =
4457 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4458 if (!CatchPad)
4459 return error("Invalid record");
4460 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4461 if (!BB)
4462 return error("Invalid record");
4463
4464 I = CatchReturnInst::Create(CatchPad, BB);
4465 InstructionList.push_back(I);
4466 break;
4467 }
4468 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4469 // We must have, at minimum, the outer scope and the number of arguments.
4470 if (Record.size() < 2)
4471 return error("Invalid record");
4472
4473 unsigned Idx = 0;
4474
4475 Value *ParentPad =
4476 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4477
4478 unsigned NumHandlers = Record[Idx++];
4479
4480 SmallVector<BasicBlock *, 2> Handlers;
4481 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4482 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4483 if (!BB)
4484 return error("Invalid record");
4485 Handlers.push_back(BB);
4486 }
4487
4488 BasicBlock *UnwindDest = nullptr;
4489 if (Idx + 1 == Record.size()) {
4490 UnwindDest = getBasicBlock(Record[Idx++]);
4491 if (!UnwindDest)
4492 return error("Invalid record");
4493 }
4494
4495 if (Record.size() != Idx)
4496 return error("Invalid record");
4497
4498 auto *CatchSwitch =
4499 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4500 for (BasicBlock *Handler : Handlers)
4501 CatchSwitch->addHandler(Handler);
4502 I = CatchSwitch;
4503 InstructionList.push_back(I);
4504 break;
4505 }
4506 case bitc::FUNC_CODE_INST_CATCHPAD:
4507 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4508 // We must have, at minimum, the outer scope and the number of arguments.
4509 if (Record.size() < 2)
4510 return error("Invalid record");
4511
4512 unsigned Idx = 0;
4513
4514 Value *ParentPad =
4515 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4516
4517 unsigned NumArgOperands = Record[Idx++];
4518
4519 SmallVector<Value *, 2> Args;
4520 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4521 Value *Val;
4522 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4523 return error("Invalid record");
4524 Args.push_back(Val);
4525 }
4526
4527 if (Record.size() != Idx)
4528 return error("Invalid record");
4529
4530 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4531 I = CleanupPadInst::Create(ParentPad, Args);
4532 else
4533 I = CatchPadInst::Create(ParentPad, Args);
4534 InstructionList.push_back(I);
4535 break;
4536 }
4537 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4538 // Check magic
4539 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4540 // "New" SwitchInst format with case ranges. The changes to write this
4541 // format were reverted but we still recognize bitcode that uses it.
4542 // Hopefully someday we will have support for case ranges and can use
4543 // this format again.
4544
4545 Type *OpTy = getTypeByID(Record[1]);
4546 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4547
4548 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4549 BasicBlock *Default = getBasicBlock(Record[3]);
4550 if (!OpTy || !Cond || !Default)
4551 return error("Invalid record");
4552
4553 unsigned NumCases = Record[4];
4554
4555 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4556 InstructionList.push_back(SI);
4557
4558 unsigned CurIdx = 5;
4559 for (unsigned i = 0; i != NumCases; ++i) {
4560 SmallVector<ConstantInt*, 1> CaseVals;
4561 unsigned NumItems = Record[CurIdx++];
4562 for (unsigned ci = 0; ci != NumItems; ++ci) {
4563 bool isSingleNumber = Record[CurIdx++];
4564
4565 APInt Low;
4566 unsigned ActiveWords = 1;
4567 if (ValueBitWidth > 64)
4568 ActiveWords = Record[CurIdx++];
4569 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4570 ValueBitWidth);
4571 CurIdx += ActiveWords;
4572
4573 if (!isSingleNumber) {
4574 ActiveWords = 1;
4575 if (ValueBitWidth > 64)
4576 ActiveWords = Record[CurIdx++];
4577 APInt High = readWideAPInt(
4578 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4579 CurIdx += ActiveWords;
4580
4581 // FIXME: It is not clear whether values in the range should be
4582 // compared as signed or unsigned values. The partially
4583 // implemented changes that used this format in the past used
4584 // unsigned comparisons.
4585 for ( ; Low.ule(High); ++Low)
4586 CaseVals.push_back(ConstantInt::get(Context, Low));
4587 } else
4588 CaseVals.push_back(ConstantInt::get(Context, Low));
4589 }
4590 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4591 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4592 cve = CaseVals.end(); cvi != cve; ++cvi)
4593 SI->addCase(*cvi, DestBB);
4594 }
4595 I = SI;
4596 break;
4597 }
4598
4599 // Old SwitchInst format without case ranges.
4600
4601 if (Record.size() < 3 || (Record.size() & 1) == 0)
4602 return error("Invalid record");
4603 Type *OpTy = getTypeByID(Record[0]);
4604 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4605 BasicBlock *Default = getBasicBlock(Record[2]);
4606 if (!OpTy || !Cond || !Default)
4607 return error("Invalid record");
4608 unsigned NumCases = (Record.size()-3)/2;
4609 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4610 InstructionList.push_back(SI);
4611 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4612 ConstantInt *CaseVal =
4613 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4614 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4615 if (!CaseVal || !DestBB) {
4616 delete SI;
4617 return error("Invalid record");
4618 }
4619 SI->addCase(CaseVal, DestBB);
4620 }
4621 I = SI;
4622 break;
4623 }
4624 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4625 if (Record.size() < 2)
4626 return error("Invalid record");
4627 Type *OpTy = getTypeByID(Record[0]);
4628 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4629 if (!OpTy || !Address)
4630 return error("Invalid record");
4631 unsigned NumDests = Record.size()-2;
4632 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4633 InstructionList.push_back(IBI);
4634 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4635 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4636 IBI->addDestination(DestBB);
4637 } else {
4638 delete IBI;
4639 return error("Invalid record");
4640 }
4641 }
4642 I = IBI;
4643 break;
4644 }
4645
4646 case bitc::FUNC_CODE_INST_INVOKE: {
4647 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4648 if (Record.size() < 4)
4649 return error("Invalid record");
4650 unsigned OpNum = 0;
4651 AttributeSet PAL = getAttributes(Record[OpNum++]);
4652 unsigned CCInfo = Record[OpNum++];
4653 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4654 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4655
4656 FunctionType *FTy = nullptr;
4657 if (CCInfo >> 13 & 1 &&
4658 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4659 return error("Explicit invoke type is not a function type");
4660
4661 Value *Callee;
4662 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4663 return error("Invalid record");
4664
4665 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4666 if (!CalleeTy)
4667 return error("Callee is not a pointer");
4668 if (!FTy) {
4669 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4670 if (!FTy)
4671 return error("Callee is not of pointer to function type");
4672 } else if (CalleeTy->getElementType() != FTy)
4673 return error("Explicit invoke type does not match pointee type of "
4674 "callee operand");
4675 if (Record.size() < FTy->getNumParams() + OpNum)
4676 return error("Insufficient operands to call");
4677
4678 SmallVector<Value*, 16> Ops;
4679 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4680 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4681 FTy->getParamType(i)));
4682 if (!Ops.back())
4683 return error("Invalid record");
4684 }
4685
4686 if (!FTy->isVarArg()) {
4687 if (Record.size() != OpNum)
4688 return error("Invalid record");
4689 } else {
4690 // Read type/value pairs for varargs params.
4691 while (OpNum != Record.size()) {
4692 Value *Op;
4693 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4694 return error("Invalid record");
4695 Ops.push_back(Op);
4696 }
4697 }
4698
4699 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4700 OperandBundles.clear();
4701 InstructionList.push_back(I);
4702 cast<InvokeInst>(I)->setCallingConv(
4703 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4704 cast<InvokeInst>(I)->setAttributes(PAL);
4705 break;
4706 }
4707 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4708 unsigned Idx = 0;
4709 Value *Val = nullptr;
4710 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4711 return error("Invalid record");
4712 I = ResumeInst::Create(Val);
4713 InstructionList.push_back(I);
4714 break;
4715 }
4716 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4717 I = new UnreachableInst(Context);
4718 InstructionList.push_back(I);
4719 break;
4720 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4721 if (Record.size() < 1 || ((Record.size()-1)&1))
4722 return error("Invalid record");
4723 Type *Ty = getTypeByID(Record[0]);
4724 if (!Ty)
4725 return error("Invalid record");
4726
4727 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4728 InstructionList.push_back(PN);
4729
4730 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4731 Value *V;
4732 // With the new function encoding, it is possible that operands have
4733 // negative IDs (for forward references). Use a signed VBR
4734 // representation to keep the encoding small.
4735 if (UseRelativeIDs)
4736 V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4737 else
4738 V = getValue(Record, 1+i, NextValueNo, Ty);
4739 BasicBlock *BB = getBasicBlock(Record[2+i]);
4740 if (!V || !BB)
4741 return error("Invalid record");
4742 PN->addIncoming(V, BB);
4743 }
4744 I = PN;
4745 break;
4746 }
4747
4748 case bitc::FUNC_CODE_INST_LANDINGPAD:
4749 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4750 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4751 unsigned Idx = 0;
4752 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4753 if (Record.size() < 3)
4754 return error("Invalid record");
4755 } else {
4756 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4757 if (Record.size() < 4)
4758 return error("Invalid record");
4759 }
4760 Type *Ty = getTypeByID(Record[Idx++]);
4761 if (!Ty)
4762 return error("Invalid record");
4763 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4764 Value *PersFn = nullptr;
4765 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4766 return error("Invalid record");
4767
4768 if (!F->hasPersonalityFn())
4769 F->setPersonalityFn(cast<Constant>(PersFn));
4770 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4771 return error("Personality function mismatch");
4772 }
4773
4774 bool IsCleanup = !!Record[Idx++];
4775 unsigned NumClauses = Record[Idx++];
4776 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4777 LP->setCleanup(IsCleanup);
4778 for (unsigned J = 0; J != NumClauses; ++J) {
4779 LandingPadInst::ClauseType CT =
4780 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4781 Value *Val;
4782
4783 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4784 delete LP;
4785 return error("Invalid record");
4786 }
4787
4788 assert((CT != LandingPadInst::Catch ||
4789 !isa<ArrayType>(Val->getType())) &&
4790 "Catch clause has a invalid type!");
4791 assert((CT != LandingPadInst::Filter ||
4792 isa<ArrayType>(Val->getType())) &&
4793 "Filter clause has invalid type!");
4794 LP->addClause(cast<Constant>(Val));
4795 }
4796
4797 I = LP;
4798 InstructionList.push_back(I);
4799 break;
4800 }
4801
4802 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4803 if (Record.size() != 4)
4804 return error("Invalid record");
4805 uint64_t AlignRecord = Record[3];
4806 const uint64_t InAllocaMask = uint64_t(1) << 5;
4807 const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4808 // Reserve bit 7 for SwiftError flag.
4809 // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4810 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4811 bool InAlloca = AlignRecord & InAllocaMask;
4812 Type *Ty = getTypeByID(Record[0]);
4813 if ((AlignRecord & ExplicitTypeMask) == 0) {
4814 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4815 if (!PTy)
4816 return error("Old-style alloca with a non-pointer type");
4817 Ty = PTy->getElementType();
4818 }
4819 Type *OpTy = getTypeByID(Record[1]);
4820 Value *Size = getFnValueByID(Record[2], OpTy);
4821 unsigned Align;
4822 if (std::error_code EC =
4823 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4824 return EC;
4825 }
4826 if (!Ty || !Size)
4827 return error("Invalid record");
4828 AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4829 AI->setUsedWithInAlloca(InAlloca);
4830 I = AI;
4831 InstructionList.push_back(I);
4832 break;
4833 }
4834 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4835 unsigned OpNum = 0;
4836 Value *Op;
4837 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4838 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4839 return error("Invalid record");
4840
4841 Type *Ty = nullptr;
4842 if (OpNum + 3 == Record.size())
4843 Ty = getTypeByID(Record[OpNum++]);
4844 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4845 return EC;
4846 if (!Ty)
4847 Ty = cast<PointerType>(Op->getType())->getElementType();
4848
4849 unsigned Align;
4850 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4851 return EC;
4852 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4853
4854 InstructionList.push_back(I);
4855 break;
4856 }
4857 case bitc::FUNC_CODE_INST_LOADATOMIC: {
4858 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4859 unsigned OpNum = 0;
4860 Value *Op;
4861 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4862 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4863 return error("Invalid record");
4864
4865 Type *Ty = nullptr;
4866 if (OpNum + 5 == Record.size())
4867 Ty = getTypeByID(Record[OpNum++]);
4868 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4869 return EC;
4870 if (!Ty)
4871 Ty = cast<PointerType>(Op->getType())->getElementType();
4872
4873 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4874 if (Ordering == NotAtomic || Ordering == Release ||
4875 Ordering == AcquireRelease)
4876 return error("Invalid record");
4877 if (Ordering != NotAtomic && Record[OpNum] == 0)
4878 return error("Invalid record");
4879 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4880
4881 unsigned Align;
4882 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4883 return EC;
4884 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4885
4886 InstructionList.push_back(I);
4887 break;
4888 }
4889 case bitc::FUNC_CODE_INST_STORE:
4890 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4891 unsigned OpNum = 0;
4892 Value *Val, *Ptr;
4893 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4894 (BitCode == bitc::FUNC_CODE_INST_STORE
4895 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4896 : popValue(Record, OpNum, NextValueNo,
4897 cast<PointerType>(Ptr->getType())->getElementType(),
4898 Val)) ||
4899 OpNum + 2 != Record.size())
4900 return error("Invalid record");
4901
4902 if (std::error_code EC =
4903 typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4904 return EC;
4905 unsigned Align;
4906 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4907 return EC;
4908 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4909 InstructionList.push_back(I);
4910 break;
4911 }
4912 case bitc::FUNC_CODE_INST_STOREATOMIC:
4913 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4914 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4915 unsigned OpNum = 0;
4916 Value *Val, *Ptr;
4917 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4918 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4919 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4920 : popValue(Record, OpNum, NextValueNo,
4921 cast<PointerType>(Ptr->getType())->getElementType(),
4922 Val)) ||
4923 OpNum + 4 != Record.size())
4924 return error("Invalid record");
4925
4926 if (std::error_code EC =
4927 typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4928 return EC;
4929 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4930 if (Ordering == NotAtomic || Ordering == Acquire ||
4931 Ordering == AcquireRelease)
4932 return error("Invalid record");
4933 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4934 if (Ordering != NotAtomic && Record[OpNum] == 0)
4935 return error("Invalid record");
4936
4937 unsigned Align;
4938 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4939 return EC;
4940 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4941 InstructionList.push_back(I);
4942 break;
4943 }
4944 case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4945 case bitc::FUNC_CODE_INST_CMPXCHG: {
4946 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4947 // failureordering?, isweak?]
4948 unsigned OpNum = 0;
4949 Value *Ptr, *Cmp, *New;
4950 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4951 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4952 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4953 : popValue(Record, OpNum, NextValueNo,
4954 cast<PointerType>(Ptr->getType())->getElementType(),
4955 Cmp)) ||
4956 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4957 Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4958 return error("Invalid record");
4959 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4960 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
4961 return error("Invalid record");
4962 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
4963
4964 if (std::error_code EC =
4965 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4966 return EC;
4967 AtomicOrdering FailureOrdering;
4968 if (Record.size() < 7)
4969 FailureOrdering =
4970 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4971 else
4972 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4973
4974 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4975 SynchScope);
4976 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4977
4978 if (Record.size() < 8) {
4979 // Before weak cmpxchgs existed, the instruction simply returned the
4980 // value loaded from memory, so bitcode files from that era will be
4981 // expecting the first component of a modern cmpxchg.
4982 CurBB->getInstList().push_back(I);
4983 I = ExtractValueInst::Create(I, 0);
4984 } else {
4985 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4986 }
4987
4988 InstructionList.push_back(I);
4989 break;
4990 }
4991 case bitc::FUNC_CODE_INST_ATOMICRMW: {
4992 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4993 unsigned OpNum = 0;
4994 Value *Ptr, *Val;
4995 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4996 popValue(Record, OpNum, NextValueNo,
4997 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4998 OpNum+4 != Record.size())
4999 return error("Invalid record");
5000 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5001 if (Operation < AtomicRMWInst::FIRST_BINOP ||
5002 Operation > AtomicRMWInst::LAST_BINOP)
5003 return error("Invalid record");
5004 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5005 if (Ordering == NotAtomic || Ordering == Unordered)
5006 return error("Invalid record");
5007 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5008 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5009 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5010 InstructionList.push_back(I);
5011 break;
5012 }
5013 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5014 if (2 != Record.size())
5015 return error("Invalid record");
5016 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5017 if (Ordering == NotAtomic || Ordering == Unordered ||
5018 Ordering == Monotonic)
5019 return error("Invalid record");
5020 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5021 I = new FenceInst(Context, Ordering, SynchScope);
5022 InstructionList.push_back(I);
5023 break;
5024 }
5025 case bitc::FUNC_CODE_INST_CALL: {
5026 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5027 if (Record.size() < 3)
5028 return error("Invalid record");
5029
5030 unsigned OpNum = 0;
5031 AttributeSet PAL = getAttributes(Record[OpNum++]);
5032 unsigned CCInfo = Record[OpNum++];
5033
5034 FastMathFlags FMF;
5035 if ((CCInfo >> bitc::CALL_FMF) & 1) {
5036 FMF = getDecodedFastMathFlags(Record[OpNum++]);
5037 if (!FMF.any())
5038 return error("Fast math flags indicator set for call with no FMF");
5039 }
5040
5041 FunctionType *FTy = nullptr;
5042 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5043 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5044 return error("Explicit call type is not a function type");
5045
5046 Value *Callee;
5047 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5048 return error("Invalid record");
5049
5050 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5051 if (!OpTy)
5052 return error("Callee is not a pointer type");
5053 if (!FTy) {
5054 FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5055 if (!FTy)
5056 return error("Callee is not of pointer to function type");
5057 } else if (OpTy->getElementType() != FTy)
5058 return error("Explicit call type does not match pointee type of "
5059 "callee operand");
5060 if (Record.size() < FTy->getNumParams() + OpNum)
5061 return error("Insufficient operands to call");
5062
5063 SmallVector<Value*, 16> Args;
5064 // Read the fixed params.
5065 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5066 if (FTy->getParamType(i)->isLabelTy())
5067 Args.push_back(getBasicBlock(Record[OpNum]));
5068 else
5069 Args.push_back(getValue(Record, OpNum, NextValueNo,
5070 FTy->getParamType(i)));
5071 if (!Args.back())
5072 return error("Invalid record");
5073 }
5074
5075 // Read type/value pairs for varargs params.
5076 if (!FTy->isVarArg()) {
5077 if (OpNum != Record.size())
5078 return error("Invalid record");
5079 } else {
5080 while (OpNum != Record.size()) {
5081 Value *Op;
5082 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5083 return error("Invalid record");
5084 Args.push_back(Op);
5085 }
5086 }
5087
5088 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5089 OperandBundles.clear();
5090 InstructionList.push_back(I);
5091 cast<CallInst>(I)->setCallingConv(
5092 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5093 CallInst::TailCallKind TCK = CallInst::TCK_None;
5094 if (CCInfo & 1 << bitc::CALL_TAIL)
5095 TCK = CallInst::TCK_Tail;
5096 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5097 TCK = CallInst::TCK_MustTail;
5098 if (CCInfo & (1 << bitc::CALL_NOTAIL))
5099 TCK = CallInst::TCK_NoTail;
5100 cast<CallInst>(I)->setTailCallKind(TCK);
5101 cast<CallInst>(I)->setAttributes(PAL);
5102 if (FMF.any()) {
5103 if (!isa<FPMathOperator>(I))
5104 return error("Fast-math-flags specified for call without "
5105 "floating-point scalar or vector return type");
5106 I->setFastMathFlags(FMF);
5107 }
5108 break;
5109 }
5110 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5111 if (Record.size() < 3)
5112 return error("Invalid record");
5113 Type *OpTy = getTypeByID(Record[0]);
5114 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5115 Type *ResTy = getTypeByID(Record[2]);
5116 if (!OpTy || !Op || !ResTy)
5117 return error("Invalid record");
5118 I = new VAArgInst(Op, ResTy);
5119 InstructionList.push_back(I);
5120 break;
5121 }
5122
5123 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5124 // A call or an invoke can be optionally prefixed with some variable
5125 // number of operand bundle blocks. These blocks are read into
5126 // OperandBundles and consumed at the next call or invoke instruction.
5127
5128 if (Record.size() < 1 || Record[0] >= BundleTags.size())
5129 return error("Invalid record");
5130
5131 std::vector<Value *> Inputs;
5132
5133 unsigned OpNum = 1;
5134 while (OpNum != Record.size()) {
5135 Value *Op;
5136 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5137 return error("Invalid record");
5138 Inputs.push_back(Op);
5139 }
5140
5141 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5142 continue;
5143 }
5144 }
5145
5146 // Add instruction to end of current BB. If there is no current BB, reject
5147 // this file.
5148 if (!CurBB) {
5149 delete I;
5150 return error("Invalid instruction with no BB");
5151 }
5152 if (!OperandBundles.empty()) {
5153 delete I;
5154 return error("Operand bundles found with no consumer");
5155 }
5156 CurBB->getInstList().push_back(I);
5157
5158 // If this was a terminator instruction, move to the next block.
5159 if (isa<TerminatorInst>(I)) {
5160 ++CurBBNo;
5161 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5162 }
5163
5164 // Non-void values get registered in the value table for future use.
5165 if (I && !I->getType()->isVoidTy())
5166 ValueList.assignValue(I, NextValueNo++);
5167 }
5168
5169 OutOfRecordLoop:
5170
5171 if (!OperandBundles.empty())
5172 return error("Operand bundles found with no consumer");
5173
5174 // Check the function list for unresolved values.
5175 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5176 if (!A->getParent()) {
5177 // We found at least one unresolved value. Nuke them all to avoid leaks.
5178 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5179 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5180 A->replaceAllUsesWith(UndefValue::get(A->getType()));
5181 delete A;
5182 }
5183 }
5184 return error("Never resolved value found in function");
5185 }
5186 }
5187
5188 // FIXME: Check for unresolved forward-declared metadata references
5189 // and clean up leaks.
5190
5191 // Trim the value list down to the size it was before we parsed this function.
5192 ValueList.shrinkTo(ModuleValueListSize);
5193 MDValueList.shrinkTo(ModuleMDValueListSize);
5194 std::vector<BasicBlock*>().swap(FunctionBBs);
5195 return std::error_code();
5196 }
5197
5198 /// Find the function body in the bitcode stream
findFunctionInStream(Function * F,DenseMap<Function *,uint64_t>::iterator DeferredFunctionInfoIterator)5199 std::error_code BitcodeReader::findFunctionInStream(
5200 Function *F,
5201 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5202 while (DeferredFunctionInfoIterator->second == 0) {
5203 // This is the fallback handling for the old format bitcode that
5204 // didn't contain the function index in the VST, or when we have
5205 // an anonymous function which would not have a VST entry.
5206 // Assert that we have one of those two cases.
5207 assert(VSTOffset == 0 || !F->hasName());
5208 // Parse the next body in the stream and set its position in the
5209 // DeferredFunctionInfo map.
5210 if (std::error_code EC = rememberAndSkipFunctionBodies())
5211 return EC;
5212 }
5213 return std::error_code();
5214 }
5215
5216 //===----------------------------------------------------------------------===//
5217 // GVMaterializer implementation
5218 //===----------------------------------------------------------------------===//
5219
releaseBuffer()5220 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5221
materialize(GlobalValue * GV)5222 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5223 // In older bitcode we must materialize the metadata before parsing
5224 // any functions, in order to set up the MDValueList properly.
5225 if (!SeenModuleValuesRecord) {
5226 if (std::error_code EC = materializeMetadata())
5227 return EC;
5228 }
5229
5230 Function *F = dyn_cast<Function>(GV);
5231 // If it's not a function or is already material, ignore the request.
5232 if (!F || !F->isMaterializable())
5233 return std::error_code();
5234
5235 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5236 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5237 // If its position is recorded as 0, its body is somewhere in the stream
5238 // but we haven't seen it yet.
5239 if (DFII->second == 0)
5240 if (std::error_code EC = findFunctionInStream(F, DFII))
5241 return EC;
5242
5243 // Move the bit stream to the saved position of the deferred function body.
5244 Stream.JumpToBit(DFII->second);
5245
5246 if (std::error_code EC = parseFunctionBody(F))
5247 return EC;
5248 F->setIsMaterializable(false);
5249
5250 if (StripDebugInfo)
5251 stripDebugInfo(*F);
5252
5253 // Upgrade any old intrinsic calls in the function.
5254 for (auto &I : UpgradedIntrinsics) {
5255 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5256 UI != UE;) {
5257 User *U = *UI;
5258 ++UI;
5259 if (CallInst *CI = dyn_cast<CallInst>(U))
5260 UpgradeIntrinsicCall(CI, I.second);
5261 }
5262 }
5263
5264 // Finish fn->subprogram upgrade for materialized functions.
5265 if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5266 F->setSubprogram(SP);
5267
5268 // Bring in any functions that this function forward-referenced via
5269 // blockaddresses.
5270 return materializeForwardReferencedFunctions();
5271 }
5272
materializeModule()5273 std::error_code BitcodeReader::materializeModule() {
5274 if (std::error_code EC = materializeMetadata())
5275 return EC;
5276
5277 // Promise to materialize all forward references.
5278 WillMaterializeAllForwardRefs = true;
5279
5280 // Iterate over the module, deserializing any functions that are still on
5281 // disk.
5282 for (Function &F : *TheModule) {
5283 if (std::error_code EC = materialize(&F))
5284 return EC;
5285 }
5286 // At this point, if there are any function bodies, parse the rest of
5287 // the bits in the module past the last function block we have recorded
5288 // through either lazy scanning or the VST.
5289 if (LastFunctionBlockBit || NextUnreadBit)
5290 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5291 : NextUnreadBit);
5292
5293 // Check that all block address forward references got resolved (as we
5294 // promised above).
5295 if (!BasicBlockFwdRefs.empty())
5296 return error("Never resolved function from blockaddress");
5297
5298 // Upgrade any intrinsic calls that slipped through (should not happen!) and
5299 // delete the old functions to clean up. We can't do this unless the entire
5300 // module is materialized because there could always be another function body
5301 // with calls to the old function.
5302 for (auto &I : UpgradedIntrinsics) {
5303 for (auto *U : I.first->users()) {
5304 if (CallInst *CI = dyn_cast<CallInst>(U))
5305 UpgradeIntrinsicCall(CI, I.second);
5306 }
5307 if (!I.first->use_empty())
5308 I.first->replaceAllUsesWith(I.second);
5309 I.first->eraseFromParent();
5310 }
5311 UpgradedIntrinsics.clear();
5312
5313 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5314 UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5315
5316 UpgradeDebugInfo(*TheModule);
5317 return std::error_code();
5318 }
5319
getIdentifiedStructTypes() const5320 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5321 return IdentifiedStructTypes;
5322 }
5323
5324 std::error_code
initStream(std::unique_ptr<DataStreamer> Streamer)5325 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5326 if (Streamer)
5327 return initLazyStream(std::move(Streamer));
5328 return initStreamFromBuffer();
5329 }
5330
initStreamFromBuffer()5331 std::error_code BitcodeReader::initStreamFromBuffer() {
5332 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5333 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5334
5335 if (Buffer->getBufferSize() & 3)
5336 return error("Invalid bitcode signature");
5337
5338 // If we have a wrapper header, parse it and ignore the non-bc file contents.
5339 // The magic number is 0x0B17C0DE stored in little endian.
5340 if (isBitcodeWrapper(BufPtr, BufEnd))
5341 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5342 return error("Invalid bitcode wrapper header");
5343
5344 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5345 Stream.init(&*StreamFile);
5346
5347 return std::error_code();
5348 }
5349
5350 std::error_code
initLazyStream(std::unique_ptr<DataStreamer> Streamer)5351 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5352 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5353 // see it.
5354 auto OwnedBytes =
5355 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5356 StreamingMemoryObject &Bytes = *OwnedBytes;
5357 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5358 Stream.init(&*StreamFile);
5359
5360 unsigned char buf[16];
5361 if (Bytes.readBytes(buf, 16, 0) != 16)
5362 return error("Invalid bitcode signature");
5363
5364 if (!isBitcode(buf, buf + 16))
5365 return error("Invalid bitcode signature");
5366
5367 if (isBitcodeWrapper(buf, buf + 4)) {
5368 const unsigned char *bitcodeStart = buf;
5369 const unsigned char *bitcodeEnd = buf + 16;
5370 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5371 Bytes.dropLeadingBytes(bitcodeStart - buf);
5372 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5373 }
5374 return std::error_code();
5375 }
5376
error(BitcodeError E,const Twine & Message)5377 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
5378 const Twine &Message) {
5379 return ::error(DiagnosticHandler, make_error_code(E), Message);
5380 }
5381
error(const Twine & Message)5382 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
5383 return ::error(DiagnosticHandler,
5384 make_error_code(BitcodeError::CorruptedBitcode), Message);
5385 }
5386
error(BitcodeError E)5387 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
5388 return ::error(DiagnosticHandler, make_error_code(E));
5389 }
5390
FunctionIndexBitcodeReader(MemoryBuffer * Buffer,DiagnosticHandlerFunction DiagnosticHandler,bool IsLazy,bool CheckFuncSummaryPresenceOnly)5391 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5392 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5393 bool IsLazy, bool CheckFuncSummaryPresenceOnly)
5394 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5395 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5396
FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,bool IsLazy,bool CheckFuncSummaryPresenceOnly)5397 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5398 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5399 bool CheckFuncSummaryPresenceOnly)
5400 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5401 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5402
freeState()5403 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
5404
releaseBuffer()5405 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5406
5407 // Specialized value symbol table parser used when reading function index
5408 // blocks where we don't actually create global values.
5409 // At the end of this routine the function index is populated with a map
5410 // from function name to FunctionInfo. The function info contains
5411 // the function block's bitcode offset as well as the offset into the
5412 // function summary section.
parseValueSymbolTable()5413 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
5414 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5415 return error("Invalid record");
5416
5417 SmallVector<uint64_t, 64> Record;
5418
5419 // Read all the records for this value table.
5420 SmallString<128> ValueName;
5421 while (1) {
5422 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5423
5424 switch (Entry.Kind) {
5425 case BitstreamEntry::SubBlock: // Handled for us already.
5426 case BitstreamEntry::Error:
5427 return error("Malformed block");
5428 case BitstreamEntry::EndBlock:
5429 return std::error_code();
5430 case BitstreamEntry::Record:
5431 // The interesting case.
5432 break;
5433 }
5434
5435 // Read a record.
5436 Record.clear();
5437 switch (Stream.readRecord(Entry.ID, Record)) {
5438 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5439 break;
5440 case bitc::VST_CODE_FNENTRY: {
5441 // VST_FNENTRY: [valueid, offset, namechar x N]
5442 if (convertToString(Record, 2, ValueName))
5443 return error("Invalid record");
5444 unsigned ValueID = Record[0];
5445 uint64_t FuncOffset = Record[1];
5446 std::unique_ptr<FunctionInfo> FuncInfo =
5447 llvm::make_unique<FunctionInfo>(FuncOffset);
5448 if (foundFuncSummary() && !IsLazy) {
5449 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5450 SummaryMap.find(ValueID);
5451 assert(SMI != SummaryMap.end() && "Summary info not found");
5452 FuncInfo->setFunctionSummary(std::move(SMI->second));
5453 }
5454 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5455
5456 ValueName.clear();
5457 break;
5458 }
5459 case bitc::VST_CODE_COMBINED_FNENTRY: {
5460 // VST_FNENTRY: [offset, namechar x N]
5461 if (convertToString(Record, 1, ValueName))
5462 return error("Invalid record");
5463 uint64_t FuncSummaryOffset = Record[0];
5464 std::unique_ptr<FunctionInfo> FuncInfo =
5465 llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
5466 if (foundFuncSummary() && !IsLazy) {
5467 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5468 SummaryMap.find(FuncSummaryOffset);
5469 assert(SMI != SummaryMap.end() && "Summary info not found");
5470 FuncInfo->setFunctionSummary(std::move(SMI->second));
5471 }
5472 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5473
5474 ValueName.clear();
5475 break;
5476 }
5477 }
5478 }
5479 }
5480
5481 // Parse just the blocks needed for function index building out of the module.
5482 // At the end of this routine the function Index is populated with a map
5483 // from function name to FunctionInfo. The function info contains
5484 // either the parsed function summary information (when parsing summaries
5485 // eagerly), or just to the function summary record's offset
5486 // if parsing lazily (IsLazy).
parseModule()5487 std::error_code FunctionIndexBitcodeReader::parseModule() {
5488 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5489 return error("Invalid record");
5490
5491 // Read the function index for this module.
5492 while (1) {
5493 BitstreamEntry Entry = Stream.advance();
5494
5495 switch (Entry.Kind) {
5496 case BitstreamEntry::Error:
5497 return error("Malformed block");
5498 case BitstreamEntry::EndBlock:
5499 return std::error_code();
5500
5501 case BitstreamEntry::SubBlock:
5502 if (CheckFuncSummaryPresenceOnly) {
5503 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) {
5504 SeenFuncSummary = true;
5505 // No need to parse the rest since we found the summary.
5506 return std::error_code();
5507 }
5508 if (Stream.SkipBlock())
5509 return error("Invalid record");
5510 continue;
5511 }
5512 switch (Entry.ID) {
5513 default: // Skip unknown content.
5514 if (Stream.SkipBlock())
5515 return error("Invalid record");
5516 break;
5517 case bitc::BLOCKINFO_BLOCK_ID:
5518 // Need to parse these to get abbrev ids (e.g. for VST)
5519 if (Stream.ReadBlockInfoBlock())
5520 return error("Malformed block");
5521 break;
5522 case bitc::VALUE_SYMTAB_BLOCK_ID:
5523 if (std::error_code EC = parseValueSymbolTable())
5524 return EC;
5525 break;
5526 case bitc::FUNCTION_SUMMARY_BLOCK_ID:
5527 SeenFuncSummary = true;
5528 if (IsLazy) {
5529 // Lazy parsing of summary info, skip it.
5530 if (Stream.SkipBlock())
5531 return error("Invalid record");
5532 } else if (std::error_code EC = parseEntireSummary())
5533 return EC;
5534 break;
5535 case bitc::MODULE_STRTAB_BLOCK_ID:
5536 if (std::error_code EC = parseModuleStringTable())
5537 return EC;
5538 break;
5539 }
5540 continue;
5541
5542 case BitstreamEntry::Record:
5543 Stream.skipRecord(Entry.ID);
5544 continue;
5545 }
5546 }
5547 }
5548
5549 // Eagerly parse the entire function summary block (i.e. for all functions
5550 // in the index). This populates the FunctionSummary objects in
5551 // the index.
parseEntireSummary()5552 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
5553 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
5554 return error("Invalid record");
5555
5556 SmallVector<uint64_t, 64> Record;
5557
5558 while (1) {
5559 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5560
5561 switch (Entry.Kind) {
5562 case BitstreamEntry::SubBlock: // Handled for us already.
5563 case BitstreamEntry::Error:
5564 return error("Malformed block");
5565 case BitstreamEntry::EndBlock:
5566 return std::error_code();
5567 case BitstreamEntry::Record:
5568 // The interesting case.
5569 break;
5570 }
5571
5572 // Read a record. The record format depends on whether this
5573 // is a per-module index or a combined index file. In the per-module
5574 // case the records contain the associated value's ID for correlation
5575 // with VST entries. In the combined index the correlation is done
5576 // via the bitcode offset of the summary records (which were saved
5577 // in the combined index VST entries). The records also contain
5578 // information used for ThinLTO renaming and importing.
5579 Record.clear();
5580 uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5581 switch (Stream.readRecord(Entry.ID, Record)) {
5582 default: // Default behavior: ignore.
5583 break;
5584 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
5585 case bitc::FS_CODE_PERMODULE_ENTRY: {
5586 unsigned ValueID = Record[0];
5587 bool IsLocal = Record[1];
5588 unsigned InstCount = Record[2];
5589 std::unique_ptr<FunctionSummary> FS =
5590 llvm::make_unique<FunctionSummary>(InstCount);
5591 FS->setLocalFunction(IsLocal);
5592 // The module path string ref set in the summary must be owned by the
5593 // index's module string table. Since we don't have a module path
5594 // string table section in the per-module index, we create a single
5595 // module path string table entry with an empty (0) ID to take
5596 // ownership.
5597 FS->setModulePath(
5598 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5599 SummaryMap[ValueID] = std::move(FS);
5600 }
5601 // FS_COMBINED_ENTRY: [modid, instcount]
5602 case bitc::FS_CODE_COMBINED_ENTRY: {
5603 uint64_t ModuleId = Record[0];
5604 unsigned InstCount = Record[1];
5605 std::unique_ptr<FunctionSummary> FS =
5606 llvm::make_unique<FunctionSummary>(InstCount);
5607 FS->setModulePath(ModuleIdMap[ModuleId]);
5608 SummaryMap[CurRecordBit] = std::move(FS);
5609 }
5610 }
5611 }
5612 llvm_unreachable("Exit infinite loop");
5613 }
5614
5615 // Parse the module string table block into the Index.
5616 // This populates the ModulePathStringTable map in the index.
parseModuleStringTable()5617 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
5618 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5619 return error("Invalid record");
5620
5621 SmallVector<uint64_t, 64> Record;
5622
5623 SmallString<128> ModulePath;
5624 while (1) {
5625 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5626
5627 switch (Entry.Kind) {
5628 case BitstreamEntry::SubBlock: // Handled for us already.
5629 case BitstreamEntry::Error:
5630 return error("Malformed block");
5631 case BitstreamEntry::EndBlock:
5632 return std::error_code();
5633 case BitstreamEntry::Record:
5634 // The interesting case.
5635 break;
5636 }
5637
5638 Record.clear();
5639 switch (Stream.readRecord(Entry.ID, Record)) {
5640 default: // Default behavior: ignore.
5641 break;
5642 case bitc::MST_CODE_ENTRY: {
5643 // MST_ENTRY: [modid, namechar x N]
5644 if (convertToString(Record, 1, ModulePath))
5645 return error("Invalid record");
5646 uint64_t ModuleId = Record[0];
5647 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
5648 ModuleIdMap[ModuleId] = ModulePathInMap;
5649 ModulePath.clear();
5650 break;
5651 }
5652 }
5653 }
5654 llvm_unreachable("Exit infinite loop");
5655 }
5656
5657 // Parse the function info index from the bitcode streamer into the given index.
parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,FunctionInfoIndex * I)5658 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
5659 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
5660 TheIndex = I;
5661
5662 if (std::error_code EC = initStream(std::move(Streamer)))
5663 return EC;
5664
5665 // Sniff for the signature.
5666 if (!hasValidBitcodeHeader(Stream))
5667 return error("Invalid bitcode signature");
5668
5669 // We expect a number of well-defined blocks, though we don't necessarily
5670 // need to understand them all.
5671 while (1) {
5672 if (Stream.AtEndOfStream()) {
5673 // We didn't really read a proper Module block.
5674 return error("Malformed block");
5675 }
5676
5677 BitstreamEntry Entry =
5678 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5679
5680 if (Entry.Kind != BitstreamEntry::SubBlock)
5681 return error("Malformed block");
5682
5683 // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5684 // building the function summary index.
5685 if (Entry.ID == bitc::MODULE_BLOCK_ID)
5686 return parseModule();
5687
5688 if (Stream.SkipBlock())
5689 return error("Invalid record");
5690 }
5691 }
5692
5693 // Parse the function information at the given offset in the buffer into
5694 // the index. Used to support lazy parsing of function summaries from the
5695 // combined index during importing.
5696 // TODO: This function is not yet complete as it won't have a consumer
5697 // until ThinLTO function importing is added.
parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,FunctionInfoIndex * I,size_t FunctionSummaryOffset)5698 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
5699 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
5700 size_t FunctionSummaryOffset) {
5701 TheIndex = I;
5702
5703 if (std::error_code EC = initStream(std::move(Streamer)))
5704 return EC;
5705
5706 // Sniff for the signature.
5707 if (!hasValidBitcodeHeader(Stream))
5708 return error("Invalid bitcode signature");
5709
5710 Stream.JumpToBit(FunctionSummaryOffset);
5711
5712 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5713
5714 switch (Entry.Kind) {
5715 default:
5716 return error("Malformed block");
5717 case BitstreamEntry::Record:
5718 // The expected case.
5719 break;
5720 }
5721
5722 // TODO: Read a record. This interface will be completed when ThinLTO
5723 // importing is added so that it can be tested.
5724 SmallVector<uint64_t, 64> Record;
5725 switch (Stream.readRecord(Entry.ID, Record)) {
5726 case bitc::FS_CODE_COMBINED_ENTRY:
5727 default:
5728 return error("Invalid record");
5729 }
5730
5731 return std::error_code();
5732 }
5733
5734 std::error_code
initStream(std::unique_ptr<DataStreamer> Streamer)5735 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5736 if (Streamer)
5737 return initLazyStream(std::move(Streamer));
5738 return initStreamFromBuffer();
5739 }
5740
initStreamFromBuffer()5741 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
5742 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
5743 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
5744
5745 if (Buffer->getBufferSize() & 3)
5746 return error("Invalid bitcode signature");
5747
5748 // If we have a wrapper header, parse it and ignore the non-bc file contents.
5749 // The magic number is 0x0B17C0DE stored in little endian.
5750 if (isBitcodeWrapper(BufPtr, BufEnd))
5751 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5752 return error("Invalid bitcode wrapper header");
5753
5754 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5755 Stream.init(&*StreamFile);
5756
5757 return std::error_code();
5758 }
5759
initLazyStream(std::unique_ptr<DataStreamer> Streamer)5760 std::error_code FunctionIndexBitcodeReader::initLazyStream(
5761 std::unique_ptr<DataStreamer> Streamer) {
5762 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5763 // see it.
5764 auto OwnedBytes =
5765 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5766 StreamingMemoryObject &Bytes = *OwnedBytes;
5767 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5768 Stream.init(&*StreamFile);
5769
5770 unsigned char buf[16];
5771 if (Bytes.readBytes(buf, 16, 0) != 16)
5772 return error("Invalid bitcode signature");
5773
5774 if (!isBitcode(buf, buf + 16))
5775 return error("Invalid bitcode signature");
5776
5777 if (isBitcodeWrapper(buf, buf + 4)) {
5778 const unsigned char *bitcodeStart = buf;
5779 const unsigned char *bitcodeEnd = buf + 16;
5780 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5781 Bytes.dropLeadingBytes(bitcodeStart - buf);
5782 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5783 }
5784 return std::error_code();
5785 }
5786
5787 namespace {
5788 class BitcodeErrorCategoryType : public std::error_category {
name() const5789 const char *name() const LLVM_NOEXCEPT override {
5790 return "llvm.bitcode";
5791 }
message(int IE) const5792 std::string message(int IE) const override {
5793 BitcodeError E = static_cast<BitcodeError>(IE);
5794 switch (E) {
5795 case BitcodeError::InvalidBitcodeSignature:
5796 return "Invalid bitcode signature";
5797 case BitcodeError::CorruptedBitcode:
5798 return "Corrupted bitcode";
5799 }
5800 llvm_unreachable("Unknown error type!");
5801 }
5802 };
5803 }
5804
5805 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5806
BitcodeErrorCategory()5807 const std::error_category &llvm::BitcodeErrorCategory() {
5808 return *ErrorCategory;
5809 }
5810
5811 //===----------------------------------------------------------------------===//
5812 // External interface
5813 //===----------------------------------------------------------------------===//
5814
5815 static ErrorOr<std::unique_ptr<Module>>
getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer,StringRef Name,BitcodeReader * R,LLVMContext & Context,bool MaterializeAll,bool ShouldLazyLoadMetadata)5816 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
5817 BitcodeReader *R, LLVMContext &Context,
5818 bool MaterializeAll, bool ShouldLazyLoadMetadata) {
5819 std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5820 M->setMaterializer(R);
5821
5822 auto cleanupOnError = [&](std::error_code EC) {
5823 R->releaseBuffer(); // Never take ownership on error.
5824 return EC;
5825 };
5826
5827 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5828 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
5829 ShouldLazyLoadMetadata))
5830 return cleanupOnError(EC);
5831
5832 if (MaterializeAll) {
5833 // Read in the entire module, and destroy the BitcodeReader.
5834 if (std::error_code EC = M->materializeAll())
5835 return cleanupOnError(EC);
5836 } else {
5837 // Resolve forward references from blockaddresses.
5838 if (std::error_code EC = R->materializeForwardReferencedFunctions())
5839 return cleanupOnError(EC);
5840 }
5841 return std::move(M);
5842 }
5843
5844 /// \brief Get a lazy one-at-time loading module from bitcode.
5845 ///
5846 /// This isn't always used in a lazy context. In particular, it's also used by
5847 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull
5848 /// in forward-referenced functions from block address references.
5849 ///
5850 /// \param[in] MaterializeAll Set to \c true if we should materialize
5851 /// everything.
5852 static ErrorOr<std::unique_ptr<Module>>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool MaterializeAll,bool ShouldLazyLoadMetadata=false)5853 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
5854 LLVMContext &Context, bool MaterializeAll,
5855 bool ShouldLazyLoadMetadata = false) {
5856 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
5857
5858 ErrorOr<std::unique_ptr<Module>> Ret =
5859 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
5860 MaterializeAll, ShouldLazyLoadMetadata);
5861 if (!Ret)
5862 return Ret;
5863
5864 Buffer.release(); // The BitcodeReader owns it now.
5865 return Ret;
5866 }
5867
5868 ErrorOr<std::unique_ptr<Module>>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool ShouldLazyLoadMetadata)5869 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
5870 LLVMContext &Context, bool ShouldLazyLoadMetadata) {
5871 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
5872 ShouldLazyLoadMetadata);
5873 }
5874
5875 ErrorOr<std::unique_ptr<Module>>
getStreamedBitcodeModule(StringRef Name,std::unique_ptr<DataStreamer> Streamer,LLVMContext & Context)5876 llvm::getStreamedBitcodeModule(StringRef Name,
5877 std::unique_ptr<DataStreamer> Streamer,
5878 LLVMContext &Context) {
5879 std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5880 BitcodeReader *R = new BitcodeReader(Context);
5881
5882 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
5883 false);
5884 }
5885
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context)5886 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5887 LLVMContext &Context) {
5888 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5889 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
5890 // TODO: Restore the use-lists to the in-memory state when the bitcode was
5891 // written. We must defer until the Module has been fully materialized.
5892 }
5893
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context)5894 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
5895 LLVMContext &Context) {
5896 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5897 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
5898 ErrorOr<std::string> Triple = R->parseTriple();
5899 if (Triple.getError())
5900 return "";
5901 return Triple.get();
5902 }
5903
getBitcodeProducerString(MemoryBufferRef Buffer,LLVMContext & Context)5904 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
5905 LLVMContext &Context) {
5906 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5907 BitcodeReader R(Buf.release(), Context);
5908 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
5909 if (ProducerString.getError())
5910 return "";
5911 return ProducerString.get();
5912 }
5913
5914 // Parse the specified bitcode buffer, returning the function info index.
5915 // If IsLazy is false, parse the entire function summary into
5916 // the index. Otherwise skip the function summary section, and only create
5917 // an index object with a map from function name to function summary offset.
5918 // The index is used to perform lazy function summary reading later.
5919 ErrorOr<std::unique_ptr<FunctionInfoIndex>>
getFunctionInfoIndex(MemoryBufferRef Buffer,DiagnosticHandlerFunction DiagnosticHandler,bool IsLazy)5920 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer,
5921 DiagnosticHandlerFunction DiagnosticHandler,
5922 bool IsLazy) {
5923 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5924 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
5925
5926 auto Index = llvm::make_unique<FunctionInfoIndex>();
5927
5928 auto cleanupOnError = [&](std::error_code EC) {
5929 R.releaseBuffer(); // Never take ownership on error.
5930 return EC;
5931 };
5932
5933 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
5934 return cleanupOnError(EC);
5935
5936 Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5937 return std::move(Index);
5938 }
5939
5940 // Check if the given bitcode buffer contains a function summary block.
hasFunctionSummary(MemoryBufferRef Buffer,DiagnosticHandlerFunction DiagnosticHandler)5941 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer,
5942 DiagnosticHandlerFunction DiagnosticHandler) {
5943 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5944 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
5945
5946 auto cleanupOnError = [&](std::error_code EC) {
5947 R.releaseBuffer(); // Never take ownership on error.
5948 return false;
5949 };
5950
5951 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
5952 return cleanupOnError(EC);
5953
5954 Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5955 return R.foundFuncSummary();
5956 }
5957
5958 // This method supports lazy reading of function summary data from the combined
5959 // index during ThinLTO function importing. When reading the combined index
5960 // file, getFunctionInfoIndex is first invoked with IsLazy=true.
5961 // Then this method is called for each function considered for importing,
5962 // to parse the summary information for the given function name into
5963 // the index.
readFunctionSummary(MemoryBufferRef Buffer,DiagnosticHandlerFunction DiagnosticHandler,StringRef FunctionName,std::unique_ptr<FunctionInfoIndex> Index)5964 std::error_code llvm::readFunctionSummary(
5965 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5966 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) {
5967 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5968 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
5969
5970 auto cleanupOnError = [&](std::error_code EC) {
5971 R.releaseBuffer(); // Never take ownership on error.
5972 return EC;
5973 };
5974
5975 // Lookup the given function name in the FunctionMap, which may
5976 // contain a list of function infos in the case of a COMDAT. Walk through
5977 // and parse each function summary info at the function summary offset
5978 // recorded when parsing the value symbol table.
5979 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
5980 size_t FunctionSummaryOffset = FI->bitcodeIndex();
5981 if (std::error_code EC =
5982 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
5983 return cleanupOnError(EC);
5984 }
5985
5986 Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5987 return std::error_code();
5988 }
5989