/external/eigen/Eigen/src/Cholesky/ |
D | LLT.h | 50 template<typename _MatrixType, int _UpLo> class LLT 78 LLT() : m_matrix(), m_isInitialized(false) {} in LLT() function 86 LLT(Index size) : m_matrix(size, size), in LLT() function 89 LLT(const MatrixType& matrix) in LLT() function 121 inline const internal::solve_retval<LLT, Rhs> 127 return internal::solve_retval<LLT, Rhs>(*this, b.derived()); in solve() 144 LLT& compute(const MatrixType& matrix); 174 LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); 391 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a) 414 LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& si… [all …]
|
/external/eigen/Eigen/ |
D | OrderingMethods | 15 * the sparse matrix decomposition (LLT, LU, QR). 19 * the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
|
D | Cholesky | 23 #include "src/Cholesky/LLT.h"
|
D | CholmodSupport | 17 * - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
|
/external/eigen/test/ |
D | nomalloc.cpp | 130 Eigen::LLT<Matrix> LLT; LLT.compute(A); in ctms_decompositions() local 131 X = LLT.solve(B); in ctms_decompositions() 132 x = LLT.solve(b); in ctms_decompositions()
|
D | cholesky.cpp | 94 LLT<SquareMatrixType,Lower> chollo(symmLo); in cholesky() 102 LLT<SquareMatrixType,Upper> cholup(symmUp); in cholesky() 237 CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm) )); in cholesky() 272 LLT<RealMatrixType,Lower> chollo(symmLo); in cholesky_cplx() 361 LLT<MatrixType> llt; in cholesky_verify_assert() 399 CALL_SUBTEST_9( LLT<MatrixXf>(10) ); in test_cholesky()
|
/external/eigen/test/eigen2/ |
D | eigen2_cholesky.cpp | 80 LLT<SquareMatrixType> chol(symm); in cholesky() 94 LLT<SquareMatrixType> chol(symm); in cholesky()
|
/external/eigen/failtest/ |
D | llt_int.cpp | 13 LLT<Matrix<SCALAR,Dynamic,Dynamic> > llt(Matrix<SCALAR,Dynamic,Dynamic>::Random(10,10)); in main()
|
/external/eigen/doc/snippets/ |
D | LLT_example.cpp | 5 LLT<MatrixXd> lltOfA(A); // compute the Cholesky decomposition of A
|
/external/eigen/doc/examples/ |
D | TutorialLinAlgComputeTwice.cpp | 10 LLT<Matrix2f> llt; in main()
|
/external/ceres-solver/internal/ceres/ |
D | dense_normal_cholesky_solver.cc | 99 Eigen::LLT<Matrix, Eigen::Upper> llt = in SolveUsingEigen()
|
D | schur_complement_solver.cc | 137 Eigen::LLT<Matrix, Eigen::Upper> llt = in SolveReducedLinearSystem()
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | GeneralizedSelfAdjointEigenSolver.h | 176 LLT<MatrixType> cholB(matB); in compute()
|
/external/eigen/bench/spbench/ |
D | spbench.dtd | 4 <!ELEMENT TYPE (#PCDATA)> <!-- One of LU, LLT, LDLT, ITER -->
|
/external/eigen/bench/ |
D | benchCholesky.cpp | 70 LLT<SquareMatrixType> chol(covMat); in benchLLT()
|
D | sparse_cholesky.cpp | 113 LLT<DenseMatrix> chol(m1); in main()
|
/external/eigen/doc/ |
D | SparseLinearSystems.dox | 108 In the compute() function, the matrix is generally factorized: LLT for self-adjoint matrices, LDLT … 147 …LDLT <TH> CHOLMOD LDLT <TH > PASTIX LDLT <TH > LLT <TH > CHOLMOD SP LLT <TH > CHOLMOD LLT <TH > PA…
|
D | TopicAliasing.dox | 121 <tr class="alt"> <td> LLT::solve() </td> <td> LLT::solveInPlace() </td> </tr>
|
D | TopicLinearAlgebraDecompositions.dox | 90 <td>LLT</td>
|
D | TutorialLinearAlgebra.dox | 83 <td>LLT</td>
|
D | TutorialSparse.dox | 12 …/td><td>\code#include <Eigen/SparseCholesky>\endcode</td><td>Direct sparse LLT and LDLT Cholesky f…
|
D | QuickReference.dox | 19 …e Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky f…
|
/external/eigen/Eigen/src/Core/ |
D | SelfAdjointView.h | 152 const LLT<PlainObject, UpLo> llt() const;
|
D | MatrixBase.h | 361 const LLT<PlainObject> llt() const;
|
/external/eigen/Eigen/src/Core/util/ |
D | ForwardDeclarations.h | 225 template<typename MatrixType, int UpLo = Lower> class LLT;
|