1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include "ceres/internal/port.h"
32
33 #include <algorithm>
34 #include <ctime>
35 #include <set>
36 #include <vector>
37
38 #include "ceres/block_random_access_dense_matrix.h"
39 #include "ceres/block_random_access_matrix.h"
40 #include "ceres/block_random_access_sparse_matrix.h"
41 #include "ceres/block_sparse_matrix.h"
42 #include "ceres/block_structure.h"
43 #include "ceres/cxsparse.h"
44 #include "ceres/detect_structure.h"
45 #include "ceres/internal/eigen.h"
46 #include "ceres/internal/scoped_ptr.h"
47 #include "ceres/lapack.h"
48 #include "ceres/linear_solver.h"
49 #include "ceres/schur_complement_solver.h"
50 #include "ceres/suitesparse.h"
51 #include "ceres/triplet_sparse_matrix.h"
52 #include "ceres/types.h"
53 #include "ceres/wall_time.h"
54 #include "Eigen/Dense"
55 #include "Eigen/SparseCore"
56
57 namespace ceres {
58 namespace internal {
59
SolveImpl(BlockSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)60 LinearSolver::Summary SchurComplementSolver::SolveImpl(
61 BlockSparseMatrix* A,
62 const double* b,
63 const LinearSolver::PerSolveOptions& per_solve_options,
64 double* x) {
65 EventLogger event_logger("SchurComplementSolver::Solve");
66
67 if (eliminator_.get() == NULL) {
68 InitStorage(A->block_structure());
69 DetectStructure(*A->block_structure(),
70 options_.elimination_groups[0],
71 &options_.row_block_size,
72 &options_.e_block_size,
73 &options_.f_block_size);
74 eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
75 eliminator_->Init(options_.elimination_groups[0], A->block_structure());
76 };
77 fill(x, x + A->num_cols(), 0.0);
78 event_logger.AddEvent("Setup");
79
80 eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
81 event_logger.AddEvent("Eliminate");
82
83 double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
84 const LinearSolver::Summary summary =
85 SolveReducedLinearSystem(reduced_solution);
86 event_logger.AddEvent("ReducedSolve");
87
88 if (summary.termination_type == LINEAR_SOLVER_SUCCESS) {
89 eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
90 event_logger.AddEvent("BackSubstitute");
91 }
92
93 return summary;
94 }
95
96 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
97 // complement.
InitStorage(const CompressedRowBlockStructure * bs)98 void DenseSchurComplementSolver::InitStorage(
99 const CompressedRowBlockStructure* bs) {
100 const int num_eliminate_blocks = options().elimination_groups[0];
101 const int num_col_blocks = bs->cols.size();
102
103 vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
104 for (int i = num_eliminate_blocks, j = 0;
105 i < num_col_blocks;
106 ++i, ++j) {
107 blocks[j] = bs->cols[i].size;
108 }
109
110 set_lhs(new BlockRandomAccessDenseMatrix(blocks));
111 set_rhs(new double[lhs()->num_rows()]);
112 }
113
114 // Solve the system Sx = r, assuming that the matrix S is stored in a
115 // BlockRandomAccessDenseMatrix. The linear system is solved using
116 // Eigen's Cholesky factorization.
117 LinearSolver::Summary
SolveReducedLinearSystem(double * solution)118 DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
119 LinearSolver::Summary summary;
120 summary.num_iterations = 0;
121 summary.termination_type = LINEAR_SOLVER_SUCCESS;
122 summary.message = "Success.";
123
124 const BlockRandomAccessDenseMatrix* m =
125 down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
126 const int num_rows = m->num_rows();
127
128 // The case where there are no f blocks, and the system is block
129 // diagonal.
130 if (num_rows == 0) {
131 return summary;
132 }
133
134 summary.num_iterations = 1;
135
136 if (options().dense_linear_algebra_library_type == EIGEN) {
137 Eigen::LLT<Matrix, Eigen::Upper> llt =
138 ConstMatrixRef(m->values(), num_rows, num_rows)
139 .selfadjointView<Eigen::Upper>()
140 .llt();
141 if (llt.info() != Eigen::Success) {
142 summary.termination_type = LINEAR_SOLVER_FAILURE;
143 summary.message =
144 "Eigen failure. Unable to perform dense Cholesky factorization.";
145 return summary;
146 }
147
148 VectorRef(solution, num_rows) = llt.solve(ConstVectorRef(rhs(), num_rows));
149 } else {
150 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
151 summary.termination_type =
152 LAPACK::SolveInPlaceUsingCholesky(num_rows,
153 m->values(),
154 solution,
155 &summary.message);
156 }
157
158 return summary;
159 }
160
SparseSchurComplementSolver(const LinearSolver::Options & options)161 SparseSchurComplementSolver::SparseSchurComplementSolver(
162 const LinearSolver::Options& options)
163 : SchurComplementSolver(options),
164 factor_(NULL),
165 cxsparse_factor_(NULL) {
166 }
167
~SparseSchurComplementSolver()168 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
169 if (factor_ != NULL) {
170 ss_.Free(factor_);
171 factor_ = NULL;
172 }
173
174 if (cxsparse_factor_ != NULL) {
175 cxsparse_.Free(cxsparse_factor_);
176 cxsparse_factor_ = NULL;
177 }
178 }
179
180 // Determine the non-zero blocks in the Schur Complement matrix, and
181 // initialize a BlockRandomAccessSparseMatrix object.
InitStorage(const CompressedRowBlockStructure * bs)182 void SparseSchurComplementSolver::InitStorage(
183 const CompressedRowBlockStructure* bs) {
184 const int num_eliminate_blocks = options().elimination_groups[0];
185 const int num_col_blocks = bs->cols.size();
186 const int num_row_blocks = bs->rows.size();
187
188 blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
189 for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
190 blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
191 }
192
193 set<pair<int, int> > block_pairs;
194 for (int i = 0; i < blocks_.size(); ++i) {
195 block_pairs.insert(make_pair(i, i));
196 }
197
198 int r = 0;
199 while (r < num_row_blocks) {
200 int e_block_id = bs->rows[r].cells.front().block_id;
201 if (e_block_id >= num_eliminate_blocks) {
202 break;
203 }
204 vector<int> f_blocks;
205
206 // Add to the chunk until the first block in the row is
207 // different than the one in the first row for the chunk.
208 for (; r < num_row_blocks; ++r) {
209 const CompressedRow& row = bs->rows[r];
210 if (row.cells.front().block_id != e_block_id) {
211 break;
212 }
213
214 // Iterate over the blocks in the row, ignoring the first
215 // block since it is the one to be eliminated.
216 for (int c = 1; c < row.cells.size(); ++c) {
217 const Cell& cell = row.cells[c];
218 f_blocks.push_back(cell.block_id - num_eliminate_blocks);
219 }
220 }
221
222 sort(f_blocks.begin(), f_blocks.end());
223 f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
224 for (int i = 0; i < f_blocks.size(); ++i) {
225 for (int j = i + 1; j < f_blocks.size(); ++j) {
226 block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
227 }
228 }
229 }
230
231 // Remaing rows do not contribute to the chunks and directly go
232 // into the schur complement via an outer product.
233 for (; r < num_row_blocks; ++r) {
234 const CompressedRow& row = bs->rows[r];
235 CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
236 for (int i = 0; i < row.cells.size(); ++i) {
237 int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
238 for (int j = 0; j < row.cells.size(); ++j) {
239 int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
240 if (r_block1_id <= r_block2_id) {
241 block_pairs.insert(make_pair(r_block1_id, r_block2_id));
242 }
243 }
244 }
245 }
246
247 set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
248 set_rhs(new double[lhs()->num_rows()]);
249 }
250
251 LinearSolver::Summary
SolveReducedLinearSystem(double * solution)252 SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
253 switch (options().sparse_linear_algebra_library_type) {
254 case SUITE_SPARSE:
255 return SolveReducedLinearSystemUsingSuiteSparse(solution);
256 case CX_SPARSE:
257 return SolveReducedLinearSystemUsingCXSparse(solution);
258 case EIGEN_SPARSE:
259 return SolveReducedLinearSystemUsingEigen(solution);
260 default:
261 LOG(FATAL) << "Unknown sparse linear algebra library : "
262 << options().sparse_linear_algebra_library_type;
263 }
264
265 return LinearSolver::Summary();
266 }
267
268 // Solve the system Sx = r, assuming that the matrix S is stored in a
269 // BlockRandomAccessSparseMatrix. The linear system is solved using
270 // CHOLMOD's sparse cholesky factorization routines.
271 LinearSolver::Summary
SolveReducedLinearSystemUsingSuiteSparse(double * solution)272 SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
273 double* solution) {
274 #ifdef CERES_NO_SUITESPARSE
275
276 LinearSolver::Summary summary;
277 summary.num_iterations = 0;
278 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
279 summary.message = "Ceres was not built with SuiteSparse support. "
280 "Therefore, SPARSE_SCHUR cannot be used with SUITE_SPARSE";
281 return summary;
282
283 #else
284
285 LinearSolver::Summary summary;
286 summary.num_iterations = 0;
287 summary.termination_type = LINEAR_SOLVER_SUCCESS;
288 summary.message = "Success.";
289
290 TripletSparseMatrix* tsm =
291 const_cast<TripletSparseMatrix*>(
292 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
293 const int num_rows = tsm->num_rows();
294
295 // The case where there are no f blocks, and the system is block
296 // diagonal.
297 if (num_rows == 0) {
298 return summary;
299 }
300
301 summary.num_iterations = 1;
302 cholmod_sparse* cholmod_lhs = NULL;
303 if (options().use_postordering) {
304 // If we are going to do a full symbolic analysis of the schur
305 // complement matrix from scratch and not rely on the
306 // pre-ordering, then the fastest path in cholmod_factorize is the
307 // one corresponding to upper triangular matrices.
308
309 // Create a upper triangular symmetric matrix.
310 cholmod_lhs = ss_.CreateSparseMatrix(tsm);
311 cholmod_lhs->stype = 1;
312
313 if (factor_ == NULL) {
314 factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs,
315 blocks_,
316 blocks_,
317 &summary.message);
318 }
319 } else {
320 // If we are going to use the natural ordering (i.e. rely on the
321 // pre-ordering computed by solver_impl.cc), then the fastest
322 // path in cholmod_factorize is the one corresponding to lower
323 // triangular matrices.
324
325 // Create a upper triangular symmetric matrix.
326 cholmod_lhs = ss_.CreateSparseMatrixTranspose(tsm);
327 cholmod_lhs->stype = -1;
328
329 if (factor_ == NULL) {
330 factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(cholmod_lhs,
331 &summary.message);
332 }
333 }
334
335 if (factor_ == NULL) {
336 ss_.Free(cholmod_lhs);
337 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
338 // No need to set message as it has already been set by the
339 // symbolic analysis routines above.
340 return summary;
341 }
342
343 summary.termination_type =
344 ss_.Cholesky(cholmod_lhs, factor_, &summary.message);
345
346 ss_.Free(cholmod_lhs);
347
348 if (summary.termination_type != LINEAR_SOLVER_SUCCESS) {
349 // No need to set message as it has already been set by the
350 // numeric factorization routine above.
351 return summary;
352 }
353
354 cholmod_dense* cholmod_rhs =
355 ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
356 cholmod_dense* cholmod_solution = ss_.Solve(factor_,
357 cholmod_rhs,
358 &summary.message);
359 ss_.Free(cholmod_rhs);
360
361 if (cholmod_solution == NULL) {
362 summary.message =
363 "SuiteSparse failure. Unable to perform triangular solve.";
364 summary.termination_type = LINEAR_SOLVER_FAILURE;
365 return summary;
366 }
367
368 VectorRef(solution, num_rows)
369 = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
370 ss_.Free(cholmod_solution);
371 return summary;
372 #endif // CERES_NO_SUITESPARSE
373 }
374
375 // Solve the system Sx = r, assuming that the matrix S is stored in a
376 // BlockRandomAccessSparseMatrix. The linear system is solved using
377 // CXSparse's sparse cholesky factorization routines.
378 LinearSolver::Summary
SolveReducedLinearSystemUsingCXSparse(double * solution)379 SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
380 double* solution) {
381 #ifdef CERES_NO_CXSPARSE
382
383 LinearSolver::Summary summary;
384 summary.num_iterations = 0;
385 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
386 summary.message = "Ceres was not built with CXSparse support. "
387 "Therefore, SPARSE_SCHUR cannot be used with CX_SPARSE";
388 return summary;
389
390 #else
391
392 LinearSolver::Summary summary;
393 summary.num_iterations = 0;
394 summary.termination_type = LINEAR_SOLVER_SUCCESS;
395 summary.message = "Success.";
396
397 // Extract the TripletSparseMatrix that is used for actually storing S.
398 TripletSparseMatrix* tsm =
399 const_cast<TripletSparseMatrix*>(
400 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
401 const int num_rows = tsm->num_rows();
402
403 // The case where there are no f blocks, and the system is block
404 // diagonal.
405 if (num_rows == 0) {
406 return summary;
407 }
408
409 cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
410 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
411
412 // Compute symbolic factorization if not available.
413 if (cxsparse_factor_ == NULL) {
414 cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(lhs, blocks_, blocks_);
415 }
416
417 if (cxsparse_factor_ == NULL) {
418 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
419 summary.message =
420 "CXSparse failure. Unable to find symbolic factorization.";
421 } else if (!cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution)) {
422 summary.termination_type = LINEAR_SOLVER_FAILURE;
423 summary.message = "CXSparse::SolveCholesky failed.";
424 }
425
426 cxsparse_.Free(lhs);
427 return summary;
428 #endif // CERES_NO_CXPARSE
429 }
430
431 // Solve the system Sx = r, assuming that the matrix S is stored in a
432 // BlockRandomAccessSparseMatrix. The linear system is solved using
433 // Eigen's sparse cholesky factorization routines.
434 LinearSolver::Summary
SolveReducedLinearSystemUsingEigen(double * solution)435 SparseSchurComplementSolver::SolveReducedLinearSystemUsingEigen(
436 double* solution) {
437 #ifndef CERES_USE_EIGEN_SPARSE
438
439 LinearSolver::Summary summary;
440 summary.num_iterations = 0;
441 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
442 summary.message =
443 "SPARSE_SCHUR cannot be used with EIGEN_SPARSE. "
444 "Ceres was not built with support for "
445 "Eigen's SimplicialLDLT decomposition. "
446 "This requires enabling building with -DEIGENSPARSE=ON.";
447 return summary;
448
449 #else
450 EventLogger event_logger("SchurComplementSolver::EigenSolve");
451 LinearSolver::Summary summary;
452 summary.num_iterations = 0;
453 summary.termination_type = LINEAR_SOLVER_SUCCESS;
454 summary.message = "Success.";
455
456 // Extract the TripletSparseMatrix that is used for actually storing S.
457 TripletSparseMatrix* tsm =
458 const_cast<TripletSparseMatrix*>(
459 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
460 const int num_rows = tsm->num_rows();
461
462 // The case where there are no f blocks, and the system is block
463 // diagonal.
464 if (num_rows == 0) {
465 return summary;
466 }
467
468 // This is an upper triangular matrix.
469 CompressedRowSparseMatrix crsm(*tsm);
470 // Map this to a column major, lower triangular matrix.
471 Eigen::MappedSparseMatrix<double, Eigen::ColMajor> eigen_lhs(
472 crsm.num_rows(),
473 crsm.num_rows(),
474 crsm.num_nonzeros(),
475 crsm.mutable_rows(),
476 crsm.mutable_cols(),
477 crsm.mutable_values());
478 event_logger.AddEvent("ToCompressedRowSparseMatrix");
479
480 // Compute symbolic factorization if one does not exist.
481 if (simplicial_ldlt_.get() == NULL) {
482 simplicial_ldlt_.reset(new SimplicialLDLT);
483 // This ordering is quite bad. The scalar ordering produced by the
484 // AMD algorithm is quite bad and can be an order of magnitude
485 // worse than the one computed using the block version of the
486 // algorithm.
487 simplicial_ldlt_->analyzePattern(eigen_lhs);
488 event_logger.AddEvent("Analysis");
489 if (simplicial_ldlt_->info() != Eigen::Success) {
490 summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
491 summary.message =
492 "Eigen failure. Unable to find symbolic factorization.";
493 return summary;
494 }
495 }
496
497 simplicial_ldlt_->factorize(eigen_lhs);
498 event_logger.AddEvent("Factorize");
499 if (simplicial_ldlt_->info() != Eigen::Success) {
500 summary.termination_type = LINEAR_SOLVER_FAILURE;
501 summary.message = "Eigen failure. Unable to find numeric factoriztion.";
502 return summary;
503 }
504
505 VectorRef(solution, num_rows) =
506 simplicial_ldlt_->solve(ConstVectorRef(rhs(), num_rows));
507 event_logger.AddEvent("Solve");
508 if (simplicial_ldlt_->info() != Eigen::Success) {
509 summary.termination_type = LINEAR_SOLVER_FAILURE;
510 summary.message = "Eigen failure. Unable to do triangular solve.";
511 }
512
513 return summary;
514 #endif // CERES_USE_EIGEN_SPARSE
515 }
516
517 } // namespace internal
518 } // namespace ceres
519