/external/opencv3/samples/python2/ |
D | hist.py | 18 import cv2 30 hist_item = cv2.calcHist([im],[ch],None,[256],[0,256]) 31 cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) 34 cv2.polylines(h,[pts],False,col) 43 im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) 44 hist_item = cv2.calcHist([im],[0],None,[256],[0,256]) 45 cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX) 48 cv2.line(h,(x,0),(x,y),(255,255,255)) 63 im = cv2.imread(fname) 69 gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) [all …]
|
D | coherence.py | 13 import cv2 21 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 22 eigen = cv2.cornerEigenValsAndVecs(gray, str_sigma, 3) 26 gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma) 27 gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma) 28 gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma) 32 ero = cv2.erode(img, None) 33 dil = cv2.dilate(img, None) 48 src = cv2.imread(fn) 54 sigma = cv2.getTrackbarPos('sigma', 'control')*2+1 [all …]
|
D | mouse_and_match.py | 12 import cv2 27 if event == cv2.EVENT_LBUTTONDOWN: 30 elif event == cv2.EVENT_LBUTTONUP: 33 result = cv2.matchTemplate(gray,patch,cv2.TM_CCOEFF_NORMED) 35 val, result = cv2.threshold(result, 0.01, 0, cv2.THRESH_TOZERO) 36 result8 = cv2.normalize(result,None,0,255,cv2.NORM_MINMAX,cv2.CV_8U) 37 cv2.imshow("result", result8) 41 if flags & cv2.EVENT_FLAG_LBUTTON: 45 img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) 46 cv2.rectangle(img, (sel[0], sel[1]), (sel[2], sel[3]), (0,255,255), 1) [all …]
|
D | contours.py | 13 import cv2 28 cv2.line(img, (x1, y1), (x2, y2), white) 30 cv2.ellipse( img, (dx+150, dy+100), (100,70), 0, 0, 360, white, -1 ) 31 cv2.ellipse( img, (dx+115, dy+70), (30,20), 0, 0, 360, black, -1 ) 32 cv2.ellipse( img, (dx+185, dy+70), (30,20), 0, 0, 360, black, -1 ) 33 cv2.ellipse( img, (dx+115, dy+70), (15,15), 0, 0, 360, white, -1 ) 34 cv2.ellipse( img, (dx+185, dy+70), (15,15), 0, 0, 360, white, -1 ) 35 cv2.ellipse( img, (dx+115, dy+70), (5,5), 0, 0, 360, black, -1 ) 36 cv2.ellipse( img, (dx+185, dy+70), (5,5), 0, 0, 360, black, -1 ) 37 cv2.ellipse( img, (dx+150, dy+100), (10,5), 0, 0, 360, black, -1 ) [all …]
|
D | deconvolution.py | 34 import cv2 42 img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP) 43 img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] 55 kern = cv2.warpAffine(kern, A, (sz, sz), flags=cv2.INTER_CUBIC) 60 cv2.circle(kern, (sz, sz), d, 255, -1, cv2.LINE_AA, shift=1) 77 img = cv2.imread(fn, 0) 83 cv2.imshow('input', img) 86 IMG = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT) 91 ang = np.deg2rad( cv2.getTrackbarPos('angle', win) ) 92 d = cv2.getTrackbarPos('d', win) [all …]
|
D | mosse.py | 25 import cv2 39 return cv2.warpAffine(a, T, (w, h), borderMode = cv2.BORDER_REFLECT) 53 w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1]) 57 img = cv2.getRectSubPix(frame, (w, h), (x, y)) 59 self.win = cv2.createHanningWindow((w, h), cv2.CV_32F) 62 g = cv2.GaussianBlur(g, (-1, -1), 2.0) 65 self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT) 70 A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT) 71 self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True) 72 self.H2 += cv2.mulSpectrums( A, A, 0, conjB=True) [all …]
|
D | grabcut.py | 31 import cv2 58 if event == cv2.EVENT_RBUTTONDOWN: 62 elif event == cv2.EVENT_MOUSEMOVE: 65 cv2.rectangle(img,(ix,iy),(x,y),BLUE,2) 69 elif event == cv2.EVENT_RBUTTONUP: 72 cv2.rectangle(img,(ix,iy),(x,y),BLUE,2) 79 if event == cv2.EVENT_LBUTTONDOWN: 84 cv2.circle(img,(x,y),thickness,value['color'],-1) 85 cv2.circle(mask,(x,y),thickness,value['val'],-1) 87 elif event == cv2.EVENT_MOUSEMOVE: [all …]
|
D | find_obj.py | 18 import cv2 28 detector = cv2.xfeatures2d.SIFT_create() 29 norm = cv2.NORM_L2 31 detector = cv2.xfeatures2d.SURF_create(800) 32 norm = cv2.NORM_L2 34 detector = cv2.ORB_create(400) 35 norm = cv2.NORM_HAMMING 37 detector = cv2.AKAZE_create() 38 norm = cv2.NORM_HAMMING 40 detector = cv2.BRISK_create() [all …]
|
D | squares.py | 10 import cv2 18 img = cv2.GaussianBlur(img, (5, 5), 0) 20 for gray in cv2.split(img): 23 bin = cv2.Canny(gray, 0, 50, apertureSize=5) 24 bin = cv2.dilate(bin, None) 26 retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY) 27 bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) 29 cnt_len = cv2.arcLength(cnt, True) 30 cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True) 31 if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt): [all …]
|
D | camshift.py | 26 import cv2 36 cv2.namedWindow('camshift') 37 cv2.setMouseCallback('camshift', self.onmouse) 46 if event == cv2.EVENT_LBUTTONDOWN: 50 if flags & cv2.EVENT_FLAG_LBUTTON: 69 …cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -… 70 img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) 71 cv2.imshow('hist', img) 77 hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) 78 mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.))) [all …]
|
D | digits_video.py | 4 import cv2 33 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 36 … bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) 37 bin = cv2.medianBlur(bin, 3) 38 _, contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) 48 x, y, w, h = cv2.boundingRect(cnt) 53 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) 70 m = cv2.moments(bin_roi) 77 … bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) 84 … cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) [all …]
|
D | houghcircles.py | 9 import cv2 20 src = cv2.imread(fn, 1) 21 img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) 22 img = cv2.medianBlur(img, 5) 25 circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30) 28 …cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv2.LINE_… 29 …cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw cent… 31 cv2.imshow("source", src) 32 cv2.imshow("detected circles", cimg) 33 cv2.waitKey(0)
|
D | floodfill.py | 18 import cv2 28 img = cv2.imread(fn, True) 41 cv2.imshow('floodfill', img) 45 lo = cv2.getTrackbarPos('lo', 'floodfill') 46 hi = cv2.getTrackbarPos('hi', 'floodfill') 49 flags |= cv2.FLOODFILL_FIXED_RANGE 50 cv2.floodFill(flooded, mask, seed_pt, (255, 255, 255), (lo,)*3, (hi,)*3, flags) 51 cv2.circle(flooded, seed_pt, 2, (0, 0, 255), -1) 52 cv2.imshow('floodfill', flooded) 56 if flags & cv2.EVENT_FLAG_LBUTTON: [all …]
|
D | opt_flow.py | 4 import cv2 22 vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) 23 cv2.polylines(vis, lines, 0, (0, 255, 0)) 25 cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) 37 bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) 45 res = cv2.remap(img, flow, None, cv2.INTER_LINEAR) 58 prevgray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY) 65 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 66 flow = cv2.calcOpticalFlowFarneback(prevgray, gray, None, 0.5, 3, 15, 3, 5, 1.2, 0) 69 cv2.imshow('flow', draw_flow(gray, flow)) [all …]
|
D | dft.py | 3 import cv2 57 im = cv2.imread(sys.argv[1]) 59 im = cv2.imread('../data/baboon.jpg') 63 im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 69 dft_M = cv2.getOptimalDFTSize(w) 70 dft_N = cv2.getOptimalDFTSize(h) 78 cv2.dft(dft_A, dst=dft_A, nonzeroRows=h) 80 cv2.imshow("win", im) 83 image_Re, image_Im = cv2.split(dft_A) 86 magnitude = cv2.sqrt(image_Re**2.0 + image_Im**2.0) [all …]
|
D | morphology.py | 16 import cv2 31 img = cv2.imread(fn) 37 cv2.imshow('original', img) 45 sz = cv2.getTrackbarPos('op/size', 'morphology') 46 iters = cv2.getTrackbarPos('iters', 'morphology') 58 st = cv2.getStructuringElement(getattr(cv2, str_name), (sz, sz)) 59 res = cv2.morphologyEx(img, getattr(cv2, oper_name), st, iterations=iters) 65 cv2.imshow('morphology', res) 67 cv2.namedWindow('morphology') 68 cv2.createTrackbar('op/size', 'morphology', 12, 20, update) [all …]
|
D | color_histogram.py | 4 import cv2 20 hsv_map = cv2.cvtColor(hsv_map, cv2.COLOR_HSV2BGR) 21 cv2.imshow('hsv_map', hsv_map) 23 cv2.namedWindow('hist', 0) 28 cv2.createTrackbar('scale', 'hist', hist_scale, 32, set_scale) 38 cv2.imshow('camera', frame) 40 small = cv2.pyrDown(frame) 42 hsv = cv2.cvtColor(small, cv2.COLOR_BGR2HSV) 45 h = cv2.calcHist( [hsv], [0, 1], None, [180, 256], [0, 180, 0, 256] ) 50 cv2.imshow('hist', vis) [all …]
|
D | houghlines.py | 7 import cv2 17 src = cv2.imread(fn) 18 dst = cv2.Canny(src, 50, 200) 19 cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR) 22 lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10) 25 …cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3,… 28 lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0) 38 cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA) 41 cv2.imshow("source", src) 42 cv2.imshow("detected lines", cdst) [all …]
|
D | edge.py | 13 import cv2 33 cv2.namedWindow('edge') 34 cv2.createTrackbar('thrs1', 'edge', 2000, 5000, nothing) 35 cv2.createTrackbar('thrs2', 'edge', 4000, 5000, nothing) 40 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 41 thrs1 = cv2.getTrackbarPos('thrs1', 'edge') 42 thrs2 = cv2.getTrackbarPos('thrs2', 'edge') 43 edge = cv2.Canny(gray, thrs1, thrs2, apertureSize=5) 47 cv2.imshow('edge', vis) 48 ch = cv2.waitKey(5) & 0xFF [all …]
|
D | fitline.py | 26 import cv2 49 noise = cv2.getTrackbarPos('noise', 'fit line') 50 n = cv2.getTrackbarPos('point n', 'fit line') 51 r = cv2.getTrackbarPos('outlier %', 'fit line') / 100.0 56 cv2.line(img, toint(p0), toint(p1), (0, 255, 0)) 63 cv2.circle(img, toint(p), 2, (255, 255, 255), -1) 65 cv2.circle(img, toint(p), 2, (64, 64, 255), -1) 66 func = getattr(cv2, cur_func_name) 67 vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01) 68 cv2.line(img, (int(cx-vx*w), int(cy-vy*w)), (int(cx+vx*w), int(cy+vy*w)), (0, 0, 255)) [all …]
|
D | lk_homography.py | 24 import cv2 30 criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) 38 p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) 39 p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) 56 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 68 … H, status = cv2.findHomography(self.p0, self.p1, (0, cv2.RANSAC)[self.use_ransac], 10.0) 70 overlay = cv2.warpPerspective(self.frame0, H, (w, h)) 71 vis = cv2.addWeighted(vis, 0.5, overlay, 0.5, 0.0) 75 cv2.line(vis, (x0, y0), (x1, y1), (0, 128, 0)) 76 cv2.circle(vis, (x1, y1), 2, (red, green)[good], -1) [all …]
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_template_matching/ |
D | py_template_matching.markdown | 9 - You will see these functions : **cv2.matchTemplate()**, **cv2.minMaxLoc()** 15 image. OpenCV comes with a function **cv2.matchTemplate()** for this purpose. It simply slides the 22 of (W-w+1, H-h+1). Once you got the result, you can use **cv2.minMaxLoc()** function to find where 26 @note If you are using cv2.TM_SQDIFF as comparison method, minimum value gives the best match. 37 import cv2 41 img = cv2.imread('messi5.jpg',0) 43 template = cv2.imread('template.jpg',0) 47 methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 48 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED'] 55 res = cv2.matchTemplate(img,template,method) [all …]
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_geometric_transformations/ |
D | py_geometric_transformations.markdown | 9 - You will see these functions: **cv2.getPerspectiveTransform** 14 OpenCV provides two transformation functions, **cv2.warpAffine** and **cv2.warpPerspective**, with 15 which you can have all kinds of transformations. **cv2.warpAffine** takes a 2x3 transformation 16 matrix while **cv2.warpPerspective** takes a 3x3 transformation matrix as input. 20 Scaling is just resizing of the image. OpenCV comes with a function **cv2.resize()** for this 22 Different interpolation methods are used. Preferable interpolation methods are **cv2.INTER_AREA** 23 for shrinking and **cv2.INTER_CUBIC** (slow) & **cv2.INTER_LINEAR** for zooming. By default, 24 interpolation method used is **cv2.INTER_LINEAR** for all resizing purposes. You can resize an 27 import cv2 30 img = cv2.imread('messi5.jpg') [all …]
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_backprojection/ |
D | py_histogram_backprojection.markdown | 36 import cv2 41 roi = cv2.imread('rose_red.png') 42 hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV) 45 target = cv2.imread('rose.png') 46 hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV) 49 M = cv2.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] ) 50 I = cv2.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] ) 57 h,s,v = cv2.split(hsvt) 64 disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)) 65 cv2.filter2D(B,-1,disc,B) [all …]
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_thresholding/ |
D | py_thresholding.markdown | 9 - You will learn these functions : **cv2.threshold**, **cv2.adaptiveThreshold** etc. 16 used is **cv2.threshold**. First argument is the source image, which **should be a grayscale 22 - cv2.THRESH_BINARY 23 - cv2.THRESH_BINARY_INV 24 - cv2.THRESH_TRUNC 25 - cv2.THRESH_TOZERO 26 - cv2.THRESH_TOZERO_INV 35 import cv2 39 img = cv2.imread('gradient.png',0) 40 ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) [all …]
|