1#!/usr/bin/env python 2 3import numpy as np 4import cv2 5 6# built-in modules 7import os 8import sys 9 10# local modules 11import video 12from common import mosaic 13 14from digits import * 15 16def main(): 17 try: 18 src = sys.argv[1] 19 except: 20 src = 0 21 cap = video.create_capture(src) 22 23 classifier_fn = 'digits_svm.dat' 24 if not os.path.exists(classifier_fn): 25 print '"%s" not found, run digits.py first' % classifier_fn 26 return 27 model = SVM() 28 model.load(classifier_fn) 29 30 31 while True: 32 ret, frame = cap.read() 33 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 34 35 36 bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10) 37 bin = cv2.medianBlur(bin, 3) 38 _, contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) 39 try: 40 heirs = heirs[0] 41 except: 42 heirs = [] 43 44 for cnt, heir in zip(contours, heirs): 45 _, _, _, outer_i = heir 46 if outer_i >= 0: 47 continue 48 x, y, w, h = cv2.boundingRect(cnt) 49 if not (16 <= h <= 64 and w <= 1.2*h): 50 continue 51 pad = max(h-w, 0) 52 x, w = x-pad/2, w+pad 53 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0)) 54 55 bin_roi = bin[y:,x:][:h,:w] 56 gray_roi = gray[y:,x:][:h,:w] 57 58 m = bin_roi != 0 59 if not 0.1 < m.mean() < 0.4: 60 continue 61 ''' 62 v_in, v_out = gray_roi[m], gray_roi[~m] 63 if v_out.std() > 10.0: 64 continue 65 s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std()) 66 cv2.putText(frame, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) 67 ''' 68 69 s = 1.5*float(h)/SZ 70 m = cv2.moments(bin_roi) 71 c1 = np.float32([m['m10'], m['m01']]) / m['m00'] 72 c0 = np.float32([SZ/2, SZ/2]) 73 t = c1 - s*c0 74 A = np.zeros((2, 3), np.float32) 75 A[:,:2] = np.eye(2)*s 76 A[:,2] = t 77 bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) 78 bin_norm = deskew(bin_norm) 79 if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]: 80 frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis] 81 82 sample = preprocess_hog([bin_norm]) 83 digit = model.predict(sample)[0] 84 cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1) 85 86 87 cv2.imshow('frame', frame) 88 cv2.imshow('bin', bin) 89 ch = cv2.waitKey(1) & 0xFF 90 if ch == 27: 91 break 92 93if __name__ == '__main__': 94 main() 95