/external/opencv3/modules/cudafilters/src/cuda/ |
D | filter2d.cu | 52 __global__ void filter2D(const SrcPtr src, PtrStepSz<D> dst, in filter2D() function 105 … filter2D<<<grid, block, 0, stream>>>(brdSrc, dst, kernel, kWidth, kHeight, anchorX, anchorY); \ 124 void filter2D(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, const float* kernel, in filter2D() function 143 …template void filter2D<uchar , uchar >(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, … 144 …template void filter2D<uchar4 , uchar4 >(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, … 145 …template void filter2D<ushort , ushort >(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, … 146 …template void filter2D<ushort4, ushort4>(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, … 147 …template void filter2D<float , float >(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, … 148 …template void filter2D<float4 , float4 >(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, …
|
/external/opencv3/doc/tutorials/imgproc/imgtrans/filter_2d/ |
D | filter_2d.markdown | 9 - Use the OpenCV function @ref cv::filter2D to create your own linear filters. 43 Fortunately, OpenCV provides you with the function @ref cv::filter2D so you do not have to code all 85 char* window_name = "filter2D Demo"; 117 filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT ); 156 -# After setting the kernel, we can generate the filter by using the function @ref cv::filter2D : 158 filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT );
|
/external/opencv3/samples/python2/ |
D | gabor_threads.py | 34 fimg = cv2.filter2D(img, cv2.CV_8UC3, kern) 41 return cv2.filter2D(img, cv2.CV_8UC3, kern)
|
/external/opencv3/modules/imgproc/perf/ |
D | perf_filter2d.cpp | 40 TEST_CYCLE() filter2D(src, dst, CV_8UC4, kernel, Point(1, 1), 0., borderMode); 70 filter2D(sourceImage, filteredImage, CV_32F, gaborKernel); in TEST_CYCLE()
|
/external/opencv3/modules/photo/src/ |
D | seamless_cloning_impl.cpp | 56 filter2D(img, gx, CV_32F, kernel); in computeGradientX() 63 filter2D(img, tmp[chan], CV_32F, kernel); in computeGradientX() 77 filter2D(img, gy, CV_32F, kernel); in computeGradientY() 84 filter2D(img, tmp[chan], CV_32F, kernel); in computeGradientY() 95 filter2D(img, laplacianX, CV_32F, kernel); in computeLaplacianX() 103 filter2D(img, laplacianY, CV_32F, kernel); in computeLaplacianY()
|
D | contrast_preserve.hpp | 142 filter2D(img, dest, -1, kernelx, anchor, 0.0, BORDER_CONSTANT); in singleChannelGradx() 152 filter2D(img, dest, -1, kernely, anchor, 0.0, BORDER_CONSTANT); in singleChannelGrady()
|
/external/opencv3/modules/imgproc/test/ocl/ |
D | test_filter2d.cpp | 117 OCL_OFF(cv::filter2D(src_roi, dst_roi, -1, kernel, anchor, delta, borderType)); in OCL_TEST_P() 118 OCL_ON(cv::filter2D(usrc_roi, udst_roi, -1, kernel, anchor, delta, borderType)); in OCL_TEST_P()
|
/external/opencv3/modules/imgproc/test/ |
D | test_filter.cpp | 432 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].type(), in prepare_to_validation() 550 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(), in prepare_to_validation() 611 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(), in prepare_to_validation() 718 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(), in prepare_to_validation() 837 cvtest::filter2D( test_mat[INPUT][0], test_mat[REF_OUTPUT][0], test_mat[REF_OUTPUT][0].depth(), in prepare_to_validation() 1123 cvtest::filter2D(src, temp, src.depth(), in prepare_to_validation() 1193 cvtest::filter2D(temp, dst, dst.depth(), in prepare_to_validation() 1313 cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE ); in test_cornerEigenValsVecs() 1315 cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, BORDER_REPLICATE ); in test_cornerEigenValsVecs() 1341 cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, BORDER_REPLICATE ); in test_cornerEigenValsVecs() [all …]
|
D | test_canny.cpp | 176 cvtest::filter2D(src, dx, CV_16S, dxkernel, anchor, 0, BORDER_REPLICATE); in test_Canny() 177 cvtest::filter2D(src, dy, CV_16S, dykernel, anchor, 0, BORDER_REPLICATE); in test_Canny()
|
/external/opencv3/modules/imgproc/ |
D | opencl_kernels_imgproc.cpp | 3124 const struct ProgramEntry filter2D={"filter2D", variable 3298 ProgramSource filter2D_oclsrc(filter2D.programStr);
|
D | opencl_kernels_imgproc.hpp | 34 extern const struct ProgramEntry filter2D;
|
/external/opencv3/doc/tutorials/core/mat-mask-operations/ |
D | mat_mask_operations.markdown | 29 @ref cv::filter2D function. 108 The filter2D function 119 Then call the @ref cv::filter2D function specifying the input, the output image and the kernell to 122 filter2D(I, K, I.depth(), kern);
|
/external/opencv3/samples/cpp/tutorial_code/ImgTrans/ |
D | filter2D_demo.cpp | 60 filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT ); in main()
|
D | imageSegmentation.cpp | 59 filter2D(sharp, imgLaplacian, CV_32F, kernel); in main()
|
/external/opencv3/modules/cudafilters/perf/ |
D | perf_filters.cpp | 111 cv::Ptr<cv::cuda::Filter> filter2D = cv::cuda::createLinearFilter(d_src.type(), -1, kernel); variable 113 TEST_CYCLE() filter2D->apply(d_src, dst); 121 TEST_CYCLE() cv::filter2D(src, dst, -1, kernel);
|
/external/opencv3/modules/imgproc/src/ |
D | filterengine.hpp | 245 bool isSeparable() const { return !filter2D; } in isSeparable() 276 Ptr<BaseFilter> filter2D; member in cv::FilterEngine
|
/external/opencv3/modules/cudafilters/src/ |
D | filtering.cpp | 181 void filter2D(PtrStepSzb srcWhole, int ofsX, int ofsY, PtrStepSzb dst, const float* kernel, 233 func_ = cv::cuda::device::filter2D<uchar, uchar>; in LinearFilter() 236 func_ = cv::cuda::device::filter2D<uchar4, uchar4>; in LinearFilter() 239 func_ = cv::cuda::device::filter2D<ushort, ushort>; in LinearFilter() 242 func_ = cv::cuda::device::filter2D<ushort4, ushort4>; in LinearFilter() 245 func_ = cv::cuda::device::filter2D<float, float>; in LinearFilter() 248 func_ = cv::cuda::device::filter2D<float4, float4>; in LinearFilter()
|
/external/opencv3/samples/cpp/tutorial_code/core/mat_mask_operations/ |
D | mat_mask_operations.cpp | 53 filter2D(I, K, I.depth(), kern ); in main()
|
/external/opencv3/samples/gpu/performance/ |
D | tests.cpp | 948 TEST(filter2D) in TEST() argument 963 cv::filter2D(src, dst, -1, kernel); in TEST() 966 cv::filter2D(src, dst, -1, kernel); in TEST() 972 Ptr<cuda::Filter> filter2D = cuda::createLinearFilter(d_src.type(), -1, kernel); in TEST() local 973 filter2D->apply(d_src, d_dst); in TEST() 976 filter2D->apply(d_src, d_dst); in TEST()
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_backprojection/ |
D | py_histogram_backprojection.markdown | 65 cv2.filter2D(B,-1,disc,B) 103 cv2.filter2D(dst,-1,disc,dst)
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_filtering/ |
D | py_filtering.markdown | 18 OpenCV provides a function **cv2.filter2D()** to convolve a kernel with an image. As an example, we 34 dst = cv2.filter2D(img,-1,kernel)
|
/external/opencv3/doc/tutorials/core/ |
D | table_of_content_core.markdown | 32 You'll find out how to scan images with neighbor access and use the @ref cv::filter2D
|
/external/opencv3/modules/cudafilters/test/ |
D | test_filters.cpp | 153 …cv::Ptr<cv::cuda::Filter> filter2D = cv::cuda::createLinearFilter(src.type(), -1, kernel, anchor, … in CUDA_TEST_P() local 156 filter2D->apply(loadMat(src, useRoi), dst); in CUDA_TEST_P() 159 cv::filter2D(src, dst_gold, -1, kernel, anchor, 0, borderType); in CUDA_TEST_P()
|
/external/opencv3/doc/tutorials/imgproc/imgtrans/distance_transformation/ |
D | distance_transform.markdown | 9 - Use the OpenCV function @ref cv::filter2D in order to perform some laplacian filtering for imag…
|
/external/opencv3/modules/cudaarithm/perf/ |
D | perf_arithm.cpp | 250 TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ);
|