1 /**
2  * @function Watershed_and_Distance_Transform.cpp
3  * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation
4  * @author OpenCV Team
5  */
6 
7 #include <opencv2/opencv.hpp>
8 #include <iostream>
9 
10 using namespace std;
11 using namespace cv;
12 
main(int,char ** argv)13 int main(int, char** argv)
14 {
15 //! [load_image]
16     // Load the image
17     Mat src = imread(argv[1]);
18 
19     // Check if everything was fine
20     if (!src.data)
21         return -1;
22 
23     // Show source image
24     imshow("Source Image", src);
25 //! [load_image]
26 
27 //! [black_bg]
28     // Change the background from white to black, since that will help later to extract
29     // better results during the use of Distance Transform
30     for( int x = 0; x < src.rows; x++ ) {
31       for( int y = 0; y < src.cols; y++ ) {
32           if ( src.at<Vec3b>(x, y) == Vec3b(255,255,255) ) {
33             src.at<Vec3b>(x, y)[0] = 0;
34             src.at<Vec3b>(x, y)[1] = 0;
35             src.at<Vec3b>(x, y)[2] = 0;
36           }
37         }
38     }
39 
40     // Show output image
41     imshow("Black Background Image", src);
42 //! [black_bg]
43 
44 //! [sharp]
45     // Create a kernel that we will use for accuting/sharpening our image
46     Mat kernel = (Mat_<float>(3,3) <<
47             1,  1, 1,
48             1, -8, 1,
49             1,  1, 1); // an approximation of second derivative, a quite strong kernel
50 
51     // do the laplacian filtering as it is
52     // well, we need to convert everything in something more deeper then CV_8U
53     // because the kernel has some negative values,
54     // and we can expect in general to have a Laplacian image with negative values
55     // BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
56     // so the possible negative number will be truncated
57     Mat imgLaplacian;
58     Mat sharp = src; // copy source image to another temporary one
59     filter2D(sharp, imgLaplacian, CV_32F, kernel);
60     src.convertTo(sharp, CV_32F);
61     Mat imgResult = sharp - imgLaplacian;
62 
63     // convert back to 8bits gray scale
64     imgResult.convertTo(imgResult, CV_8UC3);
65     imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
66 
67     // imshow( "Laplace Filtered Image", imgLaplacian );
68     imshow( "New Sharped Image", imgResult );
69 //! [sharp]
70 
71     src = imgResult; // copy back
72 
73 //! [bin]
74     // Create binary image from source image
75     Mat bw;
76     cvtColor(src, bw, CV_BGR2GRAY);
77     threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
78     imshow("Binary Image", bw);
79 //! [bin]
80 
81 //! [dist]
82     // Perform the distance transform algorithm
83     Mat dist;
84     distanceTransform(bw, dist, CV_DIST_L2, 3);
85 
86     // Normalize the distance image for range = {0.0, 1.0}
87     // so we can visualize and threshold it
88     normalize(dist, dist, 0, 1., NORM_MINMAX);
89     imshow("Distance Transform Image", dist);
90 //! [dist]
91 
92 //! [peaks]
93     // Threshold to obtain the peaks
94     // This will be the markers for the foreground objects
95     threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
96 
97     // Dilate a bit the dist image
98     Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
99     dilate(dist, dist, kernel1);
100     imshow("Peaks", dist);
101 //! [peaks]
102 
103 //! [seeds]
104     // Create the CV_8U version of the distance image
105     // It is needed for findContours()
106     Mat dist_8u;
107     dist.convertTo(dist_8u, CV_8U);
108 
109     // Find total markers
110     vector<vector<Point> > contours;
111     findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
112 
113     // Create the marker image for the watershed algorithm
114     Mat markers = Mat::zeros(dist.size(), CV_32SC1);
115 
116     // Draw the foreground markers
117     for (size_t i = 0; i < contours.size(); i++)
118         drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i)+1), -1);
119 
120     // Draw the background marker
121     circle(markers, Point(5,5), 3, CV_RGB(255,255,255), -1);
122     imshow("Markers", markers*10000);
123 //! [seeds]
124 
125 //! [watershed]
126     // Perform the watershed algorithm
127     watershed(src, markers);
128 
129     Mat mark = Mat::zeros(markers.size(), CV_8UC1);
130     markers.convertTo(mark, CV_8UC1);
131     bitwise_not(mark, mark);
132 //    imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
133                                   // image looks like at that point
134 
135     // Generate random colors
136     vector<Vec3b> colors;
137     for (size_t i = 0; i < contours.size(); i++)
138     {
139         int b = theRNG().uniform(0, 255);
140         int g = theRNG().uniform(0, 255);
141         int r = theRNG().uniform(0, 255);
142 
143         colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
144     }
145 
146     // Create the result image
147     Mat dst = Mat::zeros(markers.size(), CV_8UC3);
148 
149     // Fill labeled objects with random colors
150     for (int i = 0; i < markers.rows; i++)
151     {
152         for (int j = 0; j < markers.cols; j++)
153         {
154             int index = markers.at<int>(i,j);
155             if (index > 0 && index <= static_cast<int>(contours.size()))
156                 dst.at<Vec3b>(i,j) = colors[index-1];
157             else
158                 dst.at<Vec3b>(i,j) = Vec3b(0,0,0);
159         }
160     }
161 
162     // Visualize the final image
163     imshow("Final Result", dst);
164 //! [watershed]
165 
166     waitKey(0);
167     return 0;
168 }