1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <type_traits>
18 
19 #include "assembler_thumb2.h"
20 
21 #include "base/bit_utils.h"
22 #include "base/logging.h"
23 #include "entrypoints/quick/quick_entrypoints.h"
24 #include "offsets.h"
25 #include "thread.h"
26 
27 namespace art {
28 namespace arm {
29 
30 template <typename Function>
ForExpandableDependencies(Thumb2Assembler * assembler,Function fn)31 void Thumb2Assembler::Fixup::ForExpandableDependencies(Thumb2Assembler* assembler, Function fn) {
32   static_assert(
33       std::is_same<typename std::result_of<Function(FixupId, FixupId)>::type, void>::value,
34       "Incorrect signature for argument `fn`: expected (FixupId, FixupId) -> void");
35   Fixup* fixups = assembler->fixups_.data();
36   for (FixupId fixup_id = 0u, end_id = assembler->fixups_.size(); fixup_id != end_id; ++fixup_id) {
37     uint32_t target = fixups[fixup_id].target_;
38     if (target > fixups[fixup_id].location_) {
39       for (FixupId id = fixup_id + 1u; id != end_id && fixups[id].location_ < target; ++id) {
40         if (fixups[id].CanExpand()) {
41           fn(id, fixup_id);
42         }
43       }
44     } else {
45       for (FixupId id = fixup_id; id != 0u && fixups[id - 1u].location_ >= target; --id) {
46         if (fixups[id - 1u].CanExpand()) {
47           fn(id - 1u, fixup_id);
48         }
49       }
50     }
51   }
52 }
53 
PrepareDependents(Thumb2Assembler * assembler)54 void Thumb2Assembler::Fixup::PrepareDependents(Thumb2Assembler* assembler) {
55   // For each Fixup, it's easy to find the Fixups that it depends on as they are either
56   // the following or the preceding Fixups until we find the target. However, for fixup
57   // adjustment we need the reverse lookup, i.e. what Fixups depend on a given Fixup.
58   // This function creates a compact representation of this relationship, where we have
59   // all the dependents in a single array and Fixups reference their ranges by start
60   // index and count. (Instead of having a per-fixup vector.)
61 
62   // Count the number of dependents of each Fixup.
63   Fixup* fixups = assembler->fixups_.data();
64   ForExpandableDependencies(
65       assembler,
66       [fixups](FixupId dependency, FixupId dependent ATTRIBUTE_UNUSED) {
67         fixups[dependency].dependents_count_ += 1u;
68       });
69   // Assign index ranges in fixup_dependents_ to individual fixups. Record the end of the
70   // range in dependents_start_, we shall later decrement it as we fill in fixup_dependents_.
71   uint32_t number_of_dependents = 0u;
72   for (FixupId fixup_id = 0u, end_id = assembler->fixups_.size(); fixup_id != end_id; ++fixup_id) {
73     number_of_dependents += fixups[fixup_id].dependents_count_;
74     fixups[fixup_id].dependents_start_ = number_of_dependents;
75   }
76   if (number_of_dependents == 0u) {
77     return;
78   }
79   // Create and fill in the fixup_dependents_.
80   assembler->fixup_dependents_.resize(number_of_dependents);
81   FixupId* dependents = assembler->fixup_dependents_.data();
82   ForExpandableDependencies(
83       assembler,
84       [fixups, dependents](FixupId dependency, FixupId dependent) {
85         fixups[dependency].dependents_start_ -= 1u;
86         dependents[fixups[dependency].dependents_start_] = dependent;
87       });
88 }
89 
BindLabel(Label * label,uint32_t bound_pc)90 void Thumb2Assembler::BindLabel(Label* label, uint32_t bound_pc) {
91   CHECK(!label->IsBound());
92 
93   while (label->IsLinked()) {
94     FixupId fixup_id = label->Position();                     // The id for linked Fixup.
95     Fixup* fixup = GetFixup(fixup_id);                        // Get the Fixup at this id.
96     fixup->Resolve(bound_pc);                                 // Fixup can be resolved now.
97     uint32_t fixup_location = fixup->GetLocation();
98     uint16_t next = buffer_.Load<uint16_t>(fixup_location);   // Get next in chain.
99     buffer_.Store<int16_t>(fixup_location, 0);
100     label->position_ = next;                                  // Move to next.
101   }
102   label->BindTo(bound_pc);
103 }
104 
BindLiterals()105 uint32_t Thumb2Assembler::BindLiterals() {
106   // We don't add the padding here, that's done only after adjusting the Fixup sizes.
107   uint32_t code_size = buffer_.Size();
108   for (Literal& lit : literals_) {
109     Label* label = lit.GetLabel();
110     BindLabel(label, code_size);
111     code_size += lit.GetSize();
112   }
113   return code_size;
114 }
115 
BindJumpTables(uint32_t code_size)116 void Thumb2Assembler::BindJumpTables(uint32_t code_size) {
117   for (JumpTable& table : jump_tables_) {
118     Label* label = table.GetLabel();
119     BindLabel(label, code_size);
120     code_size += table.GetSize();
121   }
122 }
123 
AdjustFixupIfNeeded(Fixup * fixup,uint32_t * current_code_size,std::deque<FixupId> * fixups_to_recalculate)124 void Thumb2Assembler::AdjustFixupIfNeeded(Fixup* fixup, uint32_t* current_code_size,
125                                           std::deque<FixupId>* fixups_to_recalculate) {
126   uint32_t adjustment = fixup->AdjustSizeIfNeeded(*current_code_size);
127   if (adjustment != 0u) {
128     DCHECK(fixup->CanExpand());
129     *current_code_size += adjustment;
130     for (FixupId dependent_id : fixup->Dependents(*this)) {
131       Fixup* dependent = GetFixup(dependent_id);
132       dependent->IncreaseAdjustment(adjustment);
133       if (buffer_.Load<int16_t>(dependent->GetLocation()) == 0) {
134         buffer_.Store<int16_t>(dependent->GetLocation(), 1);
135         fixups_to_recalculate->push_back(dependent_id);
136       }
137     }
138   }
139 }
140 
AdjustFixups()141 uint32_t Thumb2Assembler::AdjustFixups() {
142   Fixup::PrepareDependents(this);
143   uint32_t current_code_size = buffer_.Size();
144   std::deque<FixupId> fixups_to_recalculate;
145   if (kIsDebugBuild) {
146     // We will use the placeholders in the buffer_ to mark whether the fixup has
147     // been added to the fixups_to_recalculate. Make sure we start with zeros.
148     for (Fixup& fixup : fixups_) {
149       CHECK_EQ(buffer_.Load<int16_t>(fixup.GetLocation()), 0);
150     }
151   }
152   for (Fixup& fixup : fixups_) {
153     AdjustFixupIfNeeded(&fixup, &current_code_size, &fixups_to_recalculate);
154   }
155   while (!fixups_to_recalculate.empty()) {
156     do {
157       // Pop the fixup.
158       FixupId fixup_id = fixups_to_recalculate.front();
159       fixups_to_recalculate.pop_front();
160       Fixup* fixup = GetFixup(fixup_id);
161       DCHECK_NE(buffer_.Load<int16_t>(fixup->GetLocation()), 0);
162       buffer_.Store<int16_t>(fixup->GetLocation(), 0);
163       // See if it needs adjustment.
164       AdjustFixupIfNeeded(fixup, &current_code_size, &fixups_to_recalculate);
165     } while (!fixups_to_recalculate.empty());
166 
167     if ((current_code_size & 2) != 0 && (!literals_.empty() || !jump_tables_.empty())) {
168       // If we need to add padding before literals, this may just push some out of range,
169       // so recalculate all load literals. This makes up for the fact that we don't mark
170       // load literal as a dependency of all previous Fixups even though it actually is.
171       for (Fixup& fixup : fixups_) {
172         if (fixup.IsLoadLiteral()) {
173           AdjustFixupIfNeeded(&fixup, &current_code_size, &fixups_to_recalculate);
174         }
175       }
176     }
177   }
178   if (kIsDebugBuild) {
179     // Check that no fixup is marked as being in fixups_to_recalculate anymore.
180     for (Fixup& fixup : fixups_) {
181       CHECK_EQ(buffer_.Load<int16_t>(fixup.GetLocation()), 0);
182     }
183   }
184 
185   // Adjust literal pool labels for padding.
186   DCHECK_ALIGNED(current_code_size, 2);
187   uint32_t literals_adjustment = current_code_size + (current_code_size & 2) - buffer_.Size();
188   if (literals_adjustment != 0u) {
189     for (Literal& literal : literals_) {
190       Label* label = literal.GetLabel();
191       DCHECK(label->IsBound());
192       int old_position = label->Position();
193       label->Reinitialize();
194       label->BindTo(old_position + literals_adjustment);
195     }
196     for (JumpTable& table : jump_tables_) {
197       Label* label = table.GetLabel();
198       DCHECK(label->IsBound());
199       int old_position = label->Position();
200       label->Reinitialize();
201       label->BindTo(old_position + literals_adjustment);
202     }
203   }
204 
205   return current_code_size;
206 }
207 
EmitFixups(uint32_t adjusted_code_size)208 void Thumb2Assembler::EmitFixups(uint32_t adjusted_code_size) {
209   // Move non-fixup code to its final place and emit fixups.
210   // Process fixups in reverse order so that we don't repeatedly move the same data.
211   size_t src_end = buffer_.Size();
212   size_t dest_end = adjusted_code_size;
213   buffer_.Resize(dest_end);
214   DCHECK_GE(dest_end, src_end);
215   for (auto i = fixups_.rbegin(), end = fixups_.rend(); i != end; ++i) {
216     Fixup* fixup = &*i;
217     if (fixup->GetOriginalSize() == fixup->GetSize()) {
218       // The size of this Fixup didn't change. To avoid moving the data
219       // in small chunks, emit the code to its original position.
220       fixup->Emit(&buffer_, adjusted_code_size);
221       fixup->Finalize(dest_end - src_end);
222     } else {
223       // Move the data between the end of the fixup and src_end to its final location.
224       size_t old_fixup_location = fixup->GetLocation();
225       size_t src_begin = old_fixup_location + fixup->GetOriginalSizeInBytes();
226       size_t data_size = src_end - src_begin;
227       size_t dest_begin  = dest_end - data_size;
228       buffer_.Move(dest_begin, src_begin, data_size);
229       src_end = old_fixup_location;
230       dest_end = dest_begin - fixup->GetSizeInBytes();
231       // Finalize the Fixup and emit the data to the new location.
232       fixup->Finalize(dest_end - src_end);
233       fixup->Emit(&buffer_, adjusted_code_size);
234     }
235   }
236   CHECK_EQ(src_end, dest_end);
237 }
238 
EmitLiterals()239 void Thumb2Assembler::EmitLiterals() {
240   if (!literals_.empty()) {
241     // Load literal instructions (LDR, LDRD, VLDR) require 4-byte alignment.
242     // We don't support byte and half-word literals.
243     uint32_t code_size = buffer_.Size();
244     DCHECK_ALIGNED(code_size, 2);
245     if ((code_size & 2u) != 0u) {
246       Emit16(0);
247     }
248     for (Literal& literal : literals_) {
249       AssemblerBuffer::EnsureCapacity ensured(&buffer_);
250       DCHECK_EQ(static_cast<size_t>(literal.GetLabel()->Position()), buffer_.Size());
251       DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u);
252       for (size_t i = 0, size = literal.GetSize(); i != size; ++i) {
253         buffer_.Emit<uint8_t>(literal.GetData()[i]);
254       }
255     }
256   }
257 }
258 
EmitJumpTables()259 void Thumb2Assembler::EmitJumpTables() {
260   if (!jump_tables_.empty()) {
261     // Jump tables require 4 byte alignment. (We don't support byte and half-word jump tables.)
262     uint32_t code_size = buffer_.Size();
263     DCHECK_ALIGNED(code_size, 2);
264     if ((code_size & 2u) != 0u) {
265       Emit16(0);
266     }
267     for (JumpTable& table : jump_tables_) {
268       // Bulk ensure capacity, as this may be large.
269       size_t orig_size = buffer_.Size();
270       size_t required_capacity = orig_size + table.GetSize();
271       if (required_capacity > buffer_.Capacity()) {
272         buffer_.ExtendCapacity(required_capacity);
273       }
274 #ifndef NDEBUG
275       buffer_.has_ensured_capacity_ = true;
276 #endif
277 
278       DCHECK_EQ(static_cast<size_t>(table.GetLabel()->Position()), buffer_.Size());
279       int32_t anchor_position = table.GetAnchorLabel()->Position() + 4;
280 
281       for (Label* target : table.GetData()) {
282         // Ensure that the label was tracked, so that it will have the right position.
283         DCHECK(std::find(tracked_labels_.begin(), tracked_labels_.end(), target) !=
284                    tracked_labels_.end());
285 
286         int32_t offset = target->Position() - anchor_position;
287         buffer_.Emit<int32_t>(offset);
288       }
289 
290 #ifndef NDEBUG
291       buffer_.has_ensured_capacity_ = false;
292 #endif
293       size_t new_size = buffer_.Size();
294       DCHECK_LE(new_size - orig_size, table.GetSize());
295     }
296   }
297 }
298 
PatchCFI()299 void Thumb2Assembler::PatchCFI() {
300   if (cfi().NumberOfDelayedAdvancePCs() == 0u) {
301     return;
302   }
303 
304   typedef DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC DelayedAdvancePC;
305   const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC();
306   const std::vector<uint8_t>& old_stream = data.first;
307   const std::vector<DelayedAdvancePC>& advances = data.second;
308 
309   // Refill our data buffer with patched opcodes.
310   cfi().ReserveCFIStream(old_stream.size() + advances.size() + 16);
311   size_t stream_pos = 0;
312   for (const DelayedAdvancePC& advance : advances) {
313     DCHECK_GE(advance.stream_pos, stream_pos);
314     // Copy old data up to the point where advance was issued.
315     cfi().AppendRawData(old_stream, stream_pos, advance.stream_pos);
316     stream_pos = advance.stream_pos;
317     // Insert the advance command with its final offset.
318     size_t final_pc = GetAdjustedPosition(advance.pc);
319     cfi().AdvancePC(final_pc);
320   }
321   // Copy the final segment if any.
322   cfi().AppendRawData(old_stream, stream_pos, old_stream.size());
323 }
324 
BEncoding16(int32_t offset,Condition cond)325 inline int16_t Thumb2Assembler::BEncoding16(int32_t offset, Condition cond) {
326   DCHECK_ALIGNED(offset, 2);
327   int16_t encoding = B15 | B14;
328   if (cond != AL) {
329     DCHECK(IsInt<9>(offset));
330     encoding |= B12 |  (static_cast<int32_t>(cond) << 8) | ((offset >> 1) & 0xff);
331   } else {
332     DCHECK(IsInt<12>(offset));
333     encoding |= B13 | ((offset >> 1) & 0x7ff);
334   }
335   return encoding;
336 }
337 
BEncoding32(int32_t offset,Condition cond)338 inline int32_t Thumb2Assembler::BEncoding32(int32_t offset, Condition cond) {
339   DCHECK_ALIGNED(offset, 2);
340   int32_t s = (offset >> 31) & 1;   // Sign bit.
341   int32_t encoding = B31 | B30 | B29 | B28 | B15 |
342       (s << 26) |                   // Sign bit goes to bit 26.
343       ((offset >> 1) & 0x7ff);      // imm11 goes to bits 0-10.
344   if (cond != AL) {
345     DCHECK(IsInt<21>(offset));
346     // Encode cond, move imm6 from bits 12-17 to bits 16-21 and move J1 and J2.
347     encoding |= (static_cast<int32_t>(cond) << 22) | ((offset & 0x3f000) << (16 - 12)) |
348         ((offset & (1 << 19)) >> (19 - 13)) |   // Extract J1 from bit 19 to bit 13.
349         ((offset & (1 << 18)) >> (18 - 11));    // Extract J2 from bit 18 to bit 11.
350   } else {
351     DCHECK(IsInt<25>(offset));
352     int32_t j1 = ((offset >> 23) ^ s ^ 1) & 1;  // Calculate J1 from I1 extracted from bit 23.
353     int32_t j2 = ((offset >> 22)^ s ^ 1) & 1;   // Calculate J2 from I2 extracted from bit 22.
354     // Move imm10 from bits 12-21 to bits 16-25 and add J1 and J2.
355     encoding |= B12 | ((offset & 0x3ff000) << (16 - 12)) |
356         (j1 << 13) | (j2 << 11);
357   }
358   return encoding;
359 }
360 
CbxzEncoding16(Register rn,int32_t offset,Condition cond)361 inline int16_t Thumb2Assembler::CbxzEncoding16(Register rn, int32_t offset, Condition cond) {
362   DCHECK(!IsHighRegister(rn));
363   DCHECK_ALIGNED(offset, 2);
364   DCHECK(IsUint<7>(offset));
365   DCHECK(cond == EQ || cond == NE);
366   return B15 | B13 | B12 | B8 | (cond == NE ? B11 : 0) | static_cast<int32_t>(rn) |
367       ((offset & 0x3e) << (3 - 1)) |    // Move imm5 from bits 1-5 to bits 3-7.
368       ((offset & 0x40) << (9 - 6));     // Move i from bit 6 to bit 11
369 }
370 
CmpRnImm8Encoding16(Register rn,int32_t value)371 inline int16_t Thumb2Assembler::CmpRnImm8Encoding16(Register rn, int32_t value) {
372   DCHECK(!IsHighRegister(rn));
373   DCHECK(IsUint<8>(value));
374   return B13 | B11 | (rn << 8) | value;
375 }
376 
AddRdnRmEncoding16(Register rdn,Register rm)377 inline int16_t Thumb2Assembler::AddRdnRmEncoding16(Register rdn, Register rm) {
378   // The high bit of rn is moved across 4-bit rm.
379   return B14 | B10 | (static_cast<int32_t>(rm) << 3) |
380       (static_cast<int32_t>(rdn) & 7) | ((static_cast<int32_t>(rdn) & 8) << 4);
381 }
382 
MovwEncoding32(Register rd,int32_t value)383 inline int32_t Thumb2Assembler::MovwEncoding32(Register rd, int32_t value) {
384   DCHECK(IsUint<16>(value));
385   return B31 | B30 | B29 | B28 | B25 | B22 |
386       (static_cast<int32_t>(rd) << 8) |
387       ((value & 0xf000) << (16 - 12)) |   // Move imm4 from bits 12-15 to bits 16-19.
388       ((value & 0x0800) << (26 - 11)) |   // Move i from bit 11 to bit 26.
389       ((value & 0x0700) << (12 - 8)) |    // Move imm3 from bits 8-10 to bits 12-14.
390       (value & 0xff);                     // Keep imm8 in bits 0-7.
391 }
392 
MovtEncoding32(Register rd,int32_t value)393 inline int32_t Thumb2Assembler::MovtEncoding32(Register rd, int32_t value) {
394   DCHECK_EQ(value & 0xffff, 0);
395   int32_t movw_encoding = MovwEncoding32(rd, (value >> 16) & 0xffff);
396   return movw_encoding | B25 | B23;
397 }
398 
MovModImmEncoding32(Register rd,int32_t value)399 inline int32_t Thumb2Assembler::MovModImmEncoding32(Register rd, int32_t value) {
400   uint32_t mod_imm = ModifiedImmediate(value);
401   DCHECK_NE(mod_imm, kInvalidModifiedImmediate);
402   return B31 | B30 | B29 | B28 | B22 | B19 | B18 | B17 | B16 |
403       (static_cast<int32_t>(rd) << 8) | static_cast<int32_t>(mod_imm);
404 }
405 
LdrLitEncoding16(Register rt,int32_t offset)406 inline int16_t Thumb2Assembler::LdrLitEncoding16(Register rt, int32_t offset) {
407   DCHECK(!IsHighRegister(rt));
408   DCHECK_ALIGNED(offset, 4);
409   DCHECK(IsUint<10>(offset));
410   return B14 | B11 | (static_cast<int32_t>(rt) << 8) | (offset >> 2);
411 }
412 
LdrLitEncoding32(Register rt,int32_t offset)413 inline int32_t Thumb2Assembler::LdrLitEncoding32(Register rt, int32_t offset) {
414   // NOTE: We don't support negative offset, i.e. U=0 (B23).
415   return LdrRtRnImm12Encoding(rt, PC, offset);
416 }
417 
LdrdEncoding32(Register rt,Register rt2,Register rn,int32_t offset)418 inline int32_t Thumb2Assembler::LdrdEncoding32(Register rt, Register rt2, Register rn, int32_t offset) {
419   DCHECK_ALIGNED(offset, 4);
420   CHECK(IsUint<10>(offset));
421   return B31 | B30 | B29 | B27 |
422       B24 /* P = 1 */ | B23 /* U = 1 */ | B22 | 0 /* W = 0 */ | B20 |
423       (static_cast<int32_t>(rn) << 16) | (static_cast<int32_t>(rt) << 12) |
424       (static_cast<int32_t>(rt2) << 8) | (offset >> 2);
425 }
426 
VldrsEncoding32(SRegister sd,Register rn,int32_t offset)427 inline int32_t Thumb2Assembler::VldrsEncoding32(SRegister sd, Register rn, int32_t offset) {
428   DCHECK_ALIGNED(offset, 4);
429   CHECK(IsUint<10>(offset));
430   return B31 | B30 | B29 | B27 | B26 | B24 |
431       B23 /* U = 1 */ | B20 | B11 | B9 |
432       (static_cast<int32_t>(rn) << 16) |
433       ((static_cast<int32_t>(sd) & 0x01) << (22 - 0)) |   // Move D from bit 0 to bit 22.
434       ((static_cast<int32_t>(sd) & 0x1e) << (12 - 1)) |   // Move Vd from bits 1-4 to bits 12-15.
435       (offset >> 2);
436 }
437 
VldrdEncoding32(DRegister dd,Register rn,int32_t offset)438 inline int32_t Thumb2Assembler::VldrdEncoding32(DRegister dd, Register rn, int32_t offset) {
439   DCHECK_ALIGNED(offset, 4);
440   CHECK(IsUint<10>(offset));
441   return B31 | B30 | B29 | B27 | B26 | B24 |
442       B23 /* U = 1 */ | B20 | B11 | B9 | B8 |
443       (rn << 16) |
444       ((static_cast<int32_t>(dd) & 0x10) << (22 - 4)) |   // Move D from bit 4 to bit 22.
445       ((static_cast<int32_t>(dd) & 0x0f) << (12 - 0)) |   // Move Vd from bits 0-3 to bits 12-15.
446       (offset >> 2);
447 }
448 
LdrRtRnImm5Encoding16(Register rt,Register rn,int32_t offset)449 inline int16_t Thumb2Assembler::LdrRtRnImm5Encoding16(Register rt, Register rn, int32_t offset) {
450   DCHECK(!IsHighRegister(rt));
451   DCHECK(!IsHighRegister(rn));
452   DCHECK_ALIGNED(offset, 4);
453   DCHECK(IsUint<7>(offset));
454   return B14 | B13 | B11 |
455       (static_cast<int32_t>(rn) << 3) | static_cast<int32_t>(rt) |
456       (offset << (6 - 2));                // Move imm5 from bits 2-6 to bits 6-10.
457 }
458 
LoadWideOrFpEncoding(Register rbase,int32_t offset) const459 int32_t Thumb2Assembler::Fixup::LoadWideOrFpEncoding(Register rbase, int32_t offset) const {
460   switch (type_) {
461     case kLoadLiteralWide:
462       return LdrdEncoding32(rn_, rt2_, rbase, offset);
463     case kLoadFPLiteralSingle:
464       return VldrsEncoding32(sd_, rbase, offset);
465     case kLoadFPLiteralDouble:
466       return VldrdEncoding32(dd_, rbase, offset);
467     default:
468       LOG(FATAL) << "Unexpected type: " << static_cast<int>(type_);
469       UNREACHABLE();
470   }
471 }
472 
LdrRtRnImm12Encoding(Register rt,Register rn,int32_t offset)473 inline int32_t Thumb2Assembler::LdrRtRnImm12Encoding(Register rt, Register rn, int32_t offset) {
474   DCHECK(IsUint<12>(offset));
475   return B31 | B30 | B29 | B28 | B27 | B23 | B22 | B20 | (rn << 16) | (rt << 12) | offset;
476 }
477 
AdrEncoding16(Register rd,int32_t offset)478 inline int16_t Thumb2Assembler::AdrEncoding16(Register rd, int32_t offset) {
479   DCHECK(IsUint<10>(offset));
480   DCHECK(IsAligned<4>(offset));
481   DCHECK(!IsHighRegister(rd));
482   return B15 | B13 | (rd << 8) | (offset >> 2);
483 }
484 
AdrEncoding32(Register rd,int32_t offset)485 inline int32_t Thumb2Assembler::AdrEncoding32(Register rd, int32_t offset) {
486   DCHECK(IsUint<12>(offset));
487   // Bit     26: offset[11]
488   // Bits 14-12: offset[10-8]
489   // Bits   7-0: offset[7-0]
490   int32_t immediate_mask =
491       ((offset & (1 << 11)) << (26 - 11)) |
492       ((offset & (7 << 8)) << (12 - 8)) |
493       (offset & 0xFF);
494   return B31 | B30 | B29 | B28 | B25 | B19 | B18 | B17 | B16 | (rd << 8) | immediate_mask;
495 }
496 
FinalizeCode()497 void Thumb2Assembler::FinalizeCode() {
498   ArmAssembler::FinalizeCode();
499   uint32_t size_after_literals = BindLiterals();
500   BindJumpTables(size_after_literals);
501   uint32_t adjusted_code_size = AdjustFixups();
502   EmitFixups(adjusted_code_size);
503   EmitLiterals();
504   FinalizeTrackedLabels();
505   EmitJumpTables();
506   PatchCFI();
507 }
508 
ShifterOperandCanAlwaysHold(uint32_t immediate)509 bool Thumb2Assembler::ShifterOperandCanAlwaysHold(uint32_t immediate) {
510   return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
511 }
512 
ShifterOperandCanHold(Register rd ATTRIBUTE_UNUSED,Register rn ATTRIBUTE_UNUSED,Opcode opcode,uint32_t immediate,SetCc set_cc,ShifterOperand * shifter_op)513 bool Thumb2Assembler::ShifterOperandCanHold(Register rd ATTRIBUTE_UNUSED,
514                                             Register rn ATTRIBUTE_UNUSED,
515                                             Opcode opcode,
516                                             uint32_t immediate,
517                                             SetCc set_cc,
518                                             ShifterOperand* shifter_op) {
519   shifter_op->type_ = ShifterOperand::kImmediate;
520   shifter_op->immed_ = immediate;
521   shifter_op->is_shift_ = false;
522   shifter_op->is_rotate_ = false;
523   switch (opcode) {
524     case ADD:
525     case SUB:
526       // Less than (or equal to) 12 bits can be done if we don't need to set condition codes.
527       if (immediate < (1 << 12) && set_cc != kCcSet) {
528         return true;
529       }
530       return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
531 
532     case MOV:
533       // TODO: Support less than or equal to 12bits.
534       return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
535 
536     case MVN:
537     default:
538       return ArmAssembler::ModifiedImmediate(immediate) != kInvalidModifiedImmediate;
539   }
540 }
541 
and_(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)542 void Thumb2Assembler::and_(Register rd, Register rn, const ShifterOperand& so,
543                            Condition cond, SetCc set_cc) {
544   EmitDataProcessing(cond, AND, set_cc, rn, rd, so);
545 }
546 
547 
eor(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)548 void Thumb2Assembler::eor(Register rd, Register rn, const ShifterOperand& so,
549                           Condition cond, SetCc set_cc) {
550   EmitDataProcessing(cond, EOR, set_cc, rn, rd, so);
551 }
552 
553 
sub(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)554 void Thumb2Assembler::sub(Register rd, Register rn, const ShifterOperand& so,
555                           Condition cond, SetCc set_cc) {
556   EmitDataProcessing(cond, SUB, set_cc, rn, rd, so);
557 }
558 
559 
rsb(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)560 void Thumb2Assembler::rsb(Register rd, Register rn, const ShifterOperand& so,
561                           Condition cond, SetCc set_cc) {
562   EmitDataProcessing(cond, RSB, set_cc, rn, rd, so);
563 }
564 
565 
add(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)566 void Thumb2Assembler::add(Register rd, Register rn, const ShifterOperand& so,
567                           Condition cond, SetCc set_cc) {
568   EmitDataProcessing(cond, ADD, set_cc, rn, rd, so);
569 }
570 
571 
adc(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)572 void Thumb2Assembler::adc(Register rd, Register rn, const ShifterOperand& so,
573                           Condition cond, SetCc set_cc) {
574   EmitDataProcessing(cond, ADC, set_cc, rn, rd, so);
575 }
576 
577 
sbc(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)578 void Thumb2Assembler::sbc(Register rd, Register rn, const ShifterOperand& so,
579                           Condition cond, SetCc set_cc) {
580   EmitDataProcessing(cond, SBC, set_cc, rn, rd, so);
581 }
582 
583 
rsc(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)584 void Thumb2Assembler::rsc(Register rd, Register rn, const ShifterOperand& so,
585                           Condition cond, SetCc set_cc) {
586   EmitDataProcessing(cond, RSC, set_cc, rn, rd, so);
587 }
588 
589 
tst(Register rn,const ShifterOperand & so,Condition cond)590 void Thumb2Assembler::tst(Register rn, const ShifterOperand& so, Condition cond) {
591   CHECK_NE(rn, PC);  // Reserve tst pc instruction for exception handler marker.
592   EmitDataProcessing(cond, TST, kCcSet, rn, R0, so);
593 }
594 
595 
teq(Register rn,const ShifterOperand & so,Condition cond)596 void Thumb2Assembler::teq(Register rn, const ShifterOperand& so, Condition cond) {
597   CHECK_NE(rn, PC);  // Reserve teq pc instruction for exception handler marker.
598   EmitDataProcessing(cond, TEQ, kCcSet, rn, R0, so);
599 }
600 
601 
cmp(Register rn,const ShifterOperand & so,Condition cond)602 void Thumb2Assembler::cmp(Register rn, const ShifterOperand& so, Condition cond) {
603   EmitDataProcessing(cond, CMP, kCcSet, rn, R0, so);
604 }
605 
606 
cmn(Register rn,const ShifterOperand & so,Condition cond)607 void Thumb2Assembler::cmn(Register rn, const ShifterOperand& so, Condition cond) {
608   EmitDataProcessing(cond, CMN, kCcSet, rn, R0, so);
609 }
610 
611 
orr(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)612 void Thumb2Assembler::orr(Register rd, Register rn, const ShifterOperand& so,
613                           Condition cond, SetCc set_cc) {
614   EmitDataProcessing(cond, ORR, set_cc, rn, rd, so);
615 }
616 
617 
orn(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)618 void Thumb2Assembler::orn(Register rd, Register rn, const ShifterOperand& so,
619                           Condition cond, SetCc set_cc) {
620   EmitDataProcessing(cond, ORN, set_cc, rn, rd, so);
621 }
622 
623 
mov(Register rd,const ShifterOperand & so,Condition cond,SetCc set_cc)624 void Thumb2Assembler::mov(Register rd, const ShifterOperand& so,
625                           Condition cond, SetCc set_cc) {
626   EmitDataProcessing(cond, MOV, set_cc, R0, rd, so);
627 }
628 
629 
bic(Register rd,Register rn,const ShifterOperand & so,Condition cond,SetCc set_cc)630 void Thumb2Assembler::bic(Register rd, Register rn, const ShifterOperand& so,
631                           Condition cond, SetCc set_cc) {
632   EmitDataProcessing(cond, BIC, set_cc, rn, rd, so);
633 }
634 
635 
mvn(Register rd,const ShifterOperand & so,Condition cond,SetCc set_cc)636 void Thumb2Assembler::mvn(Register rd, const ShifterOperand& so,
637                           Condition cond, SetCc set_cc) {
638   EmitDataProcessing(cond, MVN, set_cc, R0, rd, so);
639 }
640 
641 
mul(Register rd,Register rn,Register rm,Condition cond)642 void Thumb2Assembler::mul(Register rd, Register rn, Register rm, Condition cond) {
643   CheckCondition(cond);
644 
645   if (rd == rm && !IsHighRegister(rd) && !IsHighRegister(rn) && !force_32bit_) {
646     // 16 bit.
647     int16_t encoding = B14 | B9 | B8 | B6 |
648         rn << 3 | rd;
649     Emit16(encoding);
650   } else {
651     // 32 bit.
652     uint32_t op1 = 0U /* 0b000 */;
653     uint32_t op2 = 0U /* 0b00 */;
654     int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 |
655         op1 << 20 |
656         B15 | B14 | B13 | B12 |
657         op2 << 4 |
658         static_cast<uint32_t>(rd) << 8 |
659         static_cast<uint32_t>(rn) << 16 |
660         static_cast<uint32_t>(rm);
661 
662     Emit32(encoding);
663   }
664 }
665 
666 
mla(Register rd,Register rn,Register rm,Register ra,Condition cond)667 void Thumb2Assembler::mla(Register rd, Register rn, Register rm, Register ra,
668                           Condition cond) {
669   CheckCondition(cond);
670 
671   uint32_t op1 = 0U /* 0b000 */;
672   uint32_t op2 = 0U /* 0b00 */;
673   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 |
674       op1 << 20 |
675       op2 << 4 |
676       static_cast<uint32_t>(rd) << 8 |
677       static_cast<uint32_t>(ra) << 12 |
678       static_cast<uint32_t>(rn) << 16 |
679       static_cast<uint32_t>(rm);
680 
681   Emit32(encoding);
682 }
683 
684 
mls(Register rd,Register rn,Register rm,Register ra,Condition cond)685 void Thumb2Assembler::mls(Register rd, Register rn, Register rm, Register ra,
686                           Condition cond) {
687   CheckCondition(cond);
688 
689   uint32_t op1 = 0U /* 0b000 */;
690   uint32_t op2 = 01 /* 0b01 */;
691   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 |
692       op1 << 20 |
693       op2 << 4 |
694       static_cast<uint32_t>(rd) << 8 |
695       static_cast<uint32_t>(ra) << 12 |
696       static_cast<uint32_t>(rn) << 16 |
697       static_cast<uint32_t>(rm);
698 
699   Emit32(encoding);
700 }
701 
702 
smull(Register rd_lo,Register rd_hi,Register rn,Register rm,Condition cond)703 void Thumb2Assembler::smull(Register rd_lo, Register rd_hi, Register rn,
704                             Register rm, Condition cond) {
705   CheckCondition(cond);
706 
707   uint32_t op1 = 0U /* 0b000; */;
708   uint32_t op2 = 0U /* 0b0000 */;
709   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 |
710       op1 << 20 |
711       op2 << 4 |
712       static_cast<uint32_t>(rd_lo) << 12 |
713       static_cast<uint32_t>(rd_hi) << 8 |
714       static_cast<uint32_t>(rn) << 16 |
715       static_cast<uint32_t>(rm);
716 
717   Emit32(encoding);
718 }
719 
720 
umull(Register rd_lo,Register rd_hi,Register rn,Register rm,Condition cond)721 void Thumb2Assembler::umull(Register rd_lo, Register rd_hi, Register rn,
722                             Register rm, Condition cond) {
723   CheckCondition(cond);
724 
725   uint32_t op1 = 2U /* 0b010; */;
726   uint32_t op2 = 0U /* 0b0000 */;
727   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 |
728       op1 << 20 |
729       op2 << 4 |
730       static_cast<uint32_t>(rd_lo) << 12 |
731       static_cast<uint32_t>(rd_hi) << 8 |
732       static_cast<uint32_t>(rn) << 16 |
733       static_cast<uint32_t>(rm);
734 
735   Emit32(encoding);
736 }
737 
738 
sdiv(Register rd,Register rn,Register rm,Condition cond)739 void Thumb2Assembler::sdiv(Register rd, Register rn, Register rm, Condition cond) {
740   CheckCondition(cond);
741 
742   uint32_t op1 = 1U  /* 0b001 */;
743   uint32_t op2 = 15U /* 0b1111 */;
744   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 | B20 |
745       op1 << 20 |
746       op2 << 4 |
747       0xf << 12 |
748       static_cast<uint32_t>(rd) << 8 |
749       static_cast<uint32_t>(rn) << 16 |
750       static_cast<uint32_t>(rm);
751 
752   Emit32(encoding);
753 }
754 
755 
udiv(Register rd,Register rn,Register rm,Condition cond)756 void Thumb2Assembler::udiv(Register rd, Register rn, Register rm, Condition cond) {
757   CheckCondition(cond);
758 
759   uint32_t op1 = 1U  /* 0b001 */;
760   uint32_t op2 = 15U /* 0b1111 */;
761   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B24 | B23 | B21 | B20 |
762       op1 << 20 |
763       op2 << 4 |
764       0xf << 12 |
765       static_cast<uint32_t>(rd) << 8 |
766       static_cast<uint32_t>(rn) << 16 |
767       static_cast<uint32_t>(rm);
768 
769   Emit32(encoding);
770 }
771 
772 
sbfx(Register rd,Register rn,uint32_t lsb,uint32_t width,Condition cond)773 void Thumb2Assembler::sbfx(Register rd, Register rn, uint32_t lsb, uint32_t width, Condition cond) {
774   CheckCondition(cond);
775   CHECK_LE(lsb, 31U);
776   CHECK(1U <= width && width <= 32U) << width;
777   uint32_t widthminus1 = width - 1;
778   uint32_t imm2 = lsb & (B1 | B0);  // Bits 0-1 of `lsb`.
779   uint32_t imm3 = (lsb & (B4 | B3 | B2)) >> 2;  // Bits 2-4 of `lsb`.
780 
781   uint32_t op = 20U /* 0b10100 */;
782   int32_t encoding = B31 | B30 | B29 | B28 | B25 |
783       op << 20 |
784       static_cast<uint32_t>(rn) << 16 |
785       imm3 << 12 |
786       static_cast<uint32_t>(rd) << 8 |
787       imm2 << 6 |
788       widthminus1;
789 
790   Emit32(encoding);
791 }
792 
793 
ubfx(Register rd,Register rn,uint32_t lsb,uint32_t width,Condition cond)794 void Thumb2Assembler::ubfx(Register rd, Register rn, uint32_t lsb, uint32_t width, Condition cond) {
795   CheckCondition(cond);
796   CHECK_LE(lsb, 31U);
797   CHECK(1U <= width && width <= 32U) << width;
798   uint32_t widthminus1 = width - 1;
799   uint32_t imm2 = lsb & (B1 | B0);  // Bits 0-1 of `lsb`.
800   uint32_t imm3 = (lsb & (B4 | B3 | B2)) >> 2;  // Bits 2-4 of `lsb`.
801 
802   uint32_t op = 28U /* 0b11100 */;
803   int32_t encoding = B31 | B30 | B29 | B28 | B25 |
804       op << 20 |
805       static_cast<uint32_t>(rn) << 16 |
806       imm3 << 12 |
807       static_cast<uint32_t>(rd) << 8 |
808       imm2 << 6 |
809       widthminus1;
810 
811   Emit32(encoding);
812 }
813 
814 
ldr(Register rd,const Address & ad,Condition cond)815 void Thumb2Assembler::ldr(Register rd, const Address& ad, Condition cond) {
816   EmitLoadStore(cond, true, false, false, false, rd, ad);
817 }
818 
819 
str(Register rd,const Address & ad,Condition cond)820 void Thumb2Assembler::str(Register rd, const Address& ad, Condition cond) {
821   EmitLoadStore(cond, false, false, false, false, rd, ad);
822 }
823 
824 
ldrb(Register rd,const Address & ad,Condition cond)825 void Thumb2Assembler::ldrb(Register rd, const Address& ad, Condition cond) {
826   EmitLoadStore(cond, true, true, false, false, rd, ad);
827 }
828 
829 
strb(Register rd,const Address & ad,Condition cond)830 void Thumb2Assembler::strb(Register rd, const Address& ad, Condition cond) {
831   EmitLoadStore(cond, false, true, false, false, rd, ad);
832 }
833 
834 
ldrh(Register rd,const Address & ad,Condition cond)835 void Thumb2Assembler::ldrh(Register rd, const Address& ad, Condition cond) {
836   EmitLoadStore(cond, true, false, true, false, rd, ad);
837 }
838 
839 
strh(Register rd,const Address & ad,Condition cond)840 void Thumb2Assembler::strh(Register rd, const Address& ad, Condition cond) {
841   EmitLoadStore(cond, false, false, true, false, rd, ad);
842 }
843 
844 
ldrsb(Register rd,const Address & ad,Condition cond)845 void Thumb2Assembler::ldrsb(Register rd, const Address& ad, Condition cond) {
846   EmitLoadStore(cond, true, true, false, true, rd, ad);
847 }
848 
849 
ldrsh(Register rd,const Address & ad,Condition cond)850 void Thumb2Assembler::ldrsh(Register rd, const Address& ad, Condition cond) {
851   EmitLoadStore(cond, true, false, true, true, rd, ad);
852 }
853 
854 
ldrd(Register rd,const Address & ad,Condition cond)855 void Thumb2Assembler::ldrd(Register rd, const Address& ad, Condition cond) {
856   ldrd(rd, Register(rd + 1), ad, cond);
857 }
858 
859 
ldrd(Register rd,Register rd2,const Address & ad,Condition cond)860 void Thumb2Assembler::ldrd(Register rd, Register rd2, const Address& ad, Condition cond) {
861   CheckCondition(cond);
862   // Encoding T1.
863   // This is different from other loads.  The encoding is like ARM.
864   int32_t encoding = B31 | B30 | B29 | B27 | B22 | B20 |
865       static_cast<int32_t>(rd) << 12 |
866       static_cast<int32_t>(rd2) << 8 |
867       ad.encodingThumbLdrdStrd();
868   Emit32(encoding);
869 }
870 
871 
strd(Register rd,const Address & ad,Condition cond)872 void Thumb2Assembler::strd(Register rd, const Address& ad, Condition cond) {
873   strd(rd, Register(rd + 1), ad, cond);
874 }
875 
876 
strd(Register rd,Register rd2,const Address & ad,Condition cond)877 void Thumb2Assembler::strd(Register rd, Register rd2, const Address& ad, Condition cond) {
878   CheckCondition(cond);
879   // Encoding T1.
880   // This is different from other loads.  The encoding is like ARM.
881   int32_t encoding = B31 | B30 | B29 | B27 | B22 |
882       static_cast<int32_t>(rd) << 12 |
883       static_cast<int32_t>(rd2) << 8 |
884       ad.encodingThumbLdrdStrd();
885   Emit32(encoding);
886 }
887 
888 
ldm(BlockAddressMode am,Register base,RegList regs,Condition cond)889 void Thumb2Assembler::ldm(BlockAddressMode am,
890                           Register base,
891                           RegList regs,
892                           Condition cond) {
893   CHECK_NE(regs, 0u);  // Do not use ldm if there's nothing to load.
894   if (IsPowerOfTwo(regs)) {
895     // Thumb doesn't support one reg in the list.
896     // Find the register number.
897     int reg = CTZ(static_cast<uint32_t>(regs));
898     CHECK_LT(reg, 16);
899     CHECK(am == DB_W);      // Only writeback is supported.
900     ldr(static_cast<Register>(reg), Address(base, kRegisterSize, Address::PostIndex), cond);
901   } else {
902     EmitMultiMemOp(cond, am, true, base, regs);
903   }
904 }
905 
906 
stm(BlockAddressMode am,Register base,RegList regs,Condition cond)907 void Thumb2Assembler::stm(BlockAddressMode am,
908                           Register base,
909                           RegList regs,
910                           Condition cond) {
911   CHECK_NE(regs, 0u);  // Do not use stm if there's nothing to store.
912   if (IsPowerOfTwo(regs)) {
913     // Thumb doesn't support one reg in the list.
914     // Find the register number.
915     int reg = CTZ(static_cast<uint32_t>(regs));
916     CHECK_LT(reg, 16);
917     CHECK(am == IA || am == IA_W);
918     Address::Mode strmode = am == IA ? Address::PreIndex : Address::Offset;
919     str(static_cast<Register>(reg), Address(base, -kRegisterSize, strmode), cond);
920   } else {
921     EmitMultiMemOp(cond, am, false, base, regs);
922   }
923 }
924 
925 
vmovs(SRegister sd,float s_imm,Condition cond)926 bool Thumb2Assembler::vmovs(SRegister sd, float s_imm, Condition cond) {
927   uint32_t imm32 = bit_cast<uint32_t, float>(s_imm);
928   if (((imm32 & ((1 << 19) - 1)) == 0) &&
929       ((((imm32 >> 25) & ((1 << 6) - 1)) == (1 << 5)) ||
930        (((imm32 >> 25) & ((1 << 6) - 1)) == ((1 << 5) -1)))) {
931     uint8_t imm8 = ((imm32 >> 31) << 7) | (((imm32 >> 29) & 1) << 6) |
932         ((imm32 >> 19) & ((1 << 6) -1));
933     EmitVFPsss(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | (imm8 & 0xf),
934                sd, S0, S0);
935     return true;
936   }
937   return false;
938 }
939 
940 
vmovd(DRegister dd,double d_imm,Condition cond)941 bool Thumb2Assembler::vmovd(DRegister dd, double d_imm, Condition cond) {
942   uint64_t imm64 = bit_cast<uint64_t, double>(d_imm);
943   if (((imm64 & ((1LL << 48) - 1)) == 0) &&
944       ((((imm64 >> 54) & ((1 << 9) - 1)) == (1 << 8)) ||
945        (((imm64 >> 54) & ((1 << 9) - 1)) == ((1 << 8) -1)))) {
946     uint8_t imm8 = ((imm64 >> 63) << 7) | (((imm64 >> 61) & 1) << 6) |
947         ((imm64 >> 48) & ((1 << 6) -1));
948     EmitVFPddd(cond, B23 | B21 | B20 | ((imm8 >> 4)*B16) | B8 | (imm8 & 0xf),
949                dd, D0, D0);
950     return true;
951   }
952   return false;
953 }
954 
955 
vmovs(SRegister sd,SRegister sm,Condition cond)956 void Thumb2Assembler::vmovs(SRegister sd, SRegister sm, Condition cond) {
957   EmitVFPsss(cond, B23 | B21 | B20 | B6, sd, S0, sm);
958 }
959 
960 
vmovd(DRegister dd,DRegister dm,Condition cond)961 void Thumb2Assembler::vmovd(DRegister dd, DRegister dm, Condition cond) {
962   EmitVFPddd(cond, B23 | B21 | B20 | B6, dd, D0, dm);
963 }
964 
965 
vadds(SRegister sd,SRegister sn,SRegister sm,Condition cond)966 void Thumb2Assembler::vadds(SRegister sd, SRegister sn, SRegister sm,
967                             Condition cond) {
968   EmitVFPsss(cond, B21 | B20, sd, sn, sm);
969 }
970 
971 
vaddd(DRegister dd,DRegister dn,DRegister dm,Condition cond)972 void Thumb2Assembler::vaddd(DRegister dd, DRegister dn, DRegister dm,
973                             Condition cond) {
974   EmitVFPddd(cond, B21 | B20, dd, dn, dm);
975 }
976 
977 
vsubs(SRegister sd,SRegister sn,SRegister sm,Condition cond)978 void Thumb2Assembler::vsubs(SRegister sd, SRegister sn, SRegister sm,
979                             Condition cond) {
980   EmitVFPsss(cond, B21 | B20 | B6, sd, sn, sm);
981 }
982 
983 
vsubd(DRegister dd,DRegister dn,DRegister dm,Condition cond)984 void Thumb2Assembler::vsubd(DRegister dd, DRegister dn, DRegister dm,
985                             Condition cond) {
986   EmitVFPddd(cond, B21 | B20 | B6, dd, dn, dm);
987 }
988 
989 
vmuls(SRegister sd,SRegister sn,SRegister sm,Condition cond)990 void Thumb2Assembler::vmuls(SRegister sd, SRegister sn, SRegister sm,
991                             Condition cond) {
992   EmitVFPsss(cond, B21, sd, sn, sm);
993 }
994 
995 
vmuld(DRegister dd,DRegister dn,DRegister dm,Condition cond)996 void Thumb2Assembler::vmuld(DRegister dd, DRegister dn, DRegister dm,
997                             Condition cond) {
998   EmitVFPddd(cond, B21, dd, dn, dm);
999 }
1000 
1001 
vmlas(SRegister sd,SRegister sn,SRegister sm,Condition cond)1002 void Thumb2Assembler::vmlas(SRegister sd, SRegister sn, SRegister sm,
1003                             Condition cond) {
1004   EmitVFPsss(cond, 0, sd, sn, sm);
1005 }
1006 
1007 
vmlad(DRegister dd,DRegister dn,DRegister dm,Condition cond)1008 void Thumb2Assembler::vmlad(DRegister dd, DRegister dn, DRegister dm,
1009                             Condition cond) {
1010   EmitVFPddd(cond, 0, dd, dn, dm);
1011 }
1012 
1013 
vmlss(SRegister sd,SRegister sn,SRegister sm,Condition cond)1014 void Thumb2Assembler::vmlss(SRegister sd, SRegister sn, SRegister sm,
1015                             Condition cond) {
1016   EmitVFPsss(cond, B6, sd, sn, sm);
1017 }
1018 
1019 
vmlsd(DRegister dd,DRegister dn,DRegister dm,Condition cond)1020 void Thumb2Assembler::vmlsd(DRegister dd, DRegister dn, DRegister dm,
1021                             Condition cond) {
1022   EmitVFPddd(cond, B6, dd, dn, dm);
1023 }
1024 
1025 
vdivs(SRegister sd,SRegister sn,SRegister sm,Condition cond)1026 void Thumb2Assembler::vdivs(SRegister sd, SRegister sn, SRegister sm,
1027                             Condition cond) {
1028   EmitVFPsss(cond, B23, sd, sn, sm);
1029 }
1030 
1031 
vdivd(DRegister dd,DRegister dn,DRegister dm,Condition cond)1032 void Thumb2Assembler::vdivd(DRegister dd, DRegister dn, DRegister dm,
1033                             Condition cond) {
1034   EmitVFPddd(cond, B23, dd, dn, dm);
1035 }
1036 
1037 
vabss(SRegister sd,SRegister sm,Condition cond)1038 void Thumb2Assembler::vabss(SRegister sd, SRegister sm, Condition cond) {
1039   EmitVFPsss(cond, B23 | B21 | B20 | B7 | B6, sd, S0, sm);
1040 }
1041 
1042 
vabsd(DRegister dd,DRegister dm,Condition cond)1043 void Thumb2Assembler::vabsd(DRegister dd, DRegister dm, Condition cond) {
1044   EmitVFPddd(cond, B23 | B21 | B20 | B7 | B6, dd, D0, dm);
1045 }
1046 
1047 
vnegs(SRegister sd,SRegister sm,Condition cond)1048 void Thumb2Assembler::vnegs(SRegister sd, SRegister sm, Condition cond) {
1049   EmitVFPsss(cond, B23 | B21 | B20 | B16 | B6, sd, S0, sm);
1050 }
1051 
1052 
vnegd(DRegister dd,DRegister dm,Condition cond)1053 void Thumb2Assembler::vnegd(DRegister dd, DRegister dm, Condition cond) {
1054   EmitVFPddd(cond, B23 | B21 | B20 | B16 | B6, dd, D0, dm);
1055 }
1056 
1057 
vsqrts(SRegister sd,SRegister sm,Condition cond)1058 void Thumb2Assembler::vsqrts(SRegister sd, SRegister sm, Condition cond) {
1059   EmitVFPsss(cond, B23 | B21 | B20 | B16 | B7 | B6, sd, S0, sm);
1060 }
1061 
vsqrtd(DRegister dd,DRegister dm,Condition cond)1062 void Thumb2Assembler::vsqrtd(DRegister dd, DRegister dm, Condition cond) {
1063   EmitVFPddd(cond, B23 | B21 | B20 | B16 | B7 | B6, dd, D0, dm);
1064 }
1065 
1066 
vcvtsd(SRegister sd,DRegister dm,Condition cond)1067 void Thumb2Assembler::vcvtsd(SRegister sd, DRegister dm, Condition cond) {
1068   EmitVFPsd(cond, B23 | B21 | B20 | B18 | B17 | B16 | B8 | B7 | B6, sd, dm);
1069 }
1070 
1071 
vcvtds(DRegister dd,SRegister sm,Condition cond)1072 void Thumb2Assembler::vcvtds(DRegister dd, SRegister sm, Condition cond) {
1073   EmitVFPds(cond, B23 | B21 | B20 | B18 | B17 | B16 | B7 | B6, dd, sm);
1074 }
1075 
1076 
vcvtis(SRegister sd,SRegister sm,Condition cond)1077 void Thumb2Assembler::vcvtis(SRegister sd, SRegister sm, Condition cond) {
1078   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B16 | B7 | B6, sd, S0, sm);
1079 }
1080 
1081 
vcvtid(SRegister sd,DRegister dm,Condition cond)1082 void Thumb2Assembler::vcvtid(SRegister sd, DRegister dm, Condition cond) {
1083   EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B16 | B8 | B7 | B6, sd, dm);
1084 }
1085 
1086 
vcvtsi(SRegister sd,SRegister sm,Condition cond)1087 void Thumb2Assembler::vcvtsi(SRegister sd, SRegister sm, Condition cond) {
1088   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B7 | B6, sd, S0, sm);
1089 }
1090 
1091 
vcvtdi(DRegister dd,SRegister sm,Condition cond)1092 void Thumb2Assembler::vcvtdi(DRegister dd, SRegister sm, Condition cond) {
1093   EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B7 | B6, dd, sm);
1094 }
1095 
1096 
vcvtus(SRegister sd,SRegister sm,Condition cond)1097 void Thumb2Assembler::vcvtus(SRegister sd, SRegister sm, Condition cond) {
1098   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B18 | B7 | B6, sd, S0, sm);
1099 }
1100 
1101 
vcvtud(SRegister sd,DRegister dm,Condition cond)1102 void Thumb2Assembler::vcvtud(SRegister sd, DRegister dm, Condition cond) {
1103   EmitVFPsd(cond, B23 | B21 | B20 | B19 | B18 | B8 | B7 | B6, sd, dm);
1104 }
1105 
1106 
vcvtsu(SRegister sd,SRegister sm,Condition cond)1107 void Thumb2Assembler::vcvtsu(SRegister sd, SRegister sm, Condition cond) {
1108   EmitVFPsss(cond, B23 | B21 | B20 | B19 | B6, sd, S0, sm);
1109 }
1110 
1111 
vcvtdu(DRegister dd,SRegister sm,Condition cond)1112 void Thumb2Assembler::vcvtdu(DRegister dd, SRegister sm, Condition cond) {
1113   EmitVFPds(cond, B23 | B21 | B20 | B19 | B8 | B6, dd, sm);
1114 }
1115 
1116 
vcmps(SRegister sd,SRegister sm,Condition cond)1117 void Thumb2Assembler::vcmps(SRegister sd, SRegister sm, Condition cond) {
1118   EmitVFPsss(cond, B23 | B21 | B20 | B18 | B6, sd, S0, sm);
1119 }
1120 
1121 
vcmpd(DRegister dd,DRegister dm,Condition cond)1122 void Thumb2Assembler::vcmpd(DRegister dd, DRegister dm, Condition cond) {
1123   EmitVFPddd(cond, B23 | B21 | B20 | B18 | B6, dd, D0, dm);
1124 }
1125 
1126 
vcmpsz(SRegister sd,Condition cond)1127 void Thumb2Assembler::vcmpsz(SRegister sd, Condition cond) {
1128   EmitVFPsss(cond, B23 | B21 | B20 | B18 | B16 | B6, sd, S0, S0);
1129 }
1130 
1131 
vcmpdz(DRegister dd,Condition cond)1132 void Thumb2Assembler::vcmpdz(DRegister dd, Condition cond) {
1133   EmitVFPddd(cond, B23 | B21 | B20 | B18 | B16 | B6, dd, D0, D0);
1134 }
1135 
b(Label * label,Condition cond)1136 void Thumb2Assembler::b(Label* label, Condition cond) {
1137   DCHECK_EQ(next_condition_, AL);
1138   EmitBranch(cond, label, false, false);
1139 }
1140 
1141 
bl(Label * label,Condition cond)1142 void Thumb2Assembler::bl(Label* label, Condition cond) {
1143   CheckCondition(cond);
1144   EmitBranch(cond, label, true, false);
1145 }
1146 
1147 
blx(Label * label)1148 void Thumb2Assembler::blx(Label* label) {
1149   EmitBranch(AL, label, true, true);
1150 }
1151 
1152 
MarkExceptionHandler(Label * label)1153 void Thumb2Assembler::MarkExceptionHandler(Label* label) {
1154   EmitDataProcessing(AL, TST, kCcSet, PC, R0, ShifterOperand(0));
1155   Label l;
1156   b(&l);
1157   EmitBranch(AL, label, false, false);
1158   Bind(&l);
1159 }
1160 
1161 
Emit32(int32_t value)1162 void Thumb2Assembler::Emit32(int32_t value) {
1163   AssemblerBuffer::EnsureCapacity ensured(&buffer_);
1164   buffer_.Emit<int16_t>(value >> 16);
1165   buffer_.Emit<int16_t>(value & 0xffff);
1166 }
1167 
1168 
Emit16(int16_t value)1169 void Thumb2Assembler::Emit16(int16_t value) {
1170   AssemblerBuffer::EnsureCapacity ensured(&buffer_);
1171   buffer_.Emit<int16_t>(value);
1172 }
1173 
1174 
Is32BitDataProcessing(Condition cond,Opcode opcode,SetCc set_cc,Register rn,Register rd,const ShifterOperand & so)1175 bool Thumb2Assembler::Is32BitDataProcessing(Condition cond,
1176                                             Opcode opcode,
1177                                             SetCc set_cc,
1178                                             Register rn,
1179                                             Register rd,
1180                                             const ShifterOperand& so) {
1181   if (force_32bit_) {
1182     return true;
1183   }
1184 
1185   // Check special case for SP relative ADD and SUB immediate.
1186   if ((opcode == ADD || opcode == SUB) && rn == SP && so.IsImmediate() && set_cc != kCcSet) {
1187     // If the immediate is in range, use 16 bit.
1188     if (rd == SP) {
1189       if (so.GetImmediate() < (1 << 9)) {    // 9 bit immediate.
1190         return false;
1191       }
1192     } else if (!IsHighRegister(rd) && opcode == ADD) {
1193       if (so.GetImmediate() < (1 << 10)) {    // 10 bit immediate.
1194         return false;
1195       }
1196     }
1197   }
1198 
1199   bool can_contain_high_register =
1200       (opcode == CMP) ||
1201       (opcode == MOV && set_cc != kCcSet) ||
1202       ((opcode == ADD) && (rn == rd) && set_cc != kCcSet);
1203 
1204   if (IsHighRegister(rd) || IsHighRegister(rn)) {
1205     if (!can_contain_high_register) {
1206       return true;
1207     }
1208 
1209     // There are high register instructions available for this opcode.
1210     // However, there is no actual shift available, neither for ADD nor for MOV (ASR/LSR/LSL/ROR).
1211     if (so.IsShift() && (so.GetShift() == RRX || so.GetImmediate() != 0u)) {
1212       return true;
1213     }
1214 
1215     // The ADD and MOV instructions that work with high registers don't have 16-bit
1216     // immediate variants.
1217     if (so.IsImmediate()) {
1218       return true;
1219     }
1220   }
1221 
1222   if (so.IsRegister() && IsHighRegister(so.GetRegister()) && !can_contain_high_register) {
1223     return true;
1224   }
1225 
1226   bool rn_is_valid = true;
1227 
1228   // Check for single operand instructions and ADD/SUB.
1229   switch (opcode) {
1230     case CMP:
1231     case MOV:
1232     case TST:
1233     case MVN:
1234       rn_is_valid = false;      // There is no Rn for these instructions.
1235       break;
1236     case TEQ:
1237     case ORN:
1238       return true;
1239     case ADD:
1240     case SUB:
1241       break;
1242     default:
1243       if (so.IsRegister() && rd != rn) {
1244         return true;
1245       }
1246   }
1247 
1248   if (so.IsImmediate()) {
1249     if (opcode == RSB) {
1250       DCHECK(rn_is_valid);
1251       if (so.GetImmediate() != 0u) {
1252         return true;
1253       }
1254     } else if (rn_is_valid && rn != rd) {
1255       // The only thumb1 instructions with a register and an immediate are ADD and SUB
1256       // with a 3-bit immediate, and RSB with zero immediate.
1257       if (opcode == ADD || opcode == SUB) {
1258         if ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet) {
1259           return true;  // Cannot match "setflags".
1260         }
1261         if (!IsUint<3>(so.GetImmediate()) && !IsUint<3>(-so.GetImmediate())) {
1262           return true;
1263         }
1264       } else {
1265         return true;
1266       }
1267     } else {
1268       // ADD, SUB, CMP and MOV may be thumb1 only if the immediate is 8 bits.
1269       if (!(opcode == ADD || opcode == SUB || opcode == MOV || opcode == CMP)) {
1270         return true;
1271       } else if (opcode != CMP && ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet)) {
1272         return true;  // Cannot match "setflags" for ADD, SUB or MOV.
1273       } else {
1274         // For ADD and SUB allow also negative 8-bit immediate as we will emit the oposite opcode.
1275         if (!IsUint<8>(so.GetImmediate()) &&
1276             (opcode == MOV || opcode == CMP || !IsUint<8>(-so.GetImmediate()))) {
1277           return true;
1278         }
1279       }
1280     }
1281   } else {
1282     DCHECK(so.IsRegister());
1283     if (so.IsShift()) {
1284       // Shift operand - check if it is a MOV convertible to a 16-bit shift instruction.
1285       if (opcode != MOV) {
1286         return true;
1287       }
1288       // Check for MOV with an ROR/RRX. There is no 16-bit ROR immediate and no 16-bit RRX.
1289       if (so.GetShift() == ROR || so.GetShift() == RRX) {
1290         return true;
1291       }
1292       // 16-bit shifts set condition codes if and only if outside IT block,
1293       // i.e. if and only if cond == AL.
1294       if ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet) {
1295         return true;
1296       }
1297     } else {
1298       // Register operand without shift.
1299       switch (opcode) {
1300         case ADD:
1301           // The 16-bit ADD that cannot contain high registers can set condition codes
1302           // if and only if outside IT block, i.e. if and only if cond == AL.
1303           if (!can_contain_high_register &&
1304               ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet)) {
1305             return true;
1306           }
1307           break;
1308         case AND:
1309         case BIC:
1310         case EOR:
1311         case ORR:
1312         case MVN:
1313         case ADC:
1314         case SUB:
1315         case SBC:
1316           // These 16-bit opcodes set condition codes if and only if outside IT block,
1317           // i.e. if and only if cond == AL.
1318           if ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet) {
1319             return true;
1320           }
1321           break;
1322         case RSB:
1323         case RSC:
1324           // No 16-bit RSB/RSC Rd, Rm, Rn. It would be equivalent to SUB/SBC Rd, Rn, Rm.
1325           return true;
1326         case CMP:
1327         default:
1328           break;
1329       }
1330     }
1331   }
1332 
1333   // The instruction can be encoded in 16 bits.
1334   return false;
1335 }
1336 
1337 
Emit32BitDataProcessing(Condition cond ATTRIBUTE_UNUSED,Opcode opcode,SetCc set_cc,Register rn,Register rd,const ShifterOperand & so)1338 void Thumb2Assembler::Emit32BitDataProcessing(Condition cond ATTRIBUTE_UNUSED,
1339                                               Opcode opcode,
1340                                               SetCc set_cc,
1341                                               Register rn,
1342                                               Register rd,
1343                                               const ShifterOperand& so) {
1344   uint8_t thumb_opcode = 255U /* 0b11111111 */;
1345   switch (opcode) {
1346     case AND: thumb_opcode =  0U /* 0b0000 */; break;
1347     case EOR: thumb_opcode =  4U /* 0b0100 */; break;
1348     case SUB: thumb_opcode = 13U /* 0b1101 */; break;
1349     case RSB: thumb_opcode = 14U /* 0b1110 */; break;
1350     case ADD: thumb_opcode =  8U /* 0b1000 */; break;
1351     case ADC: thumb_opcode = 10U /* 0b1010 */; break;
1352     case SBC: thumb_opcode = 11U /* 0b1011 */; break;
1353     case RSC: break;
1354     case TST: thumb_opcode =  0U /* 0b0000 */; DCHECK(set_cc == kCcSet); rd = PC; break;
1355     case TEQ: thumb_opcode =  4U /* 0b0100 */; DCHECK(set_cc == kCcSet); rd = PC; break;
1356     case CMP: thumb_opcode = 13U /* 0b1101 */; DCHECK(set_cc == kCcSet); rd = PC; break;
1357     case CMN: thumb_opcode =  8U /* 0b1000 */; DCHECK(set_cc == kCcSet); rd = PC; break;
1358     case ORR: thumb_opcode =  2U /* 0b0010 */; break;
1359     case MOV: thumb_opcode =  2U /* 0b0010 */; rn = PC; break;
1360     case BIC: thumb_opcode =  1U /* 0b0001 */; break;
1361     case MVN: thumb_opcode =  3U /* 0b0011 */; rn = PC; break;
1362     case ORN: thumb_opcode =  3U /* 0b0011 */; break;
1363     default:
1364       break;
1365   }
1366 
1367   if (thumb_opcode == 255U /* 0b11111111 */) {
1368     LOG(FATAL) << "Invalid thumb2 opcode " << opcode;
1369     UNREACHABLE();
1370   }
1371 
1372   int32_t encoding = 0;
1373   if (so.IsImmediate()) {
1374     // Check special cases.
1375     if ((opcode == SUB || opcode == ADD) && (so.GetImmediate() < (1u << 12)) &&
1376         /* Prefer T3 encoding to T4. */ !ShifterOperandCanAlwaysHold(so.GetImmediate())) {
1377       if (set_cc != kCcSet) {
1378         if (opcode == SUB) {
1379           thumb_opcode = 5U;
1380         } else if (opcode == ADD) {
1381           thumb_opcode = 0U;
1382         }
1383       }
1384       uint32_t imm = so.GetImmediate();
1385 
1386       uint32_t i = (imm >> 11) & 1;
1387       uint32_t imm3 = (imm >> 8) & 7U /* 0b111 */;
1388       uint32_t imm8 = imm & 0xff;
1389 
1390       encoding = B31 | B30 | B29 | B28 |
1391           (set_cc == kCcSet ? B20 : B25) |
1392           thumb_opcode << 21 |
1393           rn << 16 |
1394           rd << 8 |
1395           i << 26 |
1396           imm3 << 12 |
1397           imm8;
1398     } else {
1399       // Modified immediate.
1400       uint32_t imm = ModifiedImmediate(so.encodingThumb());
1401       if (imm == kInvalidModifiedImmediate) {
1402         LOG(FATAL) << "Immediate value cannot fit in thumb2 modified immediate";
1403         UNREACHABLE();
1404       }
1405       encoding = B31 | B30 | B29 | B28 |
1406           thumb_opcode << 21 |
1407           (set_cc == kCcSet ? B20 : 0) |
1408           rn << 16 |
1409           rd << 8 |
1410           imm;
1411     }
1412   } else if (so.IsRegister()) {
1413     // Register (possibly shifted)
1414     encoding = B31 | B30 | B29 | B27 | B25 |
1415         thumb_opcode << 21 |
1416         (set_cc == kCcSet ? B20 : 0) |
1417         rn << 16 |
1418         rd << 8 |
1419         so.encodingThumb();
1420   }
1421   Emit32(encoding);
1422 }
1423 
1424 
Emit16BitDataProcessing(Condition cond,Opcode opcode,SetCc set_cc,Register rn,Register rd,const ShifterOperand & so)1425 void Thumb2Assembler::Emit16BitDataProcessing(Condition cond,
1426                                               Opcode opcode,
1427                                               SetCc set_cc,
1428                                               Register rn,
1429                                               Register rd,
1430                                               const ShifterOperand& so) {
1431   if (opcode == ADD || opcode == SUB) {
1432     Emit16BitAddSub(cond, opcode, set_cc, rn, rd, so);
1433     return;
1434   }
1435   uint8_t thumb_opcode = 255U /* 0b11111111 */;
1436   // Thumb1.
1437   uint8_t dp_opcode = 1U /* 0b01 */;
1438   uint8_t opcode_shift = 6;
1439   uint8_t rd_shift = 0;
1440   uint8_t rn_shift = 3;
1441   uint8_t immediate_shift = 0;
1442   bool use_immediate = false;
1443   uint8_t immediate = 0;
1444 
1445   if (opcode == MOV && so.IsRegister() && so.IsShift()) {
1446     // Convert shifted mov operand2 into 16 bit opcodes.
1447     dp_opcode = 0;
1448     opcode_shift = 11;
1449 
1450     use_immediate = true;
1451     immediate = so.GetImmediate();
1452     immediate_shift = 6;
1453 
1454     rn = so.GetRegister();
1455 
1456     switch (so.GetShift()) {
1457     case LSL:
1458       DCHECK_LE(immediate, 31u);
1459       thumb_opcode = 0U /* 0b00 */;
1460       break;
1461     case LSR:
1462       DCHECK(1 <= immediate && immediate <= 32);
1463       immediate &= 31;  // 32 is encoded as 0.
1464       thumb_opcode = 1U /* 0b01 */;
1465       break;
1466     case ASR:
1467       DCHECK(1 <= immediate && immediate <= 32);
1468       immediate &= 31;  // 32 is encoded as 0.
1469       thumb_opcode = 2U /* 0b10 */;
1470       break;
1471     case ROR:  // No 16-bit ROR immediate.
1472     case RRX:  // No 16-bit RRX.
1473     default:
1474       LOG(FATAL) << "Unexpected shift: " << so.GetShift();
1475       UNREACHABLE();
1476     }
1477   } else {
1478     if (so.IsImmediate()) {
1479       use_immediate = true;
1480       immediate = so.GetImmediate();
1481     } else {
1482       CHECK(!(so.IsRegister() && so.IsShift() && so.GetSecondRegister() != kNoRegister))
1483           << "No register-shifted register instruction available in thumb";
1484       // Adjust rn and rd: only two registers will be emitted.
1485       switch (opcode) {
1486         case AND:
1487         case ORR:
1488         case EOR:
1489         case RSB:
1490         case ADC:
1491         case SBC:
1492         case BIC: {
1493           // Sets condition codes if and only if outside IT block,
1494           // check that it complies with set_cc.
1495           DCHECK((cond == AL) ? set_cc != kCcKeep : set_cc != kCcSet);
1496           if (rn == rd) {
1497             rn = so.GetRegister();
1498           } else {
1499             CHECK_EQ(rd, so.GetRegister());
1500           }
1501           break;
1502         }
1503         case CMP:
1504         case CMN: {
1505           CHECK_EQ(rd, 0);
1506           rd = rn;
1507           rn = so.GetRegister();
1508           break;
1509         }
1510         case MVN: {
1511           // Sets condition codes if and only if outside IT block,
1512           // check that it complies with set_cc.
1513           DCHECK((cond == AL) ? set_cc != kCcKeep : set_cc != kCcSet);
1514           CHECK_EQ(rn, 0);
1515           rn = so.GetRegister();
1516           break;
1517         }
1518         case TST:
1519         case TEQ: {
1520           DCHECK(set_cc == kCcSet);
1521           CHECK_EQ(rn, 0);
1522           rn = so.GetRegister();
1523           break;
1524         }
1525         default:
1526           break;
1527       }
1528     }
1529 
1530     switch (opcode) {
1531       case AND: thumb_opcode = 0U /* 0b0000 */; break;
1532       case ORR: thumb_opcode = 12U /* 0b1100 */; break;
1533       case EOR: thumb_opcode = 1U /* 0b0001 */; break;
1534       case RSB: thumb_opcode = 9U /* 0b1001 */; break;
1535       case ADC: thumb_opcode = 5U /* 0b0101 */; break;
1536       case SBC: thumb_opcode = 6U /* 0b0110 */; break;
1537       case BIC: thumb_opcode = 14U /* 0b1110 */; break;
1538       case TST: thumb_opcode = 8U /* 0b1000 */; CHECK(!use_immediate); break;
1539       case MVN: thumb_opcode = 15U /* 0b1111 */; CHECK(!use_immediate); break;
1540       case CMP: {
1541         DCHECK(set_cc == kCcSet);
1542         if (use_immediate) {
1543           // T2 encoding.
1544           dp_opcode = 0;
1545           opcode_shift = 11;
1546           thumb_opcode = 5U /* 0b101 */;
1547           rd_shift = 8;
1548           rn_shift = 8;
1549         } else if (IsHighRegister(rd) || IsHighRegister(rn)) {
1550           // Special cmp for high registers.
1551           dp_opcode = 1U /* 0b01 */;
1552           opcode_shift = 7;
1553           // Put the top bit of rd into the bottom bit of the opcode.
1554           thumb_opcode = 10U /* 0b0001010 */ | static_cast<uint32_t>(rd) >> 3;
1555           rd = static_cast<Register>(static_cast<uint32_t>(rd) & 7U /* 0b111 */);
1556         } else {
1557           thumb_opcode = 10U /* 0b1010 */;
1558         }
1559 
1560         break;
1561       }
1562       case CMN: {
1563         CHECK(!use_immediate);
1564         thumb_opcode = 11U /* 0b1011 */;
1565         break;
1566       }
1567       case MOV:
1568         dp_opcode = 0;
1569         if (use_immediate) {
1570           // T2 encoding.
1571           opcode_shift = 11;
1572           thumb_opcode = 4U /* 0b100 */;
1573           rd_shift = 8;
1574           rn_shift = 8;
1575         } else {
1576           rn = so.GetRegister();
1577           if (set_cc != kCcSet) {
1578             // Special mov for high registers.
1579             dp_opcode = 1U /* 0b01 */;
1580             opcode_shift = 7;
1581             // Put the top bit of rd into the bottom bit of the opcode.
1582             thumb_opcode = 12U /* 0b0001100 */ | static_cast<uint32_t>(rd) >> 3;
1583             rd = static_cast<Register>(static_cast<uint32_t>(rd) & 7U /* 0b111 */);
1584           } else {
1585             DCHECK(!IsHighRegister(rn));
1586             DCHECK(!IsHighRegister(rd));
1587             thumb_opcode = 0;
1588           }
1589         }
1590         break;
1591 
1592       case TEQ:
1593       case RSC:
1594       default:
1595         LOG(FATAL) << "Invalid thumb1 opcode " << opcode;
1596         break;
1597     }
1598   }
1599 
1600   if (thumb_opcode == 255U /* 0b11111111 */) {
1601     LOG(FATAL) << "Invalid thumb1 opcode " << opcode;
1602     UNREACHABLE();
1603   }
1604 
1605   int16_t encoding = dp_opcode << 14 |
1606       (thumb_opcode << opcode_shift) |
1607       rd << rd_shift |
1608       rn << rn_shift |
1609       (use_immediate ? (immediate << immediate_shift) : 0);
1610 
1611   Emit16(encoding);
1612 }
1613 
1614 
1615 // ADD and SUB are complex enough to warrant their own emitter.
Emit16BitAddSub(Condition cond,Opcode opcode,SetCc set_cc,Register rn,Register rd,const ShifterOperand & so)1616 void Thumb2Assembler::Emit16BitAddSub(Condition cond,
1617                                       Opcode opcode,
1618                                       SetCc set_cc,
1619                                       Register rn,
1620                                       Register rd,
1621                                       const ShifterOperand& so) {
1622   uint8_t dp_opcode = 0;
1623   uint8_t opcode_shift = 6;
1624   uint8_t rd_shift = 0;
1625   uint8_t rn_shift = 3;
1626   uint8_t immediate_shift = 0;
1627   bool use_immediate = false;
1628   uint32_t immediate = 0;  // Should be at most 10 bits but keep the full immediate for CHECKs.
1629   uint8_t thumb_opcode;
1630 
1631   if (so.IsImmediate()) {
1632     use_immediate = true;
1633     immediate = so.GetImmediate();
1634     if (!IsUint<10>(immediate)) {
1635       // Flip ADD/SUB.
1636       opcode = (opcode == ADD) ? SUB : ADD;
1637       immediate = -immediate;
1638       DCHECK(IsUint<10>(immediate));  // More stringent checks below.
1639     }
1640   }
1641 
1642   switch (opcode) {
1643     case ADD:
1644       if (so.IsRegister()) {
1645         Register rm = so.GetRegister();
1646         if (rn == rd && set_cc != kCcSet) {
1647           // Can use T2 encoding (allows 4 bit registers)
1648           dp_opcode = 1U /* 0b01 */;
1649           opcode_shift = 10;
1650           thumb_opcode = 1U /* 0b0001 */;
1651           // Make Rn also contain the top bit of rd.
1652           rn = static_cast<Register>(static_cast<uint32_t>(rm) |
1653                                      (static_cast<uint32_t>(rd) & 8U /* 0b1000 */) << 1);
1654           rd = static_cast<Register>(static_cast<uint32_t>(rd) & 7U /* 0b111 */);
1655         } else {
1656           // T1.
1657           DCHECK(!IsHighRegister(rd));
1658           DCHECK(!IsHighRegister(rn));
1659           DCHECK(!IsHighRegister(rm));
1660           // Sets condition codes if and only if outside IT block,
1661           // check that it complies with set_cc.
1662           DCHECK((cond == AL) ? set_cc != kCcKeep : set_cc != kCcSet);
1663           opcode_shift = 9;
1664           thumb_opcode = 12U /* 0b01100 */;
1665           immediate = static_cast<uint32_t>(so.GetRegister());
1666           use_immediate = true;
1667           immediate_shift = 6;
1668         }
1669       } else {
1670         // Immediate.
1671         if (rd == SP && rn == SP) {
1672           // ADD sp, sp, #imm
1673           dp_opcode = 2U /* 0b10 */;
1674           thumb_opcode = 3U /* 0b11 */;
1675           opcode_shift = 12;
1676           CHECK(IsUint<9>(immediate));
1677           CHECK_ALIGNED(immediate, 4);
1678 
1679           // Remove rd and rn from instruction by orring it with immed and clearing bits.
1680           rn = R0;
1681           rd = R0;
1682           rd_shift = 0;
1683           rn_shift = 0;
1684           immediate >>= 2;
1685         } else if (rd != SP && rn == SP) {
1686           // ADD rd, SP, #imm
1687           dp_opcode = 2U /* 0b10 */;
1688           thumb_opcode = 5U /* 0b101 */;
1689           opcode_shift = 11;
1690           CHECK(IsUint<10>(immediate));
1691           CHECK_ALIGNED(immediate, 4);
1692 
1693           // Remove rn from instruction.
1694           rn = R0;
1695           rn_shift = 0;
1696           rd_shift = 8;
1697           immediate >>= 2;
1698         } else if (rn != rd) {
1699           // Must use T1.
1700           CHECK(IsUint<3>(immediate));
1701           opcode_shift = 9;
1702           thumb_opcode = 14U /* 0b01110 */;
1703           immediate_shift = 6;
1704         } else {
1705           // T2 encoding.
1706           CHECK(IsUint<8>(immediate));
1707           opcode_shift = 11;
1708           thumb_opcode = 6U /* 0b110 */;
1709           rd_shift = 8;
1710           rn_shift = 8;
1711         }
1712       }
1713       break;
1714 
1715     case SUB:
1716       if (so.IsRegister()) {
1717         // T1.
1718         Register rm = so.GetRegister();
1719         DCHECK(!IsHighRegister(rd));
1720         DCHECK(!IsHighRegister(rn));
1721         DCHECK(!IsHighRegister(rm));
1722         // Sets condition codes if and only if outside IT block,
1723         // check that it complies with set_cc.
1724         DCHECK((cond == AL) ? set_cc != kCcKeep : set_cc != kCcSet);
1725         opcode_shift = 9;
1726         thumb_opcode = 13U /* 0b01101 */;
1727         immediate = static_cast<uint32_t>(rm);
1728         use_immediate = true;
1729         immediate_shift = 6;
1730       } else {
1731         if (rd == SP && rn == SP) {
1732           // SUB sp, sp, #imm
1733           dp_opcode = 2U /* 0b10 */;
1734           thumb_opcode = 0x61 /* 0b1100001 */;
1735           opcode_shift = 7;
1736           CHECK(IsUint<9>(immediate));
1737           CHECK_ALIGNED(immediate, 4);
1738 
1739           // Remove rd and rn from instruction by orring it with immed and clearing bits.
1740           rn = R0;
1741           rd = R0;
1742           rd_shift = 0;
1743           rn_shift = 0;
1744           immediate >>= 2;
1745         } else if (rn != rd) {
1746           // Must use T1.
1747           CHECK(IsUint<3>(immediate));
1748           opcode_shift = 9;
1749           thumb_opcode = 15U /* 0b01111 */;
1750           immediate_shift = 6;
1751         } else {
1752           // T2 encoding.
1753           CHECK(IsUint<8>(immediate));
1754           opcode_shift = 11;
1755           thumb_opcode = 7U /* 0b111 */;
1756           rd_shift = 8;
1757           rn_shift = 8;
1758         }
1759       }
1760       break;
1761     default:
1762       LOG(FATAL) << "This opcode is not an ADD or SUB: " << opcode;
1763       UNREACHABLE();
1764   }
1765 
1766   int16_t encoding = dp_opcode << 14 |
1767       (thumb_opcode << opcode_shift) |
1768       rd << rd_shift |
1769       rn << rn_shift |
1770       (use_immediate ? (immediate << immediate_shift) : 0);
1771 
1772   Emit16(encoding);
1773 }
1774 
1775 
EmitDataProcessing(Condition cond,Opcode opcode,SetCc set_cc,Register rn,Register rd,const ShifterOperand & so)1776 void Thumb2Assembler::EmitDataProcessing(Condition cond,
1777                                          Opcode opcode,
1778                                          SetCc set_cc,
1779                                          Register rn,
1780                                          Register rd,
1781                                          const ShifterOperand& so) {
1782   CHECK_NE(rd, kNoRegister);
1783   CheckCondition(cond);
1784 
1785   if (Is32BitDataProcessing(cond, opcode, set_cc, rn, rd, so)) {
1786     Emit32BitDataProcessing(cond, opcode, set_cc, rn, rd, so);
1787   } else {
1788     Emit16BitDataProcessing(cond, opcode, set_cc, rn, rd, so);
1789   }
1790 }
1791 
EmitShift(Register rd,Register rm,Shift shift,uint8_t amount,Condition cond,SetCc set_cc)1792 void Thumb2Assembler::EmitShift(Register rd,
1793                                 Register rm,
1794                                 Shift shift,
1795                                 uint8_t amount,
1796                                 Condition cond,
1797                                 SetCc set_cc) {
1798   CHECK_LT(amount, (1 << 5));
1799   if ((IsHighRegister(rd) || IsHighRegister(rm) || shift == ROR || shift == RRX) ||
1800       ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet)) {
1801     uint16_t opcode = 0;
1802     switch (shift) {
1803       case LSL: opcode = 0U /* 0b00 */; break;
1804       case LSR: opcode = 1U /* 0b01 */; break;
1805       case ASR: opcode = 2U /* 0b10 */; break;
1806       case ROR: opcode = 3U /* 0b11 */; break;
1807       case RRX: opcode = 3U /* 0b11 */; amount = 0; break;
1808       default:
1809         LOG(FATAL) << "Unsupported thumb2 shift opcode";
1810         UNREACHABLE();
1811     }
1812     // 32 bit.
1813     int32_t encoding = B31 | B30 | B29 | B27 | B25 | B22 |
1814         0xf << 16 | (set_cc == kCcSet ? B20 : 0);
1815     uint32_t imm3 = amount >> 2;
1816     uint32_t imm2 = amount & 3U /* 0b11 */;
1817     encoding |= imm3 << 12 | imm2 << 6 | static_cast<int16_t>(rm) |
1818         static_cast<int16_t>(rd) << 8 | opcode << 4;
1819     Emit32(encoding);
1820   } else {
1821     // 16 bit shift
1822     uint16_t opcode = 0;
1823     switch (shift) {
1824       case LSL: opcode = 0U /* 0b00 */; break;
1825       case LSR: opcode = 1U /* 0b01 */; break;
1826       case ASR: opcode = 2U /* 0b10 */; break;
1827       default:
1828         LOG(FATAL) << "Unsupported thumb2 shift opcode";
1829         UNREACHABLE();
1830     }
1831     int16_t encoding = opcode << 11 | amount << 6 | static_cast<int16_t>(rm) << 3 |
1832         static_cast<int16_t>(rd);
1833     Emit16(encoding);
1834   }
1835 }
1836 
EmitShift(Register rd,Register rn,Shift shift,Register rm,Condition cond,SetCc set_cc)1837 void Thumb2Assembler::EmitShift(Register rd,
1838                                 Register rn,
1839                                 Shift shift,
1840                                 Register rm,
1841                                 Condition cond,
1842                                 SetCc set_cc) {
1843   CHECK_NE(shift, RRX);
1844   bool must_be_32bit = false;
1845   if (IsHighRegister(rd) || IsHighRegister(rm) || IsHighRegister(rn) || rd != rn ||
1846       ((cond == AL) ? set_cc == kCcKeep : set_cc == kCcSet)) {
1847     must_be_32bit = true;
1848   }
1849 
1850   if (must_be_32bit) {
1851     uint16_t opcode = 0;
1852      switch (shift) {
1853        case LSL: opcode = 0U /* 0b00 */; break;
1854        case LSR: opcode = 1U /* 0b01 */; break;
1855        case ASR: opcode = 2U /* 0b10 */; break;
1856        case ROR: opcode = 3U /* 0b11 */; break;
1857        default:
1858          LOG(FATAL) << "Unsupported thumb2 shift opcode";
1859          UNREACHABLE();
1860      }
1861      // 32 bit.
1862      int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 |
1863          0xf << 12 | (set_cc == kCcSet ? B20 : 0);
1864      encoding |= static_cast<int16_t>(rn) << 16 | static_cast<int16_t>(rm) |
1865          static_cast<int16_t>(rd) << 8 | opcode << 21;
1866      Emit32(encoding);
1867   } else {
1868     uint16_t opcode = 0;
1869     switch (shift) {
1870       case LSL: opcode = 2U /* 0b0010 */; break;
1871       case LSR: opcode = 3U /* 0b0011 */; break;
1872       case ASR: opcode = 4U /* 0b0100 */; break;
1873       case ROR: opcode = 7U /* 0b0111 */; break;
1874       default:
1875         LOG(FATAL) << "Unsupported thumb2 shift opcode";
1876         UNREACHABLE();
1877     }
1878     int16_t encoding = B14 | opcode << 6 | static_cast<int16_t>(rm) << 3 |
1879         static_cast<int16_t>(rd);
1880     Emit16(encoding);
1881   }
1882 }
1883 
SizeInBytes(Size size)1884 inline size_t Thumb2Assembler::Fixup::SizeInBytes(Size size) {
1885   switch (size) {
1886     case kBranch16Bit:
1887       return 2u;
1888     case kBranch32Bit:
1889       return 4u;
1890 
1891     case kCbxz16Bit:
1892       return 2u;
1893     case kCbxz32Bit:
1894       return 4u;
1895     case kCbxz48Bit:
1896       return 6u;
1897 
1898     case kLiteral1KiB:
1899       return 2u;
1900     case kLiteral4KiB:
1901       return 4u;
1902     case kLiteral64KiB:
1903       return 8u;
1904     case kLiteral1MiB:
1905       return 10u;
1906     case kLiteralFar:
1907       return 14u;
1908 
1909     case kLiteralAddr1KiB:
1910       return 2u;
1911     case kLiteralAddr4KiB:
1912       return 4u;
1913     case kLiteralAddr64KiB:
1914       return 6u;
1915     case kLiteralAddrFar:
1916       return 10u;
1917 
1918     case kLongOrFPLiteral1KiB:
1919       return 4u;
1920     case kLongOrFPLiteral256KiB:
1921       return 10u;
1922     case kLongOrFPLiteralFar:
1923       return 14u;
1924   }
1925   LOG(FATAL) << "Unexpected size: " << static_cast<int>(size);
1926   UNREACHABLE();
1927 }
1928 
GetOriginalSizeInBytes() const1929 inline uint32_t Thumb2Assembler::Fixup::GetOriginalSizeInBytes() const {
1930   return SizeInBytes(original_size_);
1931 }
1932 
GetSizeInBytes() const1933 inline uint32_t Thumb2Assembler::Fixup::GetSizeInBytes() const {
1934   return SizeInBytes(size_);
1935 }
1936 
LiteralPoolPaddingSize(uint32_t current_code_size)1937 inline size_t Thumb2Assembler::Fixup::LiteralPoolPaddingSize(uint32_t current_code_size) {
1938   // The code size must be a multiple of 2.
1939   DCHECK_ALIGNED(current_code_size, 2);
1940   // If it isn't a multiple of 4, we need to add a 2-byte padding before the literal pool.
1941   return current_code_size & 2;
1942 }
1943 
GetOffset(uint32_t current_code_size) const1944 inline int32_t Thumb2Assembler::Fixup::GetOffset(uint32_t current_code_size) const {
1945   static constexpr int32_t int32_min = std::numeric_limits<int32_t>::min();
1946   static constexpr int32_t int32_max = std::numeric_limits<int32_t>::max();
1947   DCHECK_LE(target_, static_cast<uint32_t>(int32_max));
1948   DCHECK_LE(location_, static_cast<uint32_t>(int32_max));
1949   DCHECK_LE(adjustment_, static_cast<uint32_t>(int32_max));
1950   int32_t diff = static_cast<int32_t>(target_) - static_cast<int32_t>(location_);
1951   if (target_ > location_) {
1952     DCHECK_LE(adjustment_, static_cast<uint32_t>(int32_max - diff));
1953     diff += static_cast<int32_t>(adjustment_);
1954   } else {
1955     DCHECK_LE(int32_min + static_cast<int32_t>(adjustment_), diff);
1956     diff -= static_cast<int32_t>(adjustment_);
1957   }
1958   // The default PC adjustment for Thumb2 is 4 bytes.
1959   DCHECK_GE(diff, int32_min + 4);
1960   diff -= 4;
1961   // Add additional adjustment for instructions preceding the PC usage, padding
1962   // before the literal pool and rounding down the PC for literal loads.
1963   switch (GetSize()) {
1964     case kBranch16Bit:
1965     case kBranch32Bit:
1966       break;
1967 
1968     case kCbxz16Bit:
1969       break;
1970     case kCbxz32Bit:
1971     case kCbxz48Bit:
1972       DCHECK_GE(diff, int32_min + 2);
1973       diff -= 2;        // Extra CMP Rn, #0, 16-bit.
1974       break;
1975 
1976     case kLiteral1KiB:
1977     case kLiteral4KiB:
1978     case kLongOrFPLiteral1KiB:
1979     case kLiteralAddr1KiB:
1980     case kLiteralAddr4KiB:
1981       DCHECK(diff >= 0 || (GetSize() == kLiteral1KiB && diff == -2));
1982       diff += LiteralPoolPaddingSize(current_code_size);
1983       // Load literal instructions round down the PC+4 to a multiple of 4, so if the PC
1984       // isn't a multiple of 2, we need to adjust. Since we already adjusted for the target
1985       // being aligned, current PC alignment can be inferred from diff.
1986       DCHECK_ALIGNED(diff, 2);
1987       diff = diff + (diff & 2);
1988       DCHECK_GE(diff, 0);
1989       break;
1990     case kLiteral1MiB:
1991     case kLiteral64KiB:
1992     case kLongOrFPLiteral256KiB:
1993     case kLiteralAddr64KiB:
1994       DCHECK_GE(diff, 4);  // The target must be at least 4 bytes after the ADD rX, PC.
1995       diff -= 4;        // One extra 32-bit MOV.
1996       diff += LiteralPoolPaddingSize(current_code_size);
1997       break;
1998     case kLiteralFar:
1999     case kLongOrFPLiteralFar:
2000     case kLiteralAddrFar:
2001       DCHECK_GE(diff, 8);  // The target must be at least 4 bytes after the ADD rX, PC.
2002       diff -= 8;        // Extra MOVW+MOVT; both 32-bit.
2003       diff += LiteralPoolPaddingSize(current_code_size);
2004       break;
2005   }
2006   return diff;
2007 }
2008 
IncreaseSize(Size new_size)2009 inline size_t Thumb2Assembler::Fixup::IncreaseSize(Size new_size) {
2010   DCHECK_NE(target_, kUnresolved);
2011   Size old_size = size_;
2012   size_ = new_size;
2013   DCHECK_GT(SizeInBytes(new_size), SizeInBytes(old_size));
2014   size_t adjustment = SizeInBytes(new_size) - SizeInBytes(old_size);
2015   if (target_ > location_) {
2016     adjustment_ += adjustment;
2017   }
2018   return adjustment;
2019 }
2020 
AdjustSizeIfNeeded(uint32_t current_code_size)2021 uint32_t Thumb2Assembler::Fixup::AdjustSizeIfNeeded(uint32_t current_code_size) {
2022   uint32_t old_code_size = current_code_size;
2023   switch (GetSize()) {
2024     case kBranch16Bit:
2025       if (IsInt(cond_ != AL ? 9 : 12, GetOffset(current_code_size))) {
2026         break;
2027       }
2028       current_code_size += IncreaseSize(kBranch32Bit);
2029       FALLTHROUGH_INTENDED;
2030     case kBranch32Bit:
2031       // We don't support conditional branches beyond +-1MiB
2032       // or unconditional branches beyond +-16MiB.
2033       break;
2034 
2035     case kCbxz16Bit:
2036       if (IsUint<7>(GetOffset(current_code_size))) {
2037         break;
2038       }
2039       current_code_size += IncreaseSize(kCbxz32Bit);
2040       FALLTHROUGH_INTENDED;
2041     case kCbxz32Bit:
2042       if (IsInt<9>(GetOffset(current_code_size))) {
2043         break;
2044       }
2045       current_code_size += IncreaseSize(kCbxz48Bit);
2046       FALLTHROUGH_INTENDED;
2047     case kCbxz48Bit:
2048       // We don't support conditional branches beyond +-1MiB.
2049       break;
2050 
2051     case kLiteral1KiB:
2052       DCHECK(!IsHighRegister(rn_));
2053       if (IsUint<10>(GetOffset(current_code_size))) {
2054         break;
2055       }
2056       current_code_size += IncreaseSize(kLiteral4KiB);
2057       FALLTHROUGH_INTENDED;
2058     case kLiteral4KiB:
2059       if (IsUint<12>(GetOffset(current_code_size))) {
2060         break;
2061       }
2062       current_code_size += IncreaseSize(kLiteral64KiB);
2063       FALLTHROUGH_INTENDED;
2064     case kLiteral64KiB:
2065       // Can't handle high register which we can encounter by fall-through from kLiteral4KiB.
2066       if (!IsHighRegister(rn_) && IsUint<16>(GetOffset(current_code_size))) {
2067         break;
2068       }
2069       current_code_size += IncreaseSize(kLiteral1MiB);
2070       FALLTHROUGH_INTENDED;
2071     case kLiteral1MiB:
2072       if (IsUint<20>(GetOffset(current_code_size))) {
2073         break;
2074       }
2075       current_code_size += IncreaseSize(kLiteralFar);
2076       FALLTHROUGH_INTENDED;
2077     case kLiteralFar:
2078       // This encoding can reach any target.
2079       break;
2080 
2081     case kLiteralAddr1KiB:
2082       DCHECK(!IsHighRegister(rn_));
2083       if (IsUint<10>(GetOffset(current_code_size))) {
2084         break;
2085       }
2086       current_code_size += IncreaseSize(kLiteralAddr4KiB);
2087       FALLTHROUGH_INTENDED;
2088     case kLiteralAddr4KiB:
2089       if (IsUint<12>(GetOffset(current_code_size))) {
2090         break;
2091       }
2092       current_code_size += IncreaseSize(kLiteralAddr64KiB);
2093       FALLTHROUGH_INTENDED;
2094     case kLiteralAddr64KiB:
2095       if (IsUint<16>(GetOffset(current_code_size))) {
2096         break;
2097       }
2098       current_code_size += IncreaseSize(kLiteralAddrFar);
2099       FALLTHROUGH_INTENDED;
2100     case kLiteralAddrFar:
2101       // This encoding can reach any target.
2102       break;
2103 
2104     case kLongOrFPLiteral1KiB:
2105       if (IsUint<10>(GetOffset(current_code_size))) {
2106         break;
2107       }
2108       current_code_size += IncreaseSize(kLongOrFPLiteral256KiB);
2109       FALLTHROUGH_INTENDED;
2110     case kLongOrFPLiteral256KiB:
2111       if (IsUint<18>(GetOffset(current_code_size))) {
2112         break;
2113       }
2114       current_code_size += IncreaseSize(kLongOrFPLiteralFar);
2115       FALLTHROUGH_INTENDED;
2116     case kLongOrFPLiteralFar:
2117       // This encoding can reach any target.
2118       break;
2119   }
2120   return current_code_size - old_code_size;
2121 }
2122 
Emit(AssemblerBuffer * buffer,uint32_t code_size) const2123 void Thumb2Assembler::Fixup::Emit(AssemblerBuffer* buffer, uint32_t code_size) const {
2124   switch (GetSize()) {
2125     case kBranch16Bit: {
2126       DCHECK(type_ == kUnconditional || type_ == kConditional);
2127       DCHECK_EQ(type_ == kConditional, cond_ != AL);
2128       int16_t encoding = BEncoding16(GetOffset(code_size), cond_);
2129       buffer->Store<int16_t>(location_, encoding);
2130       break;
2131     }
2132     case kBranch32Bit: {
2133       DCHECK(type_ == kConditional || type_ == kUnconditional ||
2134              type_ == kUnconditionalLink || type_ == kUnconditionalLinkX);
2135       DCHECK_EQ(type_ == kConditional, cond_ != AL);
2136       int32_t encoding = BEncoding32(GetOffset(code_size), cond_);
2137       if (type_ == kUnconditionalLink) {
2138         DCHECK_NE(encoding & B12, 0);
2139         encoding |= B14;
2140       } else if (type_ == kUnconditionalLinkX) {
2141         DCHECK_NE(encoding & B12, 0);
2142         encoding ^= B14 | B12;
2143       }
2144       buffer->Store<int16_t>(location_, encoding >> 16);
2145       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(encoding & 0xffff));
2146       break;
2147     }
2148 
2149     case kCbxz16Bit: {
2150       DCHECK(type_ == kCompareAndBranchXZero);
2151       int16_t encoding = CbxzEncoding16(rn_, GetOffset(code_size), cond_);
2152       buffer->Store<int16_t>(location_, encoding);
2153       break;
2154     }
2155     case kCbxz32Bit: {
2156       DCHECK(type_ == kCompareAndBranchXZero);
2157       DCHECK(cond_ == EQ || cond_ == NE);
2158       int16_t cmp_encoding = CmpRnImm8Encoding16(rn_, 0);
2159       int16_t b_encoding = BEncoding16(GetOffset(code_size), cond_);
2160       buffer->Store<int16_t>(location_, cmp_encoding);
2161       buffer->Store<int16_t>(location_ + 2, b_encoding);
2162       break;
2163     }
2164     case kCbxz48Bit: {
2165       DCHECK(type_ == kCompareAndBranchXZero);
2166       DCHECK(cond_ == EQ || cond_ == NE);
2167       int16_t cmp_encoding = CmpRnImm8Encoding16(rn_, 0);
2168       int32_t b_encoding = BEncoding32(GetOffset(code_size), cond_);
2169       buffer->Store<int16_t>(location_, cmp_encoding);
2170       buffer->Store<int16_t>(location_ + 2u, b_encoding >> 16);
2171       buffer->Store<int16_t>(location_ + 4u, static_cast<int16_t>(b_encoding & 0xffff));
2172       break;
2173     }
2174 
2175     case kLiteral1KiB: {
2176       DCHECK(type_ == kLoadLiteralNarrow);
2177       int16_t encoding = LdrLitEncoding16(rn_, GetOffset(code_size));
2178       buffer->Store<int16_t>(location_, encoding);
2179       break;
2180     }
2181     case kLiteral4KiB: {
2182       DCHECK(type_ == kLoadLiteralNarrow);
2183       // GetOffset() uses PC+4 but load literal uses AlignDown(PC+4, 4). Adjust offset accordingly.
2184       int32_t encoding = LdrLitEncoding32(rn_, GetOffset(code_size));
2185       buffer->Store<int16_t>(location_, encoding >> 16);
2186       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(encoding & 0xffff));
2187       break;
2188     }
2189     case kLiteral64KiB: {
2190       DCHECK(type_ == kLoadLiteralNarrow);
2191       int32_t mov_encoding = MovwEncoding32(rn_, GetOffset(code_size));
2192       int16_t add_pc_encoding = AddRdnRmEncoding16(rn_, PC);
2193       int16_t ldr_encoding = LdrRtRnImm5Encoding16(rn_, rn_, 0);
2194       buffer->Store<int16_t>(location_, mov_encoding >> 16);
2195       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(mov_encoding & 0xffff));
2196       buffer->Store<int16_t>(location_ + 4u, add_pc_encoding);
2197       buffer->Store<int16_t>(location_ + 6u, ldr_encoding);
2198       break;
2199     }
2200     case kLiteral1MiB: {
2201       DCHECK(type_ == kLoadLiteralNarrow);
2202       int32_t offset = GetOffset(code_size);
2203       int32_t mov_encoding = MovModImmEncoding32(rn_, offset & ~0xfff);
2204       int16_t add_pc_encoding = AddRdnRmEncoding16(rn_, PC);
2205       int32_t ldr_encoding = LdrRtRnImm12Encoding(rn_, rn_, offset & 0xfff);
2206       buffer->Store<int16_t>(location_, mov_encoding >> 16);
2207       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(mov_encoding & 0xffff));
2208       buffer->Store<int16_t>(location_ + 4u, add_pc_encoding);
2209       buffer->Store<int16_t>(location_ + 6u, ldr_encoding >> 16);
2210       buffer->Store<int16_t>(location_ + 8u, static_cast<int16_t>(ldr_encoding & 0xffff));
2211       break;
2212     }
2213     case kLiteralFar: {
2214       DCHECK(type_ == kLoadLiteralNarrow);
2215       int32_t offset = GetOffset(code_size);
2216       int32_t movw_encoding = MovwEncoding32(rn_, offset & 0xffff);
2217       int32_t movt_encoding = MovtEncoding32(rn_, offset & ~0xffff);
2218       int16_t add_pc_encoding = AddRdnRmEncoding16(rn_, PC);
2219       int32_t ldr_encoding = LdrRtRnImm12Encoding(rn_, rn_, 0);
2220       buffer->Store<int16_t>(location_, movw_encoding >> 16);
2221       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(movw_encoding & 0xffff));
2222       buffer->Store<int16_t>(location_ + 4u, movt_encoding >> 16);
2223       buffer->Store<int16_t>(location_ + 6u, static_cast<int16_t>(movt_encoding & 0xffff));
2224       buffer->Store<int16_t>(location_ + 8u, add_pc_encoding);
2225       buffer->Store<int16_t>(location_ + 10u, ldr_encoding >> 16);
2226       buffer->Store<int16_t>(location_ + 12u, static_cast<int16_t>(ldr_encoding & 0xffff));
2227       break;
2228     }
2229 
2230     case kLiteralAddr1KiB: {
2231       DCHECK(type_ == kLoadLiteralAddr);
2232       int16_t encoding = AdrEncoding16(rn_, GetOffset(code_size));
2233       buffer->Store<int16_t>(location_, encoding);
2234       break;
2235     }
2236     case kLiteralAddr4KiB: {
2237       DCHECK(type_ == kLoadLiteralAddr);
2238       int32_t encoding = AdrEncoding32(rn_, GetOffset(code_size));
2239       buffer->Store<int16_t>(location_, encoding >> 16);
2240       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(encoding & 0xffff));
2241       break;
2242     }
2243     case kLiteralAddr64KiB: {
2244       DCHECK(type_ == kLoadLiteralAddr);
2245       int32_t mov_encoding = MovwEncoding32(rn_, GetOffset(code_size));
2246       int16_t add_pc_encoding = AddRdnRmEncoding16(rn_, PC);
2247       buffer->Store<int16_t>(location_, mov_encoding >> 16);
2248       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(mov_encoding & 0xffff));
2249       buffer->Store<int16_t>(location_ + 4u, add_pc_encoding);
2250       break;
2251     }
2252     case kLiteralAddrFar: {
2253       DCHECK(type_ == kLoadLiteralAddr);
2254       int32_t offset = GetOffset(code_size);
2255       int32_t movw_encoding = MovwEncoding32(rn_, offset & 0xffff);
2256       int32_t movt_encoding = MovtEncoding32(rn_, offset & ~0xffff);
2257       int16_t add_pc_encoding = AddRdnRmEncoding16(rn_, PC);
2258       buffer->Store<int16_t>(location_, movw_encoding >> 16);
2259       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(movw_encoding & 0xffff));
2260       buffer->Store<int16_t>(location_ + 4u, movt_encoding >> 16);
2261       buffer->Store<int16_t>(location_ + 6u, static_cast<int16_t>(movt_encoding & 0xffff));
2262       buffer->Store<int16_t>(location_ + 8u, add_pc_encoding);
2263       break;
2264     }
2265 
2266     case kLongOrFPLiteral1KiB: {
2267       int32_t encoding = LoadWideOrFpEncoding(PC, GetOffset(code_size));  // DCHECKs type_.
2268       buffer->Store<int16_t>(location_, encoding >> 16);
2269       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(encoding & 0xffff));
2270       break;
2271     }
2272     case kLongOrFPLiteral256KiB: {
2273       int32_t offset = GetOffset(code_size);
2274       int32_t mov_encoding = MovModImmEncoding32(IP, offset & ~0x3ff);
2275       int16_t add_pc_encoding = AddRdnRmEncoding16(IP, PC);
2276       int32_t ldr_encoding = LoadWideOrFpEncoding(IP, offset & 0x3ff);    // DCHECKs type_.
2277       buffer->Store<int16_t>(location_, mov_encoding >> 16);
2278       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(mov_encoding & 0xffff));
2279       buffer->Store<int16_t>(location_ + 4u, add_pc_encoding);
2280       buffer->Store<int16_t>(location_ + 6u, ldr_encoding >> 16);
2281       buffer->Store<int16_t>(location_ + 8u, static_cast<int16_t>(ldr_encoding & 0xffff));
2282       break;
2283     }
2284     case kLongOrFPLiteralFar: {
2285       int32_t offset = GetOffset(code_size);
2286       int32_t movw_encoding = MovwEncoding32(IP, offset & 0xffff);
2287       int32_t movt_encoding = MovtEncoding32(IP, offset & ~0xffff);
2288       int16_t add_pc_encoding = AddRdnRmEncoding16(IP, PC);
2289       int32_t ldr_encoding = LoadWideOrFpEncoding(IP, 0);                 // DCHECKs type_.
2290       buffer->Store<int16_t>(location_, movw_encoding >> 16);
2291       buffer->Store<int16_t>(location_ + 2u, static_cast<int16_t>(movw_encoding & 0xffff));
2292       buffer->Store<int16_t>(location_ + 4u, movt_encoding >> 16);
2293       buffer->Store<int16_t>(location_ + 6u, static_cast<int16_t>(movt_encoding & 0xffff));
2294       buffer->Store<int16_t>(location_ + 8u, add_pc_encoding);
2295       buffer->Store<int16_t>(location_ + 10u, ldr_encoding >> 16);
2296       buffer->Store<int16_t>(location_ + 12u, static_cast<int16_t>(ldr_encoding & 0xffff));
2297       break;
2298     }
2299   }
2300 }
2301 
EmitCompareAndBranch(Register rn,uint16_t prev,bool n)2302 uint16_t Thumb2Assembler::EmitCompareAndBranch(Register rn, uint16_t prev, bool n) {
2303   CHECK(IsLowRegister(rn));
2304   uint32_t location = buffer_.Size();
2305 
2306   // This is always unresolved as it must be a forward branch.
2307   Emit16(prev);      // Previous link.
2308   return AddFixup(Fixup::CompareAndBranch(location, rn, n ? NE : EQ));
2309 }
2310 
2311 
2312 // NOTE: this only support immediate offsets, not [rx,ry].
2313 // TODO: support [rx,ry] instructions.
EmitLoadStore(Condition cond,bool load,bool byte,bool half,bool is_signed,Register rd,const Address & ad)2314 void Thumb2Assembler::EmitLoadStore(Condition cond,
2315                                     bool load,
2316                                     bool byte,
2317                                     bool half,
2318                                     bool is_signed,
2319                                     Register rd,
2320                                     const Address& ad) {
2321   CHECK_NE(rd, kNoRegister);
2322   CheckCondition(cond);
2323   bool must_be_32bit = force_32bit_;
2324   if (IsHighRegister(rd)) {
2325     must_be_32bit = true;
2326   }
2327 
2328   Register rn = ad.GetRegister();
2329   if (IsHighRegister(rn) && rn != SP && rn != PC) {
2330     must_be_32bit = true;
2331   }
2332 
2333   if (is_signed || ad.GetOffset() < 0 || ad.GetMode() != Address::Offset) {
2334     must_be_32bit = true;
2335   }
2336 
2337   if (ad.IsImmediate()) {
2338     // Immediate offset
2339     int32_t offset = ad.GetOffset();
2340 
2341     // The 16 bit SP relative instruction can only have a 10 bit offset.
2342     if (rn == SP && offset >= (1 << 10)) {
2343       must_be_32bit = true;
2344     }
2345 
2346     if (byte) {
2347       // 5 bit offset, no shift.
2348       if (offset >= (1 << 5)) {
2349         must_be_32bit = true;
2350       }
2351     } else if (half) {
2352       // 6 bit offset, shifted by 1.
2353       if (offset >= (1 << 6)) {
2354         must_be_32bit = true;
2355       }
2356     } else {
2357       // 7 bit offset, shifted by 2.
2358       if (offset >= (1 << 7)) {
2359         must_be_32bit = true;
2360       }
2361     }
2362 
2363     if (must_be_32bit) {
2364       int32_t encoding = B31 | B30 | B29 | B28 | B27 |
2365           (load ? B20 : 0) |
2366           (is_signed ? B24 : 0) |
2367           static_cast<uint32_t>(rd) << 12 |
2368           ad.encodingThumb(true) |
2369           (byte ? 0 : half ? B21 : B22);
2370       Emit32(encoding);
2371     } else {
2372       // 16 bit thumb1.
2373       uint8_t opA = 0;
2374       bool sp_relative = false;
2375 
2376       if (byte) {
2377         opA = 7U /* 0b0111 */;
2378       } else if (half) {
2379         opA = 8U /* 0b1000 */;
2380       } else {
2381         if (rn == SP) {
2382           opA = 9U /* 0b1001 */;
2383           sp_relative = true;
2384         } else {
2385           opA = 6U /* 0b0110 */;
2386         }
2387       }
2388       int16_t encoding = opA << 12 |
2389           (load ? B11 : 0);
2390 
2391       CHECK_GE(offset, 0);
2392       if (sp_relative) {
2393         // SP relative, 10 bit offset.
2394         CHECK_LT(offset, (1 << 10));
2395         CHECK_ALIGNED(offset, 4);
2396         encoding |= rd << 8 | offset >> 2;
2397       } else {
2398         // No SP relative.  The offset is shifted right depending on
2399         // the size of the load/store.
2400         encoding |= static_cast<uint32_t>(rd);
2401 
2402         if (byte) {
2403           // 5 bit offset, no shift.
2404           CHECK_LT(offset, (1 << 5));
2405         } else if (half) {
2406           // 6 bit offset, shifted by 1.
2407           CHECK_LT(offset, (1 << 6));
2408           CHECK_ALIGNED(offset, 2);
2409           offset >>= 1;
2410         } else {
2411           // 7 bit offset, shifted by 2.
2412           CHECK_LT(offset, (1 << 7));
2413           CHECK_ALIGNED(offset, 4);
2414           offset >>= 2;
2415         }
2416         encoding |= rn << 3 | offset  << 6;
2417       }
2418 
2419       Emit16(encoding);
2420     }
2421   } else {
2422     // Register shift.
2423     if (ad.GetRegister() == PC) {
2424        // PC relative literal encoding.
2425       int32_t offset = ad.GetOffset();
2426       if (must_be_32bit || offset < 0 || offset >= (1 << 10) || !load) {
2427         int32_t up = B23;
2428         if (offset < 0) {
2429           offset = -offset;
2430           up = 0;
2431         }
2432         CHECK_LT(offset, (1 << 12));
2433         int32_t encoding = 0x1f << 27 | 0xf << 16 | B22 | (load ? B20 : 0) |
2434             offset | up |
2435             static_cast<uint32_t>(rd) << 12;
2436         Emit32(encoding);
2437       } else {
2438         // 16 bit literal load.
2439         CHECK_GE(offset, 0);
2440         CHECK_LT(offset, (1 << 10));
2441         int32_t encoding = B14 | (load ? B11 : 0) | static_cast<uint32_t>(rd) << 8 | offset >> 2;
2442         Emit16(encoding);
2443       }
2444     } else {
2445       if (ad.GetShiftCount() != 0) {
2446         // If there is a shift count this must be 32 bit.
2447         must_be_32bit = true;
2448       } else if (IsHighRegister(ad.GetRegisterOffset())) {
2449         must_be_32bit = true;
2450       }
2451 
2452       if (must_be_32bit) {
2453         int32_t encoding = 0x1f << 27 | (load ? B20 : 0) | static_cast<uint32_t>(rd) << 12 |
2454             ad.encodingThumb(true);
2455         if (half) {
2456           encoding |= B21;
2457         } else if (!byte) {
2458           encoding |= B22;
2459         }
2460         Emit32(encoding);
2461       } else {
2462         // 16 bit register offset.
2463         int32_t encoding = B14 | B12 | (load ? B11 : 0) | static_cast<uint32_t>(rd) |
2464             ad.encodingThumb(false);
2465         if (byte) {
2466           encoding |= B10;
2467         } else if (half) {
2468           encoding |= B9;
2469         }
2470         Emit16(encoding);
2471       }
2472     }
2473   }
2474 }
2475 
2476 
EmitMultiMemOp(Condition cond,BlockAddressMode bam,bool load,Register base,RegList regs)2477 void Thumb2Assembler::EmitMultiMemOp(Condition cond,
2478                                      BlockAddressMode bam,
2479                                      bool load,
2480                                      Register base,
2481                                      RegList regs) {
2482   CHECK_NE(base, kNoRegister);
2483   CheckCondition(cond);
2484   bool must_be_32bit = force_32bit_;
2485 
2486   if (!must_be_32bit && base == SP && bam == (load ? IA_W : DB_W) &&
2487       (regs & 0xff00 & ~(1 << (load ? PC : LR))) == 0) {
2488     // Use 16-bit PUSH/POP.
2489     int16_t encoding = B15 | B13 | B12 | (load ? B11 : 0) | B10 |
2490         ((regs & (1 << (load ? PC : LR))) != 0 ? B8 : 0) | (regs & 0x00ff);
2491     Emit16(encoding);
2492     return;
2493   }
2494 
2495   if ((regs & 0xff00) != 0) {
2496     must_be_32bit = true;
2497   }
2498 
2499   bool w_bit = bam == IA_W || bam == DB_W || bam == DA_W || bam == IB_W;
2500   // 16 bit always uses writeback.
2501   if (!w_bit) {
2502     must_be_32bit = true;
2503   }
2504 
2505   if (must_be_32bit) {
2506     uint32_t op = 0;
2507     switch (bam) {
2508       case IA:
2509       case IA_W:
2510         op = 1U /* 0b01 */;
2511         break;
2512       case DB:
2513       case DB_W:
2514         op = 2U /* 0b10 */;
2515         break;
2516       case DA:
2517       case IB:
2518       case DA_W:
2519       case IB_W:
2520         LOG(FATAL) << "LDM/STM mode not supported on thumb: " << bam;
2521         UNREACHABLE();
2522     }
2523     if (load) {
2524       // Cannot have SP in the list.
2525       CHECK_EQ((regs & (1 << SP)), 0);
2526     } else {
2527       // Cannot have PC or SP in the list.
2528       CHECK_EQ((regs & (1 << PC | 1 << SP)), 0);
2529     }
2530     int32_t encoding = B31 | B30 | B29 | B27 |
2531                     (op << 23) |
2532                     (load ? B20 : 0) |
2533                     base << 16 |
2534                     regs |
2535                     (w_bit << 21);
2536     Emit32(encoding);
2537   } else {
2538     int16_t encoding = B15 | B14 |
2539                     (load ? B11 : 0) |
2540                     base << 8 |
2541                     regs;
2542     Emit16(encoding);
2543   }
2544 }
2545 
EmitBranch(Condition cond,Label * label,bool link,bool x)2546 void Thumb2Assembler::EmitBranch(Condition cond, Label* label, bool link, bool x) {
2547   bool use32bit = IsForced32Bit() || !CanRelocateBranches();
2548   uint32_t pc = buffer_.Size();
2549   Fixup::Type branch_type;
2550   if (cond == AL) {
2551     if (link) {
2552       use32bit = true;
2553       if (x) {
2554         branch_type = Fixup::kUnconditionalLinkX;      // BLX.
2555       } else {
2556         branch_type = Fixup::kUnconditionalLink;       // BX.
2557       }
2558     } else {
2559       branch_type = Fixup::kUnconditional;             // B.
2560       // The T2 encoding offset is `SignExtend(imm11:'0', 32)` and there is a PC adjustment of 4.
2561       static constexpr size_t kMaxT2BackwardDistance = (1u << 11) - 4u;
2562       if (!use32bit && label->IsBound() && pc - label->Position() > kMaxT2BackwardDistance) {
2563         use32bit = true;
2564       }
2565     }
2566   } else {
2567     branch_type = Fixup::kConditional;                 // B<cond>.
2568     // The T1 encoding offset is `SignExtend(imm8:'0', 32)` and there is a PC adjustment of 4.
2569     static constexpr size_t kMaxT1BackwardDistance = (1u << 8) - 4u;
2570     if (!use32bit && label->IsBound() && pc - label->Position() > kMaxT1BackwardDistance) {
2571       use32bit = true;
2572     }
2573   }
2574 
2575   Fixup::Size size = use32bit ? Fixup::kBranch32Bit : Fixup::kBranch16Bit;
2576   FixupId branch_id = AddFixup(Fixup::Branch(pc, branch_type, size, cond));
2577 
2578   if (label->IsBound()) {
2579     // The branch is to a bound label which means that it's a backwards branch.
2580     GetFixup(branch_id)->Resolve(label->Position());
2581     Emit16(0);
2582   } else {
2583     // Branch target is an unbound label. Add it to a singly-linked list maintained within
2584     // the code with the label serving as the head.
2585     Emit16(static_cast<uint16_t>(label->position_));
2586     label->LinkTo(branch_id);
2587   }
2588 
2589   if (use32bit) {
2590     Emit16(0);
2591   }
2592   DCHECK_EQ(buffer_.Size() - pc, GetFixup(branch_id)->GetSizeInBytes());
2593 }
2594 
2595 
Emit32Miscellaneous(uint8_t op1,uint8_t op2,uint32_t rest_encoding)2596 void Thumb2Assembler::Emit32Miscellaneous(uint8_t op1,
2597                                           uint8_t op2,
2598                                           uint32_t rest_encoding) {
2599   int32_t encoding = B31 | B30 | B29 | B28 | B27 | B25 | B23 |
2600       op1 << 20 |
2601       0xf << 12 |
2602       B7 |
2603       op2 << 4 |
2604       rest_encoding;
2605   Emit32(encoding);
2606 }
2607 
2608 
Emit16Miscellaneous(uint32_t rest_encoding)2609 void Thumb2Assembler::Emit16Miscellaneous(uint32_t rest_encoding) {
2610   int16_t encoding = B15 | B13 | B12 |
2611       rest_encoding;
2612   Emit16(encoding);
2613 }
2614 
clz(Register rd,Register rm,Condition cond)2615 void Thumb2Assembler::clz(Register rd, Register rm, Condition cond) {
2616   CHECK_NE(rd, kNoRegister);
2617   CHECK_NE(rm, kNoRegister);
2618   CheckCondition(cond);
2619   CHECK_NE(rd, PC);
2620   CHECK_NE(rm, PC);
2621   int32_t encoding =
2622       static_cast<uint32_t>(rm) << 16 |
2623       static_cast<uint32_t>(rd) << 8 |
2624       static_cast<uint32_t>(rm);
2625   Emit32Miscellaneous(0b11, 0b00, encoding);
2626 }
2627 
2628 
movw(Register rd,uint16_t imm16,Condition cond)2629 void Thumb2Assembler::movw(Register rd, uint16_t imm16, Condition cond) {
2630   CheckCondition(cond);
2631   // Always 32 bits, encoding T3. (Other encondings are called MOV, not MOVW.)
2632   uint32_t imm4 = (imm16 >> 12) & 15U /* 0b1111 */;
2633   uint32_t i = (imm16 >> 11) & 1U /* 0b1 */;
2634   uint32_t imm3 = (imm16 >> 8) & 7U /* 0b111 */;
2635   uint32_t imm8 = imm16 & 0xff;
2636   int32_t encoding = B31 | B30 | B29 | B28 |
2637                   B25 | B22 |
2638                   static_cast<uint32_t>(rd) << 8 |
2639                   i << 26 |
2640                   imm4 << 16 |
2641                   imm3 << 12 |
2642                   imm8;
2643   Emit32(encoding);
2644 }
2645 
2646 
movt(Register rd,uint16_t imm16,Condition cond)2647 void Thumb2Assembler::movt(Register rd, uint16_t imm16, Condition cond) {
2648   CheckCondition(cond);
2649   // Always 32 bits.
2650   uint32_t imm4 = (imm16 >> 12) & 15U /* 0b1111 */;
2651   uint32_t i = (imm16 >> 11) & 1U /* 0b1 */;
2652   uint32_t imm3 = (imm16 >> 8) & 7U /* 0b111 */;
2653   uint32_t imm8 = imm16 & 0xff;
2654   int32_t encoding = B31 | B30 | B29 | B28 |
2655                   B25 | B23 | B22 |
2656                   static_cast<uint32_t>(rd) << 8 |
2657                   i << 26 |
2658                   imm4 << 16 |
2659                   imm3 << 12 |
2660                   imm8;
2661   Emit32(encoding);
2662 }
2663 
2664 
rbit(Register rd,Register rm,Condition cond)2665 void Thumb2Assembler::rbit(Register rd, Register rm, Condition cond) {
2666   CHECK_NE(rd, kNoRegister);
2667   CHECK_NE(rm, kNoRegister);
2668   CheckCondition(cond);
2669   CHECK_NE(rd, PC);
2670   CHECK_NE(rm, PC);
2671   CHECK_NE(rd, SP);
2672   CHECK_NE(rm, SP);
2673   int32_t encoding =
2674       static_cast<uint32_t>(rm) << 16 |
2675       static_cast<uint32_t>(rd) << 8 |
2676       static_cast<uint32_t>(rm);
2677 
2678   Emit32Miscellaneous(0b01, 0b10, encoding);
2679 }
2680 
2681 
EmitReverseBytes(Register rd,Register rm,uint32_t op)2682 void Thumb2Assembler::EmitReverseBytes(Register rd, Register rm,
2683                                        uint32_t op) {
2684   CHECK_NE(rd, kNoRegister);
2685   CHECK_NE(rm, kNoRegister);
2686   CHECK_NE(rd, PC);
2687   CHECK_NE(rm, PC);
2688   CHECK_NE(rd, SP);
2689   CHECK_NE(rm, SP);
2690 
2691   if (!IsHighRegister(rd) && !IsHighRegister(rm) && !force_32bit_) {
2692     uint16_t t1_op = B11 | B9 | (op << 6);
2693     int16_t encoding = t1_op |
2694         static_cast<uint16_t>(rm) << 3 |
2695         static_cast<uint16_t>(rd);
2696     Emit16Miscellaneous(encoding);
2697   } else {
2698     int32_t encoding =
2699         static_cast<uint32_t>(rm) << 16 |
2700         static_cast<uint32_t>(rd) << 8 |
2701         static_cast<uint32_t>(rm);
2702     Emit32Miscellaneous(0b01, op, encoding);
2703   }
2704 }
2705 
2706 
rev(Register rd,Register rm,Condition cond)2707 void Thumb2Assembler::rev(Register rd, Register rm, Condition cond) {
2708   CheckCondition(cond);
2709   EmitReverseBytes(rd, rm, 0b00);
2710 }
2711 
2712 
rev16(Register rd,Register rm,Condition cond)2713 void Thumb2Assembler::rev16(Register rd, Register rm, Condition cond) {
2714   CheckCondition(cond);
2715   EmitReverseBytes(rd, rm, 0b01);
2716 }
2717 
2718 
revsh(Register rd,Register rm,Condition cond)2719 void Thumb2Assembler::revsh(Register rd, Register rm, Condition cond) {
2720   CheckCondition(cond);
2721   EmitReverseBytes(rd, rm, 0b11);
2722 }
2723 
2724 
ldrex(Register rt,Register rn,uint16_t imm,Condition cond)2725 void Thumb2Assembler::ldrex(Register rt, Register rn, uint16_t imm, Condition cond) {
2726   CHECK_NE(rn, kNoRegister);
2727   CHECK_NE(rt, kNoRegister);
2728   CheckCondition(cond);
2729   CHECK_LT(imm, (1u << 10));
2730 
2731   int32_t encoding = B31 | B30 | B29 | B27 | B22 | B20 |
2732       static_cast<uint32_t>(rn) << 16 |
2733       static_cast<uint32_t>(rt) << 12 |
2734       0xf << 8 |
2735       imm >> 2;
2736   Emit32(encoding);
2737 }
2738 
2739 
ldrex(Register rt,Register rn,Condition cond)2740 void Thumb2Assembler::ldrex(Register rt, Register rn, Condition cond) {
2741   ldrex(rt, rn, 0, cond);
2742 }
2743 
2744 
strex(Register rd,Register rt,Register rn,uint16_t imm,Condition cond)2745 void Thumb2Assembler::strex(Register rd,
2746                             Register rt,
2747                             Register rn,
2748                             uint16_t imm,
2749                             Condition cond) {
2750   CHECK_NE(rn, kNoRegister);
2751   CHECK_NE(rd, kNoRegister);
2752   CHECK_NE(rt, kNoRegister);
2753   CheckCondition(cond);
2754   CHECK_LT(imm, (1u << 10));
2755 
2756   int32_t encoding = B31 | B30 | B29 | B27 | B22 |
2757       static_cast<uint32_t>(rn) << 16 |
2758       static_cast<uint32_t>(rt) << 12 |
2759       static_cast<uint32_t>(rd) << 8 |
2760       imm >> 2;
2761   Emit32(encoding);
2762 }
2763 
2764 
ldrexd(Register rt,Register rt2,Register rn,Condition cond)2765 void Thumb2Assembler::ldrexd(Register rt, Register rt2, Register rn, Condition cond) {
2766   CHECK_NE(rn, kNoRegister);
2767   CHECK_NE(rt, kNoRegister);
2768   CHECK_NE(rt2, kNoRegister);
2769   CHECK_NE(rt, rt2);
2770   CheckCondition(cond);
2771 
2772   int32_t encoding = B31 | B30 | B29 | B27 | B23 | B22 | B20 |
2773       static_cast<uint32_t>(rn) << 16 |
2774       static_cast<uint32_t>(rt) << 12 |
2775       static_cast<uint32_t>(rt2) << 8 |
2776       B6 | B5 | B4 | B3 | B2 | B1 | B0;
2777   Emit32(encoding);
2778 }
2779 
2780 
strex(Register rd,Register rt,Register rn,Condition cond)2781 void Thumb2Assembler::strex(Register rd,
2782                             Register rt,
2783                             Register rn,
2784                             Condition cond) {
2785   strex(rd, rt, rn, 0, cond);
2786 }
2787 
2788 
strexd(Register rd,Register rt,Register rt2,Register rn,Condition cond)2789 void Thumb2Assembler::strexd(Register rd, Register rt, Register rt2, Register rn, Condition cond) {
2790   CHECK_NE(rd, kNoRegister);
2791   CHECK_NE(rn, kNoRegister);
2792   CHECK_NE(rt, kNoRegister);
2793   CHECK_NE(rt2, kNoRegister);
2794   CHECK_NE(rt, rt2);
2795   CHECK_NE(rd, rt);
2796   CHECK_NE(rd, rt2);
2797   CheckCondition(cond);
2798 
2799   int32_t encoding = B31 | B30 | B29 | B27 | B23 | B22 |
2800       static_cast<uint32_t>(rn) << 16 |
2801       static_cast<uint32_t>(rt) << 12 |
2802       static_cast<uint32_t>(rt2) << 8 |
2803       B6 | B5 | B4 |
2804       static_cast<uint32_t>(rd);
2805   Emit32(encoding);
2806 }
2807 
2808 
clrex(Condition cond)2809 void Thumb2Assembler::clrex(Condition cond) {
2810   CheckCondition(cond);
2811   int32_t encoding = B31 | B30 | B29 | B27 | B28 | B25 | B24 | B23 |
2812       B21 | B20 |
2813       0xf << 16 |
2814       B15 |
2815       0xf << 8 |
2816       B5 |
2817       0xf;
2818   Emit32(encoding);
2819 }
2820 
2821 
nop(Condition cond)2822 void Thumb2Assembler::nop(Condition cond) {
2823   CheckCondition(cond);
2824   uint16_t encoding = B15 | B13 | B12 |
2825       B11 | B10 | B9 | B8;
2826   Emit16(static_cast<int16_t>(encoding));
2827 }
2828 
2829 
vmovsr(SRegister sn,Register rt,Condition cond)2830 void Thumb2Assembler::vmovsr(SRegister sn, Register rt, Condition cond) {
2831   CHECK_NE(sn, kNoSRegister);
2832   CHECK_NE(rt, kNoRegister);
2833   CHECK_NE(rt, SP);
2834   CHECK_NE(rt, PC);
2835   CheckCondition(cond);
2836   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2837                      B27 | B26 | B25 |
2838                      ((static_cast<int32_t>(sn) >> 1)*B16) |
2839                      (static_cast<int32_t>(rt)*B12) | B11 | B9 |
2840                      ((static_cast<int32_t>(sn) & 1)*B7) | B4;
2841   Emit32(encoding);
2842 }
2843 
2844 
vmovrs(Register rt,SRegister sn,Condition cond)2845 void Thumb2Assembler::vmovrs(Register rt, SRegister sn, Condition cond) {
2846   CHECK_NE(sn, kNoSRegister);
2847   CHECK_NE(rt, kNoRegister);
2848   CHECK_NE(rt, SP);
2849   CHECK_NE(rt, PC);
2850   CheckCondition(cond);
2851   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2852                      B27 | B26 | B25 | B20 |
2853                      ((static_cast<int32_t>(sn) >> 1)*B16) |
2854                      (static_cast<int32_t>(rt)*B12) | B11 | B9 |
2855                      ((static_cast<int32_t>(sn) & 1)*B7) | B4;
2856   Emit32(encoding);
2857 }
2858 
2859 
vmovsrr(SRegister sm,Register rt,Register rt2,Condition cond)2860 void Thumb2Assembler::vmovsrr(SRegister sm, Register rt, Register rt2,
2861                               Condition cond) {
2862   CHECK_NE(sm, kNoSRegister);
2863   CHECK_NE(sm, S31);
2864   CHECK_NE(rt, kNoRegister);
2865   CHECK_NE(rt, SP);
2866   CHECK_NE(rt, PC);
2867   CHECK_NE(rt2, kNoRegister);
2868   CHECK_NE(rt2, SP);
2869   CHECK_NE(rt2, PC);
2870   CheckCondition(cond);
2871   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2872                      B27 | B26 | B22 |
2873                      (static_cast<int32_t>(rt2)*B16) |
2874                      (static_cast<int32_t>(rt)*B12) | B11 | B9 |
2875                      ((static_cast<int32_t>(sm) & 1)*B5) | B4 |
2876                      (static_cast<int32_t>(sm) >> 1);
2877   Emit32(encoding);
2878 }
2879 
2880 
vmovrrs(Register rt,Register rt2,SRegister sm,Condition cond)2881 void Thumb2Assembler::vmovrrs(Register rt, Register rt2, SRegister sm,
2882                               Condition cond) {
2883   CHECK_NE(sm, kNoSRegister);
2884   CHECK_NE(sm, S31);
2885   CHECK_NE(rt, kNoRegister);
2886   CHECK_NE(rt, SP);
2887   CHECK_NE(rt, PC);
2888   CHECK_NE(rt2, kNoRegister);
2889   CHECK_NE(rt2, SP);
2890   CHECK_NE(rt2, PC);
2891   CHECK_NE(rt, rt2);
2892   CheckCondition(cond);
2893   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2894                      B27 | B26 | B22 | B20 |
2895                      (static_cast<int32_t>(rt2)*B16) |
2896                      (static_cast<int32_t>(rt)*B12) | B11 | B9 |
2897                      ((static_cast<int32_t>(sm) & 1)*B5) | B4 |
2898                      (static_cast<int32_t>(sm) >> 1);
2899   Emit32(encoding);
2900 }
2901 
2902 
vmovdrr(DRegister dm,Register rt,Register rt2,Condition cond)2903 void Thumb2Assembler::vmovdrr(DRegister dm, Register rt, Register rt2,
2904                               Condition cond) {
2905   CHECK_NE(dm, kNoDRegister);
2906   CHECK_NE(rt, kNoRegister);
2907   CHECK_NE(rt, SP);
2908   CHECK_NE(rt, PC);
2909   CHECK_NE(rt2, kNoRegister);
2910   CHECK_NE(rt2, SP);
2911   CHECK_NE(rt2, PC);
2912   CheckCondition(cond);
2913   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2914                      B27 | B26 | B22 |
2915                      (static_cast<int32_t>(rt2)*B16) |
2916                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
2917                      ((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
2918                      (static_cast<int32_t>(dm) & 0xf);
2919   Emit32(encoding);
2920 }
2921 
2922 
vmovrrd(Register rt,Register rt2,DRegister dm,Condition cond)2923 void Thumb2Assembler::vmovrrd(Register rt, Register rt2, DRegister dm,
2924                               Condition cond) {
2925   CHECK_NE(dm, kNoDRegister);
2926   CHECK_NE(rt, kNoRegister);
2927   CHECK_NE(rt, SP);
2928   CHECK_NE(rt, PC);
2929   CHECK_NE(rt2, kNoRegister);
2930   CHECK_NE(rt2, SP);
2931   CHECK_NE(rt2, PC);
2932   CHECK_NE(rt, rt2);
2933   CheckCondition(cond);
2934   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2935                      B27 | B26 | B22 | B20 |
2936                      (static_cast<int32_t>(rt2)*B16) |
2937                      (static_cast<int32_t>(rt)*B12) | B11 | B9 | B8 |
2938                      ((static_cast<int32_t>(dm) >> 4)*B5) | B4 |
2939                      (static_cast<int32_t>(dm) & 0xf);
2940   Emit32(encoding);
2941 }
2942 
2943 
vldrs(SRegister sd,const Address & ad,Condition cond)2944 void Thumb2Assembler::vldrs(SRegister sd, const Address& ad, Condition cond) {
2945   const Address& addr = static_cast<const Address&>(ad);
2946   CHECK_NE(sd, kNoSRegister);
2947   CheckCondition(cond);
2948   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2949                      B27 | B26 | B24 | B20 |
2950                      ((static_cast<int32_t>(sd) & 1)*B22) |
2951                      ((static_cast<int32_t>(sd) >> 1)*B12) |
2952                      B11 | B9 | addr.vencoding();
2953   Emit32(encoding);
2954 }
2955 
2956 
vstrs(SRegister sd,const Address & ad,Condition cond)2957 void Thumb2Assembler::vstrs(SRegister sd, const Address& ad, Condition cond) {
2958   const Address& addr = static_cast<const Address&>(ad);
2959   CHECK_NE(static_cast<Register>(addr.encodingArm() & (0xf << kRnShift)), PC);
2960   CHECK_NE(sd, kNoSRegister);
2961   CheckCondition(cond);
2962   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2963                      B27 | B26 | B24 |
2964                      ((static_cast<int32_t>(sd) & 1)*B22) |
2965                      ((static_cast<int32_t>(sd) >> 1)*B12) |
2966                      B11 | B9 | addr.vencoding();
2967   Emit32(encoding);
2968 }
2969 
2970 
vldrd(DRegister dd,const Address & ad,Condition cond)2971 void Thumb2Assembler::vldrd(DRegister dd, const Address& ad, Condition cond) {
2972   const Address& addr = static_cast<const Address&>(ad);
2973   CHECK_NE(dd, kNoDRegister);
2974   CheckCondition(cond);
2975   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2976                      B27 | B26 | B24 | B20 |
2977                      ((static_cast<int32_t>(dd) >> 4)*B22) |
2978                      ((static_cast<int32_t>(dd) & 0xf)*B12) |
2979                      B11 | B9 | B8 | addr.vencoding();
2980   Emit32(encoding);
2981 }
2982 
2983 
vstrd(DRegister dd,const Address & ad,Condition cond)2984 void Thumb2Assembler::vstrd(DRegister dd, const Address& ad, Condition cond) {
2985   const Address& addr = static_cast<const Address&>(ad);
2986   CHECK_NE(static_cast<Register>(addr.encodingArm() & (0xf << kRnShift)), PC);
2987   CHECK_NE(dd, kNoDRegister);
2988   CheckCondition(cond);
2989   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
2990                      B27 | B26 | B24 |
2991                      ((static_cast<int32_t>(dd) >> 4)*B22) |
2992                      ((static_cast<int32_t>(dd) & 0xf)*B12) |
2993                      B11 | B9 | B8 | addr.vencoding();
2994   Emit32(encoding);
2995 }
2996 
2997 
vpushs(SRegister reg,int nregs,Condition cond)2998 void Thumb2Assembler::vpushs(SRegister reg, int nregs, Condition cond) {
2999   EmitVPushPop(static_cast<uint32_t>(reg), nregs, true, false, cond);
3000 }
3001 
3002 
vpushd(DRegister reg,int nregs,Condition cond)3003 void Thumb2Assembler::vpushd(DRegister reg, int nregs, Condition cond) {
3004   EmitVPushPop(static_cast<uint32_t>(reg), nregs, true, true, cond);
3005 }
3006 
3007 
vpops(SRegister reg,int nregs,Condition cond)3008 void Thumb2Assembler::vpops(SRegister reg, int nregs, Condition cond) {
3009   EmitVPushPop(static_cast<uint32_t>(reg), nregs, false, false, cond);
3010 }
3011 
3012 
vpopd(DRegister reg,int nregs,Condition cond)3013 void Thumb2Assembler::vpopd(DRegister reg, int nregs, Condition cond) {
3014   EmitVPushPop(static_cast<uint32_t>(reg), nregs, false, true, cond);
3015 }
3016 
3017 
EmitVPushPop(uint32_t reg,int nregs,bool push,bool dbl,Condition cond)3018 void Thumb2Assembler::EmitVPushPop(uint32_t reg, int nregs, bool push, bool dbl, Condition cond) {
3019   CheckCondition(cond);
3020 
3021   uint32_t D;
3022   uint32_t Vd;
3023   if (dbl) {
3024     // Encoded as D:Vd.
3025     D = (reg >> 4) & 1;
3026     Vd = reg & 15U /* 0b1111 */;
3027   } else {
3028     // Encoded as Vd:D.
3029     D = reg & 1;
3030     Vd = (reg >> 1) & 15U /* 0b1111 */;
3031   }
3032   int32_t encoding = B27 | B26 | B21 | B19 | B18 | B16 |
3033                     B11 | B9 |
3034         (dbl ? B8 : 0) |
3035         (push ? B24 : (B23 | B20)) |
3036         14U /* 0b1110 */ << 28 |
3037         nregs << (dbl ? 1 : 0) |
3038         D << 22 |
3039         Vd << 12;
3040   Emit32(encoding);
3041 }
3042 
3043 
EmitVFPsss(Condition cond,int32_t opcode,SRegister sd,SRegister sn,SRegister sm)3044 void Thumb2Assembler::EmitVFPsss(Condition cond, int32_t opcode,
3045                                  SRegister sd, SRegister sn, SRegister sm) {
3046   CHECK_NE(sd, kNoSRegister);
3047   CHECK_NE(sn, kNoSRegister);
3048   CHECK_NE(sm, kNoSRegister);
3049   CheckCondition(cond);
3050   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
3051                      B27 | B26 | B25 | B11 | B9 | opcode |
3052                      ((static_cast<int32_t>(sd) & 1)*B22) |
3053                      ((static_cast<int32_t>(sn) >> 1)*B16) |
3054                      ((static_cast<int32_t>(sd) >> 1)*B12) |
3055                      ((static_cast<int32_t>(sn) & 1)*B7) |
3056                      ((static_cast<int32_t>(sm) & 1)*B5) |
3057                      (static_cast<int32_t>(sm) >> 1);
3058   Emit32(encoding);
3059 }
3060 
3061 
EmitVFPddd(Condition cond,int32_t opcode,DRegister dd,DRegister dn,DRegister dm)3062 void Thumb2Assembler::EmitVFPddd(Condition cond, int32_t opcode,
3063                                  DRegister dd, DRegister dn, DRegister dm) {
3064   CHECK_NE(dd, kNoDRegister);
3065   CHECK_NE(dn, kNoDRegister);
3066   CHECK_NE(dm, kNoDRegister);
3067   CheckCondition(cond);
3068   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
3069                      B27 | B26 | B25 | B11 | B9 | B8 | opcode |
3070                      ((static_cast<int32_t>(dd) >> 4)*B22) |
3071                      ((static_cast<int32_t>(dn) & 0xf)*B16) |
3072                      ((static_cast<int32_t>(dd) & 0xf)*B12) |
3073                      ((static_cast<int32_t>(dn) >> 4)*B7) |
3074                      ((static_cast<int32_t>(dm) >> 4)*B5) |
3075                      (static_cast<int32_t>(dm) & 0xf);
3076   Emit32(encoding);
3077 }
3078 
3079 
EmitVFPsd(Condition cond,int32_t opcode,SRegister sd,DRegister dm)3080 void Thumb2Assembler::EmitVFPsd(Condition cond, int32_t opcode,
3081                                 SRegister sd, DRegister dm) {
3082   CHECK_NE(sd, kNoSRegister);
3083   CHECK_NE(dm, kNoDRegister);
3084   CheckCondition(cond);
3085   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
3086                      B27 | B26 | B25 | B11 | B9 | opcode |
3087                      ((static_cast<int32_t>(sd) & 1)*B22) |
3088                      ((static_cast<int32_t>(sd) >> 1)*B12) |
3089                      ((static_cast<int32_t>(dm) >> 4)*B5) |
3090                      (static_cast<int32_t>(dm) & 0xf);
3091   Emit32(encoding);
3092 }
3093 
3094 
EmitVFPds(Condition cond,int32_t opcode,DRegister dd,SRegister sm)3095 void Thumb2Assembler::EmitVFPds(Condition cond, int32_t opcode,
3096                                 DRegister dd, SRegister sm) {
3097   CHECK_NE(dd, kNoDRegister);
3098   CHECK_NE(sm, kNoSRegister);
3099   CheckCondition(cond);
3100   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
3101                      B27 | B26 | B25 | B11 | B9 | opcode |
3102                      ((static_cast<int32_t>(dd) >> 4)*B22) |
3103                      ((static_cast<int32_t>(dd) & 0xf)*B12) |
3104                      ((static_cast<int32_t>(sm) & 1)*B5) |
3105                      (static_cast<int32_t>(sm) >> 1);
3106   Emit32(encoding);
3107 }
3108 
3109 
vmstat(Condition cond)3110 void Thumb2Assembler::vmstat(Condition cond) {  // VMRS APSR_nzcv, FPSCR.
3111   CHECK_NE(cond, kNoCondition);
3112   CheckCondition(cond);
3113   int32_t encoding = (static_cast<int32_t>(cond) << kConditionShift) |
3114       B27 | B26 | B25 | B23 | B22 | B21 | B20 | B16 |
3115       (static_cast<int32_t>(PC)*B12) |
3116       B11 | B9 | B4;
3117   Emit32(encoding);
3118 }
3119 
3120 
svc(uint32_t imm8)3121 void Thumb2Assembler::svc(uint32_t imm8) {
3122   CHECK(IsUint<8>(imm8)) << imm8;
3123   int16_t encoding = B15 | B14 | B12 |
3124        B11 | B10 | B9 | B8 |
3125        imm8;
3126   Emit16(encoding);
3127 }
3128 
3129 
bkpt(uint16_t imm8)3130 void Thumb2Assembler::bkpt(uint16_t imm8) {
3131   CHECK(IsUint<8>(imm8)) << imm8;
3132   int16_t encoding = B15 | B13 | B12 |
3133       B11 | B10 | B9 |
3134       imm8;
3135   Emit16(encoding);
3136 }
3137 
3138 // Convert the given IT state to a mask bit given bit 0 of the first
3139 // condition and a shift position.
ToItMask(ItState s,uint8_t firstcond0,uint8_t shift)3140 static uint8_t ToItMask(ItState s, uint8_t firstcond0, uint8_t shift) {
3141   switch (s) {
3142   case kItOmitted: return 1 << shift;
3143   case kItThen: return firstcond0 << shift;
3144   case kItElse: return !firstcond0 << shift;
3145   }
3146   return 0;
3147 }
3148 
3149 
3150 // Set the IT condition in the given position for the given state.  This is used
3151 // to check that conditional instructions match the preceding IT statement.
SetItCondition(ItState s,Condition cond,uint8_t index)3152 void Thumb2Assembler::SetItCondition(ItState s, Condition cond, uint8_t index) {
3153   switch (s) {
3154   case kItOmitted: it_conditions_[index] = AL; break;
3155   case kItThen: it_conditions_[index] = cond; break;
3156   case kItElse:
3157     it_conditions_[index] = static_cast<Condition>(static_cast<uint8_t>(cond) ^ 1);
3158     break;
3159   }
3160 }
3161 
3162 
it(Condition firstcond,ItState i1,ItState i2,ItState i3)3163 void Thumb2Assembler::it(Condition firstcond, ItState i1, ItState i2, ItState i3) {
3164   CheckCondition(AL);       // Not allowed in IT block.
3165   uint8_t firstcond0 = static_cast<uint8_t>(firstcond) & 1;
3166 
3167   // All conditions to AL.
3168   for (uint8_t i = 0; i < 4; ++i) {
3169     it_conditions_[i] = AL;
3170   }
3171 
3172   SetItCondition(kItThen, firstcond, 0);
3173   uint8_t mask = ToItMask(i1, firstcond0, 3);
3174   SetItCondition(i1, firstcond, 1);
3175 
3176   if (i1 != kItOmitted) {
3177     mask |= ToItMask(i2, firstcond0, 2);
3178     SetItCondition(i2, firstcond, 2);
3179     if (i2 != kItOmitted) {
3180       mask |= ToItMask(i3, firstcond0, 1);
3181       SetItCondition(i3, firstcond, 3);
3182       if (i3 != kItOmitted) {
3183         mask |= 1U /* 0b0001 */;
3184       }
3185     }
3186   }
3187 
3188   // Start at first condition.
3189   it_cond_index_ = 0;
3190   next_condition_ = it_conditions_[0];
3191   uint16_t encoding = B15 | B13 | B12 |
3192         B11 | B10 | B9 | B8 |
3193         firstcond << 4 |
3194         mask;
3195   Emit16(encoding);
3196 }
3197 
3198 
cbz(Register rn,Label * label)3199 void Thumb2Assembler::cbz(Register rn, Label* label) {
3200   CheckCondition(AL);
3201   if (label->IsBound()) {
3202     LOG(FATAL) << "cbz can only be used to branch forwards";
3203     UNREACHABLE();
3204   } else if (IsHighRegister(rn)) {
3205     LOG(FATAL) << "cbz can only be used with low registers";
3206     UNREACHABLE();
3207   } else {
3208     uint16_t branchid = EmitCompareAndBranch(rn, static_cast<uint16_t>(label->position_), false);
3209     label->LinkTo(branchid);
3210   }
3211 }
3212 
3213 
cbnz(Register rn,Label * label)3214 void Thumb2Assembler::cbnz(Register rn, Label* label) {
3215   CheckCondition(AL);
3216   if (label->IsBound()) {
3217     LOG(FATAL) << "cbnz can only be used to branch forwards";
3218     UNREACHABLE();
3219   } else if (IsHighRegister(rn)) {
3220     LOG(FATAL) << "cbnz can only be used with low registers";
3221     UNREACHABLE();
3222   } else {
3223     uint16_t branchid = EmitCompareAndBranch(rn, static_cast<uint16_t>(label->position_), true);
3224     label->LinkTo(branchid);
3225   }
3226 }
3227 
3228 
blx(Register rm,Condition cond)3229 void Thumb2Assembler::blx(Register rm, Condition cond) {
3230   CHECK_NE(rm, kNoRegister);
3231   CheckCondition(cond);
3232   int16_t encoding = B14 | B10 | B9 | B8 | B7 | static_cast<int16_t>(rm) << 3;
3233   Emit16(encoding);
3234 }
3235 
3236 
bx(Register rm,Condition cond)3237 void Thumb2Assembler::bx(Register rm, Condition cond) {
3238   CHECK_NE(rm, kNoRegister);
3239   CheckCondition(cond);
3240   int16_t encoding = B14 | B10 | B9 | B8 | static_cast<int16_t>(rm) << 3;
3241   Emit16(encoding);
3242 }
3243 
3244 
Push(Register rd,Condition cond)3245 void Thumb2Assembler::Push(Register rd, Condition cond) {
3246   str(rd, Address(SP, -kRegisterSize, Address::PreIndex), cond);
3247 }
3248 
3249 
Pop(Register rd,Condition cond)3250 void Thumb2Assembler::Pop(Register rd, Condition cond) {
3251   ldr(rd, Address(SP, kRegisterSize, Address::PostIndex), cond);
3252 }
3253 
3254 
PushList(RegList regs,Condition cond)3255 void Thumb2Assembler::PushList(RegList regs, Condition cond) {
3256   stm(DB_W, SP, regs, cond);
3257 }
3258 
3259 
PopList(RegList regs,Condition cond)3260 void Thumb2Assembler::PopList(RegList regs, Condition cond) {
3261   ldm(IA_W, SP, regs, cond);
3262 }
3263 
3264 
Mov(Register rd,Register rm,Condition cond)3265 void Thumb2Assembler::Mov(Register rd, Register rm, Condition cond) {
3266   if (cond != AL || rd != rm) {
3267     mov(rd, ShifterOperand(rm), cond);
3268   }
3269 }
3270 
3271 
Bind(Label * label)3272 void Thumb2Assembler::Bind(Label* label) {
3273   BindLabel(label, buffer_.Size());
3274 }
3275 
3276 
Lsl(Register rd,Register rm,uint32_t shift_imm,Condition cond,SetCc set_cc)3277 void Thumb2Assembler::Lsl(Register rd, Register rm, uint32_t shift_imm,
3278                           Condition cond, SetCc set_cc) {
3279   CHECK_LE(shift_imm, 31u);
3280   CheckCondition(cond);
3281   EmitShift(rd, rm, LSL, shift_imm, cond, set_cc);
3282 }
3283 
3284 
Lsr(Register rd,Register rm,uint32_t shift_imm,Condition cond,SetCc set_cc)3285 void Thumb2Assembler::Lsr(Register rd, Register rm, uint32_t shift_imm,
3286                           Condition cond, SetCc set_cc) {
3287   CHECK(1u <= shift_imm && shift_imm <= 32u);
3288   if (shift_imm == 32) shift_imm = 0;  // Comply to UAL syntax.
3289   CheckCondition(cond);
3290   EmitShift(rd, rm, LSR, shift_imm, cond, set_cc);
3291 }
3292 
3293 
Asr(Register rd,Register rm,uint32_t shift_imm,Condition cond,SetCc set_cc)3294 void Thumb2Assembler::Asr(Register rd, Register rm, uint32_t shift_imm,
3295                           Condition cond, SetCc set_cc) {
3296   CHECK(1u <= shift_imm && shift_imm <= 32u);
3297   if (shift_imm == 32) shift_imm = 0;  // Comply to UAL syntax.
3298   CheckCondition(cond);
3299   EmitShift(rd, rm, ASR, shift_imm, cond, set_cc);
3300 }
3301 
3302 
Ror(Register rd,Register rm,uint32_t shift_imm,Condition cond,SetCc set_cc)3303 void Thumb2Assembler::Ror(Register rd, Register rm, uint32_t shift_imm,
3304                           Condition cond, SetCc set_cc) {
3305   CHECK(1u <= shift_imm && shift_imm <= 31u);
3306   CheckCondition(cond);
3307   EmitShift(rd, rm, ROR, shift_imm, cond, set_cc);
3308 }
3309 
3310 
Rrx(Register rd,Register rm,Condition cond,SetCc set_cc)3311 void Thumb2Assembler::Rrx(Register rd, Register rm, Condition cond, SetCc set_cc) {
3312   CheckCondition(cond);
3313   EmitShift(rd, rm, RRX, 0, cond, set_cc);
3314 }
3315 
3316 
Lsl(Register rd,Register rm,Register rn,Condition cond,SetCc set_cc)3317 void Thumb2Assembler::Lsl(Register rd, Register rm, Register rn,
3318                           Condition cond, SetCc set_cc) {
3319   CheckCondition(cond);
3320   EmitShift(rd, rm, LSL, rn, cond, set_cc);
3321 }
3322 
3323 
Lsr(Register rd,Register rm,Register rn,Condition cond,SetCc set_cc)3324 void Thumb2Assembler::Lsr(Register rd, Register rm, Register rn,
3325                           Condition cond, SetCc set_cc) {
3326   CheckCondition(cond);
3327   EmitShift(rd, rm, LSR, rn, cond, set_cc);
3328 }
3329 
3330 
Asr(Register rd,Register rm,Register rn,Condition cond,SetCc set_cc)3331 void Thumb2Assembler::Asr(Register rd, Register rm, Register rn,
3332                           Condition cond, SetCc set_cc) {
3333   CheckCondition(cond);
3334   EmitShift(rd, rm, ASR, rn, cond, set_cc);
3335 }
3336 
3337 
Ror(Register rd,Register rm,Register rn,Condition cond,SetCc set_cc)3338 void Thumb2Assembler::Ror(Register rd, Register rm, Register rn,
3339                           Condition cond, SetCc set_cc) {
3340   CheckCondition(cond);
3341   EmitShift(rd, rm, ROR, rn, cond, set_cc);
3342 }
3343 
3344 
EncodeBranchOffset(int32_t offset,int32_t inst)3345 int32_t Thumb2Assembler::EncodeBranchOffset(int32_t offset, int32_t inst) {
3346   // The offset is off by 4 due to the way the ARM CPUs read PC.
3347   offset -= 4;
3348   offset >>= 1;
3349 
3350   uint32_t value = 0;
3351   // There are two different encodings depending on the value of bit 12.  In one case
3352   // intermediate values are calculated using the sign bit.
3353   if ((inst & B12) == B12) {
3354     // 25 bits of offset.
3355     uint32_t signbit = (offset >> 31) & 0x1;
3356     uint32_t i1 = (offset >> 22) & 0x1;
3357     uint32_t i2 = (offset >> 21) & 0x1;
3358     uint32_t imm10 = (offset >> 11) & 0x03ff;
3359     uint32_t imm11 = offset & 0x07ff;
3360     uint32_t j1 = (i1 ^ signbit) ? 0 : 1;
3361     uint32_t j2 = (i2 ^ signbit) ? 0 : 1;
3362     value = (signbit << 26) | (j1 << 13) | (j2 << 11) | (imm10 << 16) |
3363                       imm11;
3364     // Remove the offset from the current encoding.
3365     inst &= ~(0x3ff << 16 | 0x7ff);
3366   } else {
3367     uint32_t signbit = (offset >> 31) & 0x1;
3368     uint32_t imm6 = (offset >> 11) & 0x03f;
3369     uint32_t imm11 = offset & 0x07ff;
3370     uint32_t j1 = (offset >> 19) & 1;
3371     uint32_t j2 = (offset >> 17) & 1;
3372     value = (signbit << 26) | (j1 << 13) | (j2 << 11) | (imm6 << 16) |
3373         imm11;
3374     // Remove the offset from the current encoding.
3375     inst &= ~(0x3f << 16 | 0x7ff);
3376   }
3377   // Mask out offset bits in current instruction.
3378   inst &= ~(B26 | B13 | B11);
3379   inst |= value;
3380   return inst;
3381 }
3382 
3383 
DecodeBranchOffset(int32_t instr)3384 int Thumb2Assembler::DecodeBranchOffset(int32_t instr) {
3385   int32_t imm32;
3386   if ((instr & B12) == B12) {
3387     uint32_t S = (instr >> 26) & 1;
3388     uint32_t J2 = (instr >> 11) & 1;
3389     uint32_t J1 = (instr >> 13) & 1;
3390     uint32_t imm10 = (instr >> 16) & 0x3FF;
3391     uint32_t imm11 = instr & 0x7FF;
3392 
3393     uint32_t I1 = ~(J1 ^ S) & 1;
3394     uint32_t I2 = ~(J2 ^ S) & 1;
3395     imm32 = (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
3396     imm32 = (imm32 << 8) >> 8;  // sign extend 24 bit immediate.
3397   } else {
3398     uint32_t S = (instr >> 26) & 1;
3399     uint32_t J2 = (instr >> 11) & 1;
3400     uint32_t J1 = (instr >> 13) & 1;
3401     uint32_t imm6 = (instr >> 16) & 0x3F;
3402     uint32_t imm11 = instr & 0x7FF;
3403 
3404     imm32 = (S << 20) | (J2 << 19) | (J1 << 18) | (imm6 << 12) | (imm11 << 1);
3405     imm32 = (imm32 << 11) >> 11;  // sign extend 21 bit immediate.
3406   }
3407   imm32 += 4;
3408   return imm32;
3409 }
3410 
GetAdjustedPosition(uint32_t old_position)3411 uint32_t Thumb2Assembler::GetAdjustedPosition(uint32_t old_position) {
3412   // We can reconstruct the adjustment by going through all the fixups from the beginning
3413   // up to the old_position. Since we expect AdjustedPosition() to be called in a loop
3414   // with increasing old_position, we can use the data from last AdjustedPosition() to
3415   // continue where we left off and the whole loop should be O(m+n) where m is the number
3416   // of positions to adjust and n is the number of fixups.
3417   if (old_position < last_old_position_) {
3418     last_position_adjustment_ = 0u;
3419     last_old_position_ = 0u;
3420     last_fixup_id_ = 0u;
3421   }
3422   while (last_fixup_id_ != fixups_.size()) {
3423     Fixup* fixup = GetFixup(last_fixup_id_);
3424     if (fixup->GetLocation() >= old_position + last_position_adjustment_) {
3425       break;
3426     }
3427     if (fixup->GetSize() != fixup->GetOriginalSize()) {
3428       last_position_adjustment_ += fixup->GetSizeInBytes() - fixup->GetOriginalSizeInBytes();
3429     }
3430      ++last_fixup_id_;
3431   }
3432   last_old_position_ = old_position;
3433   return old_position + last_position_adjustment_;
3434 }
3435 
NewLiteral(size_t size,const uint8_t * data)3436 Literal* Thumb2Assembler::NewLiteral(size_t size, const uint8_t* data)  {
3437   DCHECK(size == 4u || size == 8u) << size;
3438   literals_.emplace_back(size, data);
3439   return &literals_.back();
3440 }
3441 
LoadLiteral(Register rt,Literal * literal)3442 void Thumb2Assembler::LoadLiteral(Register rt, Literal* literal)  {
3443   DCHECK_EQ(literal->GetSize(), 4u);
3444   DCHECK(!literal->GetLabel()->IsBound());
3445   bool use32bit = IsForced32Bit() || IsHighRegister(rt);
3446   uint32_t location = buffer_.Size();
3447   Fixup::Size size = use32bit ? Fixup::kLiteral4KiB : Fixup::kLiteral1KiB;
3448   FixupId fixup_id = AddFixup(Fixup::LoadNarrowLiteral(location, rt, size));
3449   Emit16(static_cast<uint16_t>(literal->GetLabel()->position_));
3450   literal->GetLabel()->LinkTo(fixup_id);
3451   if (use32bit) {
3452     Emit16(0);
3453   }
3454   DCHECK_EQ(location + GetFixup(fixup_id)->GetSizeInBytes(), buffer_.Size());
3455 }
3456 
LoadLiteral(Register rt,Register rt2,Literal * literal)3457 void Thumb2Assembler::LoadLiteral(Register rt, Register rt2, Literal* literal)  {
3458   DCHECK_EQ(literal->GetSize(), 8u);
3459   DCHECK(!literal->GetLabel()->IsBound());
3460   uint32_t location = buffer_.Size();
3461   FixupId fixup_id =
3462       AddFixup(Fixup::LoadWideLiteral(location, rt, rt2, Fixup::kLongOrFPLiteral1KiB));
3463   Emit16(static_cast<uint16_t>(literal->GetLabel()->position_));
3464   literal->GetLabel()->LinkTo(fixup_id);
3465   Emit16(0);
3466   DCHECK_EQ(location + GetFixup(fixup_id)->GetSizeInBytes(), buffer_.Size());
3467 }
3468 
LoadLiteral(SRegister sd,Literal * literal)3469 void Thumb2Assembler::LoadLiteral(SRegister sd, Literal* literal)  {
3470   DCHECK_EQ(literal->GetSize(), 4u);
3471   DCHECK(!literal->GetLabel()->IsBound());
3472   uint32_t location = buffer_.Size();
3473   FixupId fixup_id = AddFixup(Fixup::LoadSingleLiteral(location, sd, Fixup::kLongOrFPLiteral1KiB));
3474   Emit16(static_cast<uint16_t>(literal->GetLabel()->position_));
3475   literal->GetLabel()->LinkTo(fixup_id);
3476   Emit16(0);
3477   DCHECK_EQ(location + GetFixup(fixup_id)->GetSizeInBytes(), buffer_.Size());
3478 }
3479 
LoadLiteral(DRegister dd,Literal * literal)3480 void Thumb2Assembler::LoadLiteral(DRegister dd, Literal* literal) {
3481   DCHECK_EQ(literal->GetSize(), 8u);
3482   DCHECK(!literal->GetLabel()->IsBound());
3483   uint32_t location = buffer_.Size();
3484   FixupId fixup_id = AddFixup(Fixup::LoadDoubleLiteral(location, dd, Fixup::kLongOrFPLiteral1KiB));
3485   Emit16(static_cast<uint16_t>(literal->GetLabel()->position_));
3486   literal->GetLabel()->LinkTo(fixup_id);
3487   Emit16(0);
3488   DCHECK_EQ(location + GetFixup(fixup_id)->GetSizeInBytes(), buffer_.Size());
3489 }
3490 
3491 
AddConstant(Register rd,Register rn,int32_t value,Condition cond,SetCc set_cc)3492 void Thumb2Assembler::AddConstant(Register rd, Register rn, int32_t value,
3493                                   Condition cond, SetCc set_cc) {
3494   if (value == 0 && set_cc != kCcSet) {
3495     if (rd != rn) {
3496       mov(rd, ShifterOperand(rn), cond);
3497     }
3498     return;
3499   }
3500   // We prefer to select the shorter code sequence rather than selecting add for
3501   // positive values and sub for negatives ones, which would slightly improve
3502   // the readability of generated code for some constants.
3503   ShifterOperand shifter_op;
3504   if (ShifterOperandCanHold(rd, rn, ADD, value, set_cc, &shifter_op)) {
3505     add(rd, rn, shifter_op, cond, set_cc);
3506   } else if (ShifterOperandCanHold(rd, rn, SUB, -value, set_cc, &shifter_op)) {
3507     sub(rd, rn, shifter_op, cond, set_cc);
3508   } else {
3509     CHECK(rn != IP);
3510     // If rd != rn, use rd as temp. This alows 16-bit ADD/SUB in more situations than using IP.
3511     Register temp = (rd != rn) ? rd : IP;
3512     if (ShifterOperandCanHold(temp, kNoRegister, MVN, ~value, kCcKeep, &shifter_op)) {
3513       mvn(temp, shifter_op, cond, kCcKeep);
3514       add(rd, rn, ShifterOperand(temp), cond, set_cc);
3515     } else if (ShifterOperandCanHold(temp, kNoRegister, MVN, ~(-value), kCcKeep, &shifter_op)) {
3516       mvn(temp, shifter_op, cond, kCcKeep);
3517       sub(rd, rn, ShifterOperand(temp), cond, set_cc);
3518     } else if (High16Bits(-value) == 0) {
3519       movw(temp, Low16Bits(-value), cond);
3520       sub(rd, rn, ShifterOperand(temp), cond, set_cc);
3521     } else {
3522       movw(temp, Low16Bits(value), cond);
3523       uint16_t value_high = High16Bits(value);
3524       if (value_high != 0) {
3525         movt(temp, value_high, cond);
3526       }
3527       add(rd, rn, ShifterOperand(temp), cond, set_cc);
3528     }
3529   }
3530 }
3531 
CmpConstant(Register rn,int32_t value,Condition cond)3532 void Thumb2Assembler::CmpConstant(Register rn, int32_t value, Condition cond) {
3533   // We prefer to select the shorter code sequence rather than using plain cmp and cmn
3534   // which would slightly improve the readability of generated code for some constants.
3535   ShifterOperand shifter_op;
3536   if (ShifterOperandCanHold(kNoRegister, rn, CMP, value, kCcSet, &shifter_op)) {
3537     cmp(rn, shifter_op, cond);
3538   } else if (ShifterOperandCanHold(kNoRegister, rn, CMN, -value, kCcSet, &shifter_op)) {
3539     cmn(rn, shifter_op, cond);
3540   } else {
3541     CHECK(rn != IP);
3542     if (ShifterOperandCanHold(IP, kNoRegister, MVN, ~value, kCcKeep, &shifter_op)) {
3543       mvn(IP, shifter_op, cond, kCcKeep);
3544       cmp(rn, ShifterOperand(IP), cond);
3545     } else if (ShifterOperandCanHold(IP, kNoRegister, MVN, ~(-value), kCcKeep, &shifter_op)) {
3546       mvn(IP, shifter_op, cond, kCcKeep);
3547       cmn(rn, ShifterOperand(IP), cond);
3548     } else if (High16Bits(-value) == 0) {
3549       movw(IP, Low16Bits(-value), cond);
3550       cmn(rn, ShifterOperand(IP), cond);
3551     } else {
3552       movw(IP, Low16Bits(value), cond);
3553       uint16_t value_high = High16Bits(value);
3554       if (value_high != 0) {
3555         movt(IP, value_high, cond);
3556       }
3557       cmp(rn, ShifterOperand(IP), cond);
3558     }
3559   }
3560 }
3561 
LoadImmediate(Register rd,int32_t value,Condition cond)3562 void Thumb2Assembler::LoadImmediate(Register rd, int32_t value, Condition cond) {
3563   ShifterOperand shifter_op;
3564   if (ShifterOperandCanHold(rd, R0, MOV, value, &shifter_op)) {
3565     mov(rd, shifter_op, cond);
3566   } else if (ShifterOperandCanHold(rd, R0, MVN, ~value, &shifter_op)) {
3567     mvn(rd, shifter_op, cond);
3568   } else {
3569     movw(rd, Low16Bits(value), cond);
3570     uint16_t value_high = High16Bits(value);
3571     if (value_high != 0) {
3572       movt(rd, value_high, cond);
3573     }
3574   }
3575 }
3576 
GetAllowedLoadOffsetBits(LoadOperandType type)3577 int32_t Thumb2Assembler::GetAllowedLoadOffsetBits(LoadOperandType type) {
3578   switch (type) {
3579     case kLoadSignedByte:
3580     case kLoadSignedHalfword:
3581     case kLoadUnsignedHalfword:
3582     case kLoadUnsignedByte:
3583     case kLoadWord:
3584       // We can encode imm12 offset.
3585       return 0xfffu;
3586     case kLoadSWord:
3587     case kLoadDWord:
3588     case kLoadWordPair:
3589       // We can encode imm8:'00' offset.
3590       return 0xff << 2;
3591     default:
3592       LOG(FATAL) << "UNREACHABLE";
3593       UNREACHABLE();
3594   }
3595 }
3596 
GetAllowedStoreOffsetBits(StoreOperandType type)3597 int32_t Thumb2Assembler::GetAllowedStoreOffsetBits(StoreOperandType type) {
3598   switch (type) {
3599     case kStoreHalfword:
3600     case kStoreByte:
3601     case kStoreWord:
3602       // We can encode imm12 offset.
3603       return 0xfff;
3604     case kStoreSWord:
3605     case kStoreDWord:
3606     case kStoreWordPair:
3607       // We can encode imm8:'00' offset.
3608       return 0xff << 2;
3609     default:
3610       LOG(FATAL) << "UNREACHABLE";
3611       UNREACHABLE();
3612   }
3613 }
3614 
CanSplitLoadStoreOffset(int32_t allowed_offset_bits,int32_t offset,int32_t * add_to_base,int32_t * offset_for_load_store)3615 bool Thumb2Assembler::CanSplitLoadStoreOffset(int32_t allowed_offset_bits,
3616                                               int32_t offset,
3617                                               /*out*/ int32_t* add_to_base,
3618                                               /*out*/ int32_t* offset_for_load_store) {
3619   int32_t other_bits = offset & ~allowed_offset_bits;
3620   if (ShifterOperandCanAlwaysHold(other_bits) || ShifterOperandCanAlwaysHold(-other_bits)) {
3621     *add_to_base = offset & ~allowed_offset_bits;
3622     *offset_for_load_store = offset & allowed_offset_bits;
3623     return true;
3624   }
3625   return false;
3626 }
3627 
AdjustLoadStoreOffset(int32_t allowed_offset_bits,Register temp,Register base,int32_t offset,Condition cond)3628 int32_t Thumb2Assembler::AdjustLoadStoreOffset(int32_t allowed_offset_bits,
3629                                                Register temp,
3630                                                Register base,
3631                                                int32_t offset,
3632                                                Condition cond) {
3633   DCHECK_NE(offset & ~allowed_offset_bits, 0);
3634   int32_t add_to_base, offset_for_load;
3635   if (CanSplitLoadStoreOffset(allowed_offset_bits, offset, &add_to_base, &offset_for_load)) {
3636     AddConstant(temp, base, add_to_base, cond, kCcKeep);
3637     return offset_for_load;
3638   } else {
3639     LoadImmediate(temp, offset, cond);
3640     add(temp, temp, ShifterOperand(base), cond, kCcKeep);
3641     return 0;
3642   }
3643 }
3644 
3645 // Implementation note: this method must emit at most one instruction when
3646 // Address::CanHoldLoadOffsetThumb.
LoadFromOffset(LoadOperandType type,Register reg,Register base,int32_t offset,Condition cond)3647 void Thumb2Assembler::LoadFromOffset(LoadOperandType type,
3648                                      Register reg,
3649                                      Register base,
3650                                      int32_t offset,
3651                                      Condition cond) {
3652   if (!Address::CanHoldLoadOffsetThumb(type, offset)) {
3653     CHECK_NE(base, IP);
3654     // Inlined AdjustLoadStoreOffset() allows us to pull a few more tricks.
3655     int32_t allowed_offset_bits = GetAllowedLoadOffsetBits(type);
3656     DCHECK_NE(offset & ~allowed_offset_bits, 0);
3657     int32_t add_to_base, offset_for_load;
3658     if (CanSplitLoadStoreOffset(allowed_offset_bits, offset, &add_to_base, &offset_for_load)) {
3659       // Use reg for the adjusted base. If it's low reg, we may end up using 16-bit load.
3660       AddConstant(reg, base, add_to_base, cond, kCcKeep);
3661       base = reg;
3662       offset = offset_for_load;
3663     } else {
3664       Register temp = (reg == base) ? IP : reg;
3665       LoadImmediate(temp, offset, cond);
3666       // TODO: Implement indexed load (not available for LDRD) and use it here to avoid the ADD.
3667       // Use reg for the adjusted base. If it's low reg, we may end up using 16-bit load.
3668       add(reg, reg, ShifterOperand((reg == base) ? IP : base), cond, kCcKeep);
3669       base = reg;
3670       offset = 0;
3671     }
3672   }
3673   DCHECK(Address::CanHoldLoadOffsetThumb(type, offset));
3674   switch (type) {
3675     case kLoadSignedByte:
3676       ldrsb(reg, Address(base, offset), cond);
3677       break;
3678     case kLoadUnsignedByte:
3679       ldrb(reg, Address(base, offset), cond);
3680       break;
3681     case kLoadSignedHalfword:
3682       ldrsh(reg, Address(base, offset), cond);
3683       break;
3684     case kLoadUnsignedHalfword:
3685       ldrh(reg, Address(base, offset), cond);
3686       break;
3687     case kLoadWord:
3688       ldr(reg, Address(base, offset), cond);
3689       break;
3690     case kLoadWordPair:
3691       ldrd(reg, Address(base, offset), cond);
3692       break;
3693     default:
3694       LOG(FATAL) << "UNREACHABLE";
3695       UNREACHABLE();
3696   }
3697 }
3698 
3699 // Implementation note: this method must emit at most one instruction when
3700 // Address::CanHoldLoadOffsetThumb, as expected by JIT::GuardedLoadFromOffset.
LoadSFromOffset(SRegister reg,Register base,int32_t offset,Condition cond)3701 void Thumb2Assembler::LoadSFromOffset(SRegister reg,
3702                                       Register base,
3703                                       int32_t offset,
3704                                       Condition cond) {
3705   if (!Address::CanHoldLoadOffsetThumb(kLoadSWord, offset)) {
3706     CHECK_NE(base, IP);
3707     offset = AdjustLoadStoreOffset(GetAllowedLoadOffsetBits(kLoadSWord), IP, base, offset, cond);
3708     base = IP;
3709   }
3710   DCHECK(Address::CanHoldLoadOffsetThumb(kLoadSWord, offset));
3711   vldrs(reg, Address(base, offset), cond);
3712 }
3713 
3714 
3715 // Implementation note: this method must emit at most one instruction when
3716 // Address::CanHoldLoadOffsetThumb, as expected by JIT::GuardedLoadFromOffset.
LoadDFromOffset(DRegister reg,Register base,int32_t offset,Condition cond)3717 void Thumb2Assembler::LoadDFromOffset(DRegister reg,
3718                                       Register base,
3719                                       int32_t offset,
3720                                       Condition cond) {
3721   if (!Address::CanHoldLoadOffsetThumb(kLoadDWord, offset)) {
3722     CHECK_NE(base, IP);
3723     offset = AdjustLoadStoreOffset(GetAllowedLoadOffsetBits(kLoadDWord), IP, base, offset, cond);
3724     base = IP;
3725   }
3726   DCHECK(Address::CanHoldLoadOffsetThumb(kLoadDWord, offset));
3727   vldrd(reg, Address(base, offset), cond);
3728 }
3729 
3730 
3731 // Implementation note: this method must emit at most one instruction when
3732 // Address::CanHoldStoreOffsetThumb.
StoreToOffset(StoreOperandType type,Register reg,Register base,int32_t offset,Condition cond)3733 void Thumb2Assembler::StoreToOffset(StoreOperandType type,
3734                                     Register reg,
3735                                     Register base,
3736                                     int32_t offset,
3737                                     Condition cond) {
3738   Register tmp_reg = kNoRegister;
3739   if (!Address::CanHoldStoreOffsetThumb(type, offset)) {
3740     CHECK_NE(base, IP);
3741     if ((reg != IP) &&
3742         ((type != kStoreWordPair) || (reg + 1 != IP))) {
3743       tmp_reg = IP;
3744     } else {
3745       // Be careful not to use IP twice (for `reg` (or `reg` + 1 in
3746       // the case of a word-pair store) and `base`) to build the
3747       // Address object used by the store instruction(s) below.
3748       // Instead, save R5 on the stack (or R6 if R5 is already used by
3749       // `base`), use it as secondary temporary register, and restore
3750       // it after the store instruction has been emitted.
3751       tmp_reg = (base != R5) ? R5 : R6;
3752       Push(tmp_reg);
3753       if (base == SP) {
3754         offset += kRegisterSize;
3755       }
3756     }
3757     // TODO: Implement indexed store (not available for STRD), inline AdjustLoadStoreOffset()
3758     // and in the "unsplittable" path get rid of the "add" by using the store indexed instead.
3759     offset = AdjustLoadStoreOffset(GetAllowedStoreOffsetBits(type), tmp_reg, base, offset, cond);
3760     base = tmp_reg;
3761   }
3762   DCHECK(Address::CanHoldStoreOffsetThumb(type, offset));
3763   switch (type) {
3764     case kStoreByte:
3765       strb(reg, Address(base, offset), cond);
3766       break;
3767     case kStoreHalfword:
3768       strh(reg, Address(base, offset), cond);
3769       break;
3770     case kStoreWord:
3771       str(reg, Address(base, offset), cond);
3772       break;
3773     case kStoreWordPair:
3774       strd(reg, Address(base, offset), cond);
3775       break;
3776     default:
3777       LOG(FATAL) << "UNREACHABLE";
3778       UNREACHABLE();
3779   }
3780   if ((tmp_reg != kNoRegister) && (tmp_reg != IP)) {
3781     CHECK((tmp_reg == R5) || (tmp_reg == R6));
3782     Pop(tmp_reg);
3783   }
3784 }
3785 
3786 
3787 // Implementation note: this method must emit at most one instruction when
3788 // Address::CanHoldStoreOffsetThumb, as expected by JIT::GuardedStoreToOffset.
StoreSToOffset(SRegister reg,Register base,int32_t offset,Condition cond)3789 void Thumb2Assembler::StoreSToOffset(SRegister reg,
3790                                      Register base,
3791                                      int32_t offset,
3792                                      Condition cond) {
3793   if (!Address::CanHoldStoreOffsetThumb(kStoreSWord, offset)) {
3794     CHECK_NE(base, IP);
3795     offset = AdjustLoadStoreOffset(GetAllowedStoreOffsetBits(kStoreSWord), IP, base, offset, cond);
3796     base = IP;
3797   }
3798   DCHECK(Address::CanHoldStoreOffsetThumb(kStoreSWord, offset));
3799   vstrs(reg, Address(base, offset), cond);
3800 }
3801 
3802 
3803 // Implementation note: this method must emit at most one instruction when
3804 // Address::CanHoldStoreOffsetThumb, as expected by JIT::GuardedStoreSToOffset.
StoreDToOffset(DRegister reg,Register base,int32_t offset,Condition cond)3805 void Thumb2Assembler::StoreDToOffset(DRegister reg,
3806                                      Register base,
3807                                      int32_t offset,
3808                                      Condition cond) {
3809   if (!Address::CanHoldStoreOffsetThumb(kStoreDWord, offset)) {
3810     CHECK_NE(base, IP);
3811     offset = AdjustLoadStoreOffset(GetAllowedStoreOffsetBits(kStoreDWord), IP, base, offset, cond);
3812     base = IP;
3813   }
3814   DCHECK(Address::CanHoldStoreOffsetThumb(kStoreDWord, offset));
3815   vstrd(reg, Address(base, offset), cond);
3816 }
3817 
3818 
MemoryBarrier(ManagedRegister mscratch)3819 void Thumb2Assembler::MemoryBarrier(ManagedRegister mscratch) {
3820   CHECK_EQ(mscratch.AsArm().AsCoreRegister(), R12);
3821   dmb(SY);
3822 }
3823 
3824 
dmb(DmbOptions flavor)3825 void Thumb2Assembler::dmb(DmbOptions flavor) {
3826   int32_t encoding = 0xf3bf8f50;  // dmb in T1 encoding.
3827   Emit32(encoding | flavor);
3828 }
3829 
3830 
CompareAndBranchIfZero(Register r,Label * label)3831 void Thumb2Assembler::CompareAndBranchIfZero(Register r, Label* label) {
3832   if (CanRelocateBranches() && IsLowRegister(r) && !label->IsBound()) {
3833     cbz(r, label);
3834   } else {
3835     cmp(r, ShifterOperand(0));
3836     b(label, EQ);
3837   }
3838 }
3839 
3840 
CompareAndBranchIfNonZero(Register r,Label * label)3841 void Thumb2Assembler::CompareAndBranchIfNonZero(Register r, Label* label) {
3842   if (CanRelocateBranches() && IsLowRegister(r) && !label->IsBound()) {
3843     cbnz(r, label);
3844   } else {
3845     cmp(r, ShifterOperand(0));
3846     b(label, NE);
3847   }
3848 }
3849 
CreateJumpTable(std::vector<Label * > && labels,Register base_reg)3850 JumpTable* Thumb2Assembler::CreateJumpTable(std::vector<Label*>&& labels, Register base_reg) {
3851   jump_tables_.emplace_back(std::move(labels));
3852   JumpTable* table = &jump_tables_.back();
3853   DCHECK(!table->GetLabel()->IsBound());
3854 
3855   bool use32bit = IsForced32Bit() || IsHighRegister(base_reg);
3856   uint32_t location = buffer_.Size();
3857   Fixup::Size size = use32bit ? Fixup::kLiteralAddr4KiB : Fixup::kLiteralAddr1KiB;
3858   FixupId fixup_id = AddFixup(Fixup::LoadLiteralAddress(location, base_reg, size));
3859   Emit16(static_cast<uint16_t>(table->GetLabel()->position_));
3860   table->GetLabel()->LinkTo(fixup_id);
3861   if (use32bit) {
3862     Emit16(0);
3863   }
3864   DCHECK_EQ(location + GetFixup(fixup_id)->GetSizeInBytes(), buffer_.Size());
3865 
3866   return table;
3867 }
3868 
EmitJumpTableDispatch(JumpTable * jump_table,Register displacement_reg)3869 void Thumb2Assembler::EmitJumpTableDispatch(JumpTable* jump_table, Register displacement_reg) {
3870   CHECK(!IsForced32Bit()) << "Forced 32-bit dispatch not implemented yet";
3871   // 32-bit ADD doesn't support PC as an input, so we need a two-instruction sequence:
3872   //   SUB ip, ip, #0
3873   //   ADD pc, ip, reg
3874   // TODO: Implement.
3875 
3876   // The anchor's position needs to be fixed up before we can compute offsets - so make it a tracked
3877   // label.
3878   BindTrackedLabel(jump_table->GetAnchorLabel());
3879 
3880   add(PC, PC, ShifterOperand(displacement_reg));
3881 }
3882 
3883 }  // namespace arm
3884 }  // namespace art
3885