1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "callee_save_frame.h"
19 #include "common_throws.h"
20 #include "dex_file-inl.h"
21 #include "dex_instruction-inl.h"
22 #include "entrypoints/entrypoint_utils-inl.h"
23 #include "entrypoints/runtime_asm_entrypoints.h"
24 #include "gc/accounting/card_table-inl.h"
25 #include "interpreter/interpreter.h"
26 #include "linear_alloc.h"
27 #include "method_reference.h"
28 #include "mirror/class-inl.h"
29 #include "mirror/dex_cache-inl.h"
30 #include "mirror/method.h"
31 #include "mirror/object-inl.h"
32 #include "mirror/object_array-inl.h"
33 #include "oat_quick_method_header.h"
34 #include "quick_exception_handler.h"
35 #include "runtime.h"
36 #include "scoped_thread_state_change.h"
37 #include "stack.h"
38 #include "debugger.h"
39 
40 namespace art {
41 
42 // Visits the arguments as saved to the stack by a Runtime::kRefAndArgs callee save frame.
43 class QuickArgumentVisitor {
44   // Number of bytes for each out register in the caller method's frame.
45   static constexpr size_t kBytesStackArgLocation = 4;
46   // Frame size in bytes of a callee-save frame for RefsAndArgs.
47   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
48       GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
49 #if defined(__arm__)
50   // The callee save frame is pointed to by SP.
51   // | argN       |  |
52   // | ...        |  |
53   // | arg4       |  |
54   // | arg3 spill |  |  Caller's frame
55   // | arg2 spill |  |
56   // | arg1 spill |  |
57   // | Method*    | ---
58   // | LR         |
59   // | ...        |    4x6 bytes callee saves
60   // | R3         |
61   // | R2         |
62   // | R1         |
63   // | S15        |
64   // | :          |
65   // | S0         |
66   // |            |    4x2 bytes padding
67   // | Method*    |  <- sp
68   static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
69   static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
70   static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
71   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
72   static constexpr bool kQuickSkipOddFpRegisters = false;
73   static constexpr size_t kNumQuickGprArgs = 3;
74   static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
75   static constexpr bool kGprFprLockstep = false;
76   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
77       arm::ArmCalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
78   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
79       arm::ArmCalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
80   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
81       arm::ArmCalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)82   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
83     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
84   }
85 #elif defined(__aarch64__)
86   // The callee save frame is pointed to by SP.
87   // | argN       |  |
88   // | ...        |  |
89   // | arg4       |  |
90   // | arg3 spill |  |  Caller's frame
91   // | arg2 spill |  |
92   // | arg1 spill |  |
93   // | Method*    | ---
94   // | LR         |
95   // | X29        |
96   // |  :         |
97   // | X20        |
98   // | X7         |
99   // | :          |
100   // | X1         |
101   // | D7         |
102   // |  :         |
103   // | D0         |
104   // |            |    padding
105   // | Method*    |  <- sp
106   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
107   static constexpr bool kAlignPairRegister = false;
108   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
109   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
110   static constexpr bool kQuickSkipOddFpRegisters = false;
111   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
112   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
113   static constexpr bool kGprFprLockstep = false;
114   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
115       arm64::Arm64CalleeSaveFpr1Offset(Runtime::kRefsAndArgs);  // Offset of first FPR arg.
116   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
117       arm64::Arm64CalleeSaveGpr1Offset(Runtime::kRefsAndArgs);  // Offset of first GPR arg.
118   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
119       arm64::Arm64CalleeSaveLrOffset(Runtime::kRefsAndArgs);  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)120   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
121     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
122   }
123 #elif defined(__mips__) && !defined(__LP64__)
124   // The callee save frame is pointed to by SP.
125   // | argN       |  |
126   // | ...        |  |
127   // | arg4       |  |
128   // | arg3 spill |  |  Caller's frame
129   // | arg2 spill |  |
130   // | arg1 spill |  |
131   // | Method*    | ---
132   // | RA         |
133   // | ...        |    callee saves
134   // | A3         |    arg3
135   // | A2         |    arg2
136   // | A1         |    arg1
137   // | F15        |
138   // | F14        |    f_arg1
139   // | F13        |
140   // | F12        |    f_arg0
141   // |            |    padding
142   // | A0/Method* |  <- sp
143   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
144   static constexpr bool kAlignPairRegister = true;
145   static constexpr bool kQuickSoftFloatAbi = false;
146   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
147   static constexpr bool kQuickSkipOddFpRegisters = true;
148   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
149   static constexpr size_t kNumQuickFprArgs = 4;  // 2 arguments passed in FPRs. Floats can be passed
150                                                  // only in even numbered registers and each double
151                                                  // occupies two registers.
152   static constexpr bool kGprFprLockstep = false;
153   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
154   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 32;  // Offset of first GPR arg.
155   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 76;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)156   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
157     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
158   }
159 #elif defined(__mips__) && defined(__LP64__)
160   // The callee save frame is pointed to by SP.
161   // | argN       |  |
162   // | ...        |  |
163   // | arg4       |  |
164   // | arg3 spill |  |  Caller's frame
165   // | arg2 spill |  |
166   // | arg1 spill |  |
167   // | Method*    | ---
168   // | RA         |
169   // | ...        |    callee saves
170   // | A7         |    arg7
171   // | A6         |    arg6
172   // | A5         |    arg5
173   // | A4         |    arg4
174   // | A3         |    arg3
175   // | A2         |    arg2
176   // | A1         |    arg1
177   // | F19        |    f_arg7
178   // | F18        |    f_arg6
179   // | F17        |    f_arg5
180   // | F16        |    f_arg4
181   // | F15        |    f_arg3
182   // | F14        |    f_arg2
183   // | F13        |    f_arg1
184   // | F12        |    f_arg0
185   // |            |    padding
186   // | A0/Method* |  <- sp
187   // NOTE: for Mip64, when A0 is skipped, F0 is also skipped.
188   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
189   static constexpr bool kAlignPairRegister = false;
190   static constexpr bool kQuickSoftFloatAbi = false;
191   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
192   static constexpr bool kQuickSkipOddFpRegisters = false;
193   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
194   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
195   static constexpr bool kGprFprLockstep = true;
196 
197   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24;  // Offset of first FPR arg (F1).
198   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80;  // Offset of first GPR arg (A1).
199   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)200   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
201     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
202   }
203 #elif defined(__i386__)
204   // The callee save frame is pointed to by SP.
205   // | argN        |  |
206   // | ...         |  |
207   // | arg4        |  |
208   // | arg3 spill  |  |  Caller's frame
209   // | arg2 spill  |  |
210   // | arg1 spill  |  |
211   // | Method*     | ---
212   // | Return      |
213   // | EBP,ESI,EDI |    callee saves
214   // | EBX         |    arg3
215   // | EDX         |    arg2
216   // | ECX         |    arg1
217   // | XMM3        |    float arg 4
218   // | XMM2        |    float arg 3
219   // | XMM1        |    float arg 2
220   // | XMM0        |    float arg 1
221   // | EAX/Method* |  <- sp
222   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
223   static constexpr bool kAlignPairRegister = false;
224   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
225   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
226   static constexpr bool kQuickSkipOddFpRegisters = false;
227   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
228   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
229   static constexpr bool kGprFprLockstep = false;
230   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4;  // Offset of first FPR arg.
231   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8;  // Offset of first GPR arg.
232   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)233   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
234     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
235   }
236 #elif defined(__x86_64__)
237   // The callee save frame is pointed to by SP.
238   // | argN            |  |
239   // | ...             |  |
240   // | reg. arg spills |  |  Caller's frame
241   // | Method*         | ---
242   // | Return          |
243   // | R15             |    callee save
244   // | R14             |    callee save
245   // | R13             |    callee save
246   // | R12             |    callee save
247   // | R9              |    arg5
248   // | R8              |    arg4
249   // | RSI/R6          |    arg1
250   // | RBP/R5          |    callee save
251   // | RBX/R3          |    callee save
252   // | RDX/R2          |    arg2
253   // | RCX/R1          |    arg3
254   // | XMM7            |    float arg 8
255   // | XMM6            |    float arg 7
256   // | XMM5            |    float arg 6
257   // | XMM4            |    float arg 5
258   // | XMM3            |    float arg 4
259   // | XMM2            |    float arg 3
260   // | XMM1            |    float arg 2
261   // | XMM0            |    float arg 1
262   // | Padding         |
263   // | RDI/Method*     |  <- sp
264   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
265   static constexpr bool kAlignPairRegister = false;
266   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
267   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
268   static constexpr bool kQuickSkipOddFpRegisters = false;
269   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
270   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
271   static constexpr bool kGprFprLockstep = false;
272   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16;  // Offset of first FPR arg.
273   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8;  // Offset of first GPR arg.
274   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8;  // Offset of return address.
GprIndexToGprOffset(uint32_t gpr_index)275   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
276     switch (gpr_index) {
277       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
278       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
279       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
280       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
281       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
282       default:
283       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
284       return 0;
285     }
286   }
287 #else
288 #error "Unsupported architecture"
289 #endif
290 
291  public:
292   // Special handling for proxy methods. Proxy methods are instance methods so the
293   // 'this' object is the 1st argument. They also have the same frame layout as the
294   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
295   // 1st GPR.
GetProxyThisObject(ArtMethod ** sp)296   static mirror::Object* GetProxyThisObject(ArtMethod** sp)
297       SHARED_REQUIRES(Locks::mutator_lock_) {
298     CHECK((*sp)->IsProxyMethod());
299     CHECK_GT(kNumQuickGprArgs, 0u);
300     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
301     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
302         GprIndexToGprOffset(kThisGprIndex);
303     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
304     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
305   }
306 
GetCallingMethod(ArtMethod ** sp)307   static ArtMethod* GetCallingMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
308     DCHECK((*sp)->IsCalleeSaveMethod());
309     return GetCalleeSaveMethodCaller(sp, Runtime::kRefsAndArgs);
310   }
311 
GetOuterMethod(ArtMethod ** sp)312   static ArtMethod* GetOuterMethod(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
313     DCHECK((*sp)->IsCalleeSaveMethod());
314     uint8_t* previous_sp =
315         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
316     return *reinterpret_cast<ArtMethod**>(previous_sp);
317   }
318 
GetCallingDexPc(ArtMethod ** sp)319   static uint32_t GetCallingDexPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
320     DCHECK((*sp)->IsCalleeSaveMethod());
321     const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, Runtime::kRefsAndArgs);
322     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
323         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
324     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
325     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
326     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
327 
328     if (current_code->IsOptimized()) {
329       CodeInfo code_info = current_code->GetOptimizedCodeInfo();
330       CodeInfoEncoding encoding = code_info.ExtractEncoding();
331       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
332       DCHECK(stack_map.IsValid());
333       if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
334         InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
335         return inline_info.GetDexPcAtDepth(encoding.inline_info_encoding,
336                                            inline_info.GetDepth(encoding.inline_info_encoding)-1);
337       } else {
338         return stack_map.GetDexPc(encoding.stack_map_encoding);
339       }
340     } else {
341       return current_code->ToDexPc(*caller_sp, outer_pc);
342     }
343   }
344 
345   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)346   static uintptr_t GetCallingPc(ArtMethod** sp) SHARED_REQUIRES(Locks::mutator_lock_) {
347     DCHECK((*sp)->IsCalleeSaveMethod());
348     uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
349     return *reinterpret_cast<uintptr_t*>(lr);
350   }
351 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)352   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
353                        uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) :
354           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
355           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
356           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
357           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
358               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
359           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
360           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
361     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
362                   "Number of Quick FPR arguments unexpected");
363     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
364                   "Double alignment unexpected");
365     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
366     // next register is even.
367     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
368                   "Number of Quick FPR arguments not even");
369     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
370   }
371 
~QuickArgumentVisitor()372   virtual ~QuickArgumentVisitor() {}
373 
374   virtual void Visit() = 0;
375 
GetParamPrimitiveType() const376   Primitive::Type GetParamPrimitiveType() const {
377     return cur_type_;
378   }
379 
GetParamAddress() const380   uint8_t* GetParamAddress() const {
381     if (!kQuickSoftFloatAbi) {
382       Primitive::Type type = GetParamPrimitiveType();
383       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
384         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
385           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
386             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
387           }
388         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
389           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
390         }
391         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
392       }
393     }
394     if (gpr_index_ < kNumQuickGprArgs) {
395       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
396     }
397     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
398   }
399 
IsSplitLongOrDouble() const400   bool IsSplitLongOrDouble() const {
401     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
402         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
403       return is_split_long_or_double_;
404     } else {
405       return false;  // An optimization for when GPR and FPRs are 64bit.
406     }
407   }
408 
IsParamAReference() const409   bool IsParamAReference() const {
410     return GetParamPrimitiveType() == Primitive::kPrimNot;
411   }
412 
IsParamALongOrDouble() const413   bool IsParamALongOrDouble() const {
414     Primitive::Type type = GetParamPrimitiveType();
415     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
416   }
417 
ReadSplitLongParam() const418   uint64_t ReadSplitLongParam() const {
419     // The splitted long is always available through the stack.
420     return *reinterpret_cast<uint64_t*>(stack_args_
421         + stack_index_ * kBytesStackArgLocation);
422   }
423 
IncGprIndex()424   void IncGprIndex() {
425     gpr_index_++;
426     if (kGprFprLockstep) {
427       fpr_index_++;
428     }
429   }
430 
IncFprIndex()431   void IncFprIndex() {
432     fpr_index_++;
433     if (kGprFprLockstep) {
434       gpr_index_++;
435     }
436   }
437 
VisitArguments()438   void VisitArguments() SHARED_REQUIRES(Locks::mutator_lock_) {
439     // (a) 'stack_args_' should point to the first method's argument
440     // (b) whatever the argument type it is, the 'stack_index_' should
441     //     be moved forward along with every visiting.
442     gpr_index_ = 0;
443     fpr_index_ = 0;
444     if (kQuickDoubleRegAlignedFloatBackFilled) {
445       fpr_double_index_ = 0;
446     }
447     stack_index_ = 0;
448     if (!is_static_) {  // Handle this.
449       cur_type_ = Primitive::kPrimNot;
450       is_split_long_or_double_ = false;
451       Visit();
452       stack_index_++;
453       if (kNumQuickGprArgs > 0) {
454         IncGprIndex();
455       }
456     }
457     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
458       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
459       switch (cur_type_) {
460         case Primitive::kPrimNot:
461         case Primitive::kPrimBoolean:
462         case Primitive::kPrimByte:
463         case Primitive::kPrimChar:
464         case Primitive::kPrimShort:
465         case Primitive::kPrimInt:
466           is_split_long_or_double_ = false;
467           Visit();
468           stack_index_++;
469           if (gpr_index_ < kNumQuickGprArgs) {
470             IncGprIndex();
471           }
472           break;
473         case Primitive::kPrimFloat:
474           is_split_long_or_double_ = false;
475           Visit();
476           stack_index_++;
477           if (kQuickSoftFloatAbi) {
478             if (gpr_index_ < kNumQuickGprArgs) {
479               IncGprIndex();
480             }
481           } else {
482             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
483               IncFprIndex();
484               if (kQuickDoubleRegAlignedFloatBackFilled) {
485                 // Double should not overlap with float.
486                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
487                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
488                 // Float should not overlap with double.
489                 if (fpr_index_ % 2 == 0) {
490                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
491                 }
492               } else if (kQuickSkipOddFpRegisters) {
493                 IncFprIndex();
494               }
495             }
496           }
497           break;
498         case Primitive::kPrimDouble:
499         case Primitive::kPrimLong:
500           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
501             if (cur_type_ == Primitive::kPrimLong && kAlignPairRegister && gpr_index_ == 0) {
502               // Currently, this is only for ARM and MIPS, where the first available parameter
503               // register is R1 (on ARM) or A1 (on MIPS). So we skip it, and use R2 (on ARM) or
504               // A2 (on MIPS) instead.
505               IncGprIndex();
506             }
507             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
508                 ((gpr_index_ + 1) == kNumQuickGprArgs);
509             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
510               // We don't want to split this. Pass over this register.
511               gpr_index_++;
512               is_split_long_or_double_ = false;
513             }
514             Visit();
515             if (kBytesStackArgLocation == 4) {
516               stack_index_+= 2;
517             } else {
518               CHECK_EQ(kBytesStackArgLocation, 8U);
519               stack_index_++;
520             }
521             if (gpr_index_ < kNumQuickGprArgs) {
522               IncGprIndex();
523               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
524                 if (gpr_index_ < kNumQuickGprArgs) {
525                   IncGprIndex();
526                 }
527               }
528             }
529           } else {
530             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
531                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
532             Visit();
533             if (kBytesStackArgLocation == 4) {
534               stack_index_+= 2;
535             } else {
536               CHECK_EQ(kBytesStackArgLocation, 8U);
537               stack_index_++;
538             }
539             if (kQuickDoubleRegAlignedFloatBackFilled) {
540               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
541                 fpr_double_index_ += 2;
542                 // Float should not overlap with double.
543                 if (fpr_index_ % 2 == 0) {
544                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
545                 }
546               }
547             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
548               IncFprIndex();
549               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
550                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
551                   IncFprIndex();
552                 }
553               }
554             }
555           }
556           break;
557         default:
558           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
559       }
560     }
561   }
562 
563  protected:
564   const bool is_static_;
565   const char* const shorty_;
566   const uint32_t shorty_len_;
567 
568  private:
569   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
570   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
571   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
572   uint32_t gpr_index_;  // Index into spilled GPRs.
573   // Index into spilled FPRs.
574   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
575   // holds a higher register number.
576   uint32_t fpr_index_;
577   // Index into spilled FPRs for aligned double.
578   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
579   // terms of singles, may be behind fpr_index.
580   uint32_t fpr_double_index_;
581   uint32_t stack_index_;  // Index into arguments on the stack.
582   // The current type of argument during VisitArguments.
583   Primitive::Type cur_type_;
584   // Does a 64bit parameter straddle the register and stack arguments?
585   bool is_split_long_or_double_;
586 };
587 
588 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
589 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)590 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
591     SHARED_REQUIRES(Locks::mutator_lock_) {
592   return QuickArgumentVisitor::GetProxyThisObject(sp);
593 }
594 
595 // Visits arguments on the stack placing them into the shadow frame.
596 class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
597  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)598   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
599                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
600       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
601 
602   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
603 
604  private:
605   ShadowFrame* const sf_;
606   uint32_t cur_reg_;
607 
608   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
609 };
610 
Visit()611 void BuildQuickShadowFrameVisitor::Visit() {
612   Primitive::Type type = GetParamPrimitiveType();
613   switch (type) {
614     case Primitive::kPrimLong:  // Fall-through.
615     case Primitive::kPrimDouble:
616       if (IsSplitLongOrDouble()) {
617         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
618       } else {
619         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
620       }
621       ++cur_reg_;
622       break;
623     case Primitive::kPrimNot: {
624         StackReference<mirror::Object>* stack_ref =
625             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
626         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
627       }
628       break;
629     case Primitive::kPrimBoolean:  // Fall-through.
630     case Primitive::kPrimByte:     // Fall-through.
631     case Primitive::kPrimChar:     // Fall-through.
632     case Primitive::kPrimShort:    // Fall-through.
633     case Primitive::kPrimInt:      // Fall-through.
634     case Primitive::kPrimFloat:
635       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
636       break;
637     case Primitive::kPrimVoid:
638       LOG(FATAL) << "UNREACHABLE";
639       UNREACHABLE();
640   }
641   ++cur_reg_;
642 }
643 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)644 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
645     SHARED_REQUIRES(Locks::mutator_lock_) {
646   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
647   // frame.
648   ScopedQuickEntrypointChecks sqec(self);
649 
650   if (UNLIKELY(!method->IsInvokable())) {
651     method->ThrowInvocationTimeError();
652     return 0;
653   }
654 
655   JValue tmp_value;
656   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
657       StackedShadowFrameType::kSingleFrameDeoptimizationShadowFrame, false);
658   ManagedStack fragment;
659 
660   DCHECK(!method->IsNative()) << PrettyMethod(method);
661   uint32_t shorty_len = 0;
662   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(sizeof(void*));
663   const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
664   DCHECK(code_item != nullptr) << PrettyMethod(method);
665   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
666 
667   JValue result;
668 
669   if (deopt_frame != nullptr) {
670     // Coming from single-frame deopt.
671 
672     if (kIsDebugBuild) {
673       // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
674       // of the call-stack) corresponds to the called method.
675       ShadowFrame* linked = deopt_frame;
676       while (linked->GetLink() != nullptr) {
677         linked = linked->GetLink();
678       }
679       CHECK_EQ(method, linked->GetMethod()) << PrettyMethod(method) << " "
680           << PrettyMethod(linked->GetMethod());
681     }
682 
683     if (VLOG_IS_ON(deopt)) {
684       // Print out the stack to verify that it was a single-frame deopt.
685       LOG(INFO) << "Continue-ing from deopt. Stack is:";
686       QuickExceptionHandler::DumpFramesWithType(self, true);
687     }
688 
689     mirror::Throwable* pending_exception = nullptr;
690     bool from_code = false;
691     self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
692     CHECK(from_code);
693 
694     // Push a transition back into managed code onto the linked list in thread.
695     self->PushManagedStackFragment(&fragment);
696 
697     // Ensure that the stack is still in order.
698     if (kIsDebugBuild) {
699       class DummyStackVisitor : public StackVisitor {
700        public:
701         explicit DummyStackVisitor(Thread* self_in) SHARED_REQUIRES(Locks::mutator_lock_)
702             : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
703 
704         bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
705           // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
706           // logic. Just always say we want to continue.
707           return true;
708         }
709       };
710       DummyStackVisitor dsv(self);
711       dsv.WalkStack();
712     }
713 
714     // Restore the exception that was pending before deoptimization then interpret the
715     // deoptimized frames.
716     if (pending_exception != nullptr) {
717       self->SetException(pending_exception);
718     }
719     interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
720   } else {
721     const char* old_cause = self->StartAssertNoThreadSuspension(
722         "Building interpreter shadow frame");
723     uint16_t num_regs = code_item->registers_size_;
724     // No last shadow coming from quick.
725     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
726         CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
727     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
728     size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
729     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
730                                                       shadow_frame, first_arg_reg);
731     shadow_frame_builder.VisitArguments();
732     const bool needs_initialization =
733         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
734     // Push a transition back into managed code onto the linked list in thread.
735     self->PushManagedStackFragment(&fragment);
736     self->PushShadowFrame(shadow_frame);
737     self->EndAssertNoThreadSuspension(old_cause);
738 
739     if (needs_initialization) {
740       // Ensure static method's class is initialized.
741       StackHandleScope<1> hs(self);
742       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
743       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
744         DCHECK(Thread::Current()->IsExceptionPending()) << PrettyMethod(shadow_frame->GetMethod());
745         self->PopManagedStackFragment(fragment);
746         return 0;
747       }
748     }
749 
750     result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
751   }
752 
753   // Pop transition.
754   self->PopManagedStackFragment(fragment);
755 
756   // Request a stack deoptimization if needed
757   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
758   if (UNLIKELY(Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
759     // Push the context of the deoptimization stack so we can restore the return value and the
760     // exception before executing the deoptimized frames.
761     self->PushDeoptimizationContext(
762         result, shorty[0] == 'L', /* from_code */ false, self->GetException());
763 
764     // Set special exception to cause deoptimization.
765     self->SetException(Thread::GetDeoptimizationException());
766   }
767 
768   // No need to restore the args since the method has already been run by the interpreter.
769   return result.GetJ();
770 }
771 
772 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
773 // to jobjects.
774 class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
775  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)776   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
777                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
778       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
779 
780   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
781 
782   void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
783 
784  private:
785   ScopedObjectAccessUnchecked* const soa_;
786   std::vector<jvalue>* const args_;
787   // References which we must update when exiting in case the GC moved the objects.
788   std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
789 
790   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
791 };
792 
Visit()793 void BuildQuickArgumentVisitor::Visit() {
794   jvalue val;
795   Primitive::Type type = GetParamPrimitiveType();
796   switch (type) {
797     case Primitive::kPrimNot: {
798       StackReference<mirror::Object>* stack_ref =
799           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
800       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
801       references_.push_back(std::make_pair(val.l, stack_ref));
802       break;
803     }
804     case Primitive::kPrimLong:  // Fall-through.
805     case Primitive::kPrimDouble:
806       if (IsSplitLongOrDouble()) {
807         val.j = ReadSplitLongParam();
808       } else {
809         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
810       }
811       break;
812     case Primitive::kPrimBoolean:  // Fall-through.
813     case Primitive::kPrimByte:     // Fall-through.
814     case Primitive::kPrimChar:     // Fall-through.
815     case Primitive::kPrimShort:    // Fall-through.
816     case Primitive::kPrimInt:      // Fall-through.
817     case Primitive::kPrimFloat:
818       val.i = *reinterpret_cast<jint*>(GetParamAddress());
819       break;
820     case Primitive::kPrimVoid:
821       LOG(FATAL) << "UNREACHABLE";
822       UNREACHABLE();
823   }
824   args_->push_back(val);
825 }
826 
FixupReferences()827 void BuildQuickArgumentVisitor::FixupReferences() {
828   // Fixup any references which may have changed.
829   for (const auto& pair : references_) {
830     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
831     soa_->Env()->DeleteLocalRef(pair.first);
832   }
833 }
834 
835 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
836 // which is responsible for recording callee save registers. We explicitly place into jobjects the
837 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
838 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)839 extern "C" uint64_t artQuickProxyInvokeHandler(
840     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
841     SHARED_REQUIRES(Locks::mutator_lock_) {
842   DCHECK(proxy_method->IsProxyMethod()) << PrettyMethod(proxy_method);
843   DCHECK(receiver->GetClass()->IsProxyClass()) << PrettyMethod(proxy_method);
844   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
845   const char* old_cause =
846       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
847   // Register the top of the managed stack, making stack crawlable.
848   DCHECK_EQ((*sp), proxy_method) << PrettyMethod(proxy_method);
849   self->VerifyStack();
850   // Start new JNI local reference state.
851   JNIEnvExt* env = self->GetJniEnv();
852   ScopedObjectAccessUnchecked soa(env);
853   ScopedJniEnvLocalRefState env_state(env);
854   // Create local ref. copies of proxy method and the receiver.
855   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
856 
857   // Placing arguments into args vector and remove the receiver.
858   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(sizeof(void*));
859   CHECK(!non_proxy_method->IsStatic()) << PrettyMethod(proxy_method) << " "
860                                        << PrettyMethod(non_proxy_method);
861   std::vector<jvalue> args;
862   uint32_t shorty_len = 0;
863   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
864   BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
865 
866   local_ref_visitor.VisitArguments();
867   DCHECK_GT(args.size(), 0U) << PrettyMethod(proxy_method);
868   args.erase(args.begin());
869 
870   // Convert proxy method into expected interface method.
871   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(sizeof(void*));
872   DCHECK(interface_method != nullptr) << PrettyMethod(proxy_method);
873   DCHECK(!interface_method->IsProxyMethod()) << PrettyMethod(interface_method);
874   self->EndAssertNoThreadSuspension(old_cause);
875   jobject interface_method_jobj = soa.AddLocalReference<jobject>(
876       mirror::Method::CreateFromArtMethod(soa.Self(), interface_method));
877 
878   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
879   // that performs allocations.
880   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
881   // Restore references which might have moved.
882   local_ref_visitor.FixupReferences();
883   return result.GetJ();
884 }
885 
886 // Read object references held in arguments from quick frames and place in a JNI local references,
887 // so they don't get garbage collected.
888 class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
889  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)890   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
891                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
892       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
893 
894   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
895 
896   void FixupReferences() SHARED_REQUIRES(Locks::mutator_lock_);
897 
898  private:
899   ScopedObjectAccessUnchecked* const soa_;
900   // References which we must update when exiting in case the GC moved the objects.
901   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
902 
903   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
904 };
905 
Visit()906 void RememberForGcArgumentVisitor::Visit() {
907   if (IsParamAReference()) {
908     StackReference<mirror::Object>* stack_ref =
909         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
910     jobject reference =
911         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
912     references_.push_back(std::make_pair(reference, stack_ref));
913   }
914 }
915 
FixupReferences()916 void RememberForGcArgumentVisitor::FixupReferences() {
917   // Fixup any references which may have changed.
918   for (const auto& pair : references_) {
919     pair.second->Assign(soa_->Decode<mirror::Object*>(pair.first));
920     soa_->Env()->DeleteLocalRef(pair.first);
921   }
922 }
923 
924 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)925 extern "C" const void* artQuickResolutionTrampoline(
926     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
927     SHARED_REQUIRES(Locks::mutator_lock_) {
928   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
929   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
930   // does not have the same stack layout as the callee-save method).
931   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
932   // Start new JNI local reference state
933   JNIEnvExt* env = self->GetJniEnv();
934   ScopedObjectAccessUnchecked soa(env);
935   ScopedJniEnvLocalRefState env_state(env);
936   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
937 
938   // Compute details about the called method (avoid GCs)
939   ClassLinker* linker = Runtime::Current()->GetClassLinker();
940   InvokeType invoke_type;
941   MethodReference called_method(nullptr, 0);
942   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
943   ArtMethod* caller = nullptr;
944   if (!called_method_known_on_entry) {
945     caller = QuickArgumentVisitor::GetCallingMethod(sp);
946     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
947     const DexFile::CodeItem* code;
948     called_method.dex_file = caller->GetDexFile();
949     code = caller->GetCodeItem();
950     CHECK_LT(dex_pc, code->insns_size_in_code_units_);
951     const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
952     Instruction::Code instr_code = instr->Opcode();
953     bool is_range;
954     switch (instr_code) {
955       case Instruction::INVOKE_DIRECT:
956         invoke_type = kDirect;
957         is_range = false;
958         break;
959       case Instruction::INVOKE_DIRECT_RANGE:
960         invoke_type = kDirect;
961         is_range = true;
962         break;
963       case Instruction::INVOKE_STATIC:
964         invoke_type = kStatic;
965         is_range = false;
966         break;
967       case Instruction::INVOKE_STATIC_RANGE:
968         invoke_type = kStatic;
969         is_range = true;
970         break;
971       case Instruction::INVOKE_SUPER:
972         invoke_type = kSuper;
973         is_range = false;
974         break;
975       case Instruction::INVOKE_SUPER_RANGE:
976         invoke_type = kSuper;
977         is_range = true;
978         break;
979       case Instruction::INVOKE_VIRTUAL:
980         invoke_type = kVirtual;
981         is_range = false;
982         break;
983       case Instruction::INVOKE_VIRTUAL_RANGE:
984         invoke_type = kVirtual;
985         is_range = true;
986         break;
987       case Instruction::INVOKE_INTERFACE:
988         invoke_type = kInterface;
989         is_range = false;
990         break;
991       case Instruction::INVOKE_INTERFACE_RANGE:
992         invoke_type = kInterface;
993         is_range = true;
994         break;
995       default:
996         LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
997         UNREACHABLE();
998     }
999     called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
1000   } else {
1001     invoke_type = kStatic;
1002     called_method.dex_file = called->GetDexFile();
1003     called_method.dex_method_index = called->GetDexMethodIndex();
1004   }
1005   uint32_t shorty_len;
1006   const char* shorty =
1007       called_method.dex_file->GetMethodShorty(
1008           called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
1009   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1010   visitor.VisitArguments();
1011   self->EndAssertNoThreadSuspension(old_cause);
1012   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1013   // Resolve method filling in dex cache.
1014   if (!called_method_known_on_entry) {
1015     StackHandleScope<1> hs(self);
1016     mirror::Object* dummy = nullptr;
1017     HandleWrapper<mirror::Object> h_receiver(
1018         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1019     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1020     called = linker->ResolveMethod<ClassLinker::kForceICCECheck>(
1021         self, called_method.dex_method_index, caller, invoke_type);
1022   }
1023   const void* code = nullptr;
1024   if (LIKELY(!self->IsExceptionPending())) {
1025     // Incompatible class change should have been handled in resolve method.
1026     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1027         << PrettyMethod(called) << " " << invoke_type;
1028     if (virtual_or_interface || invoke_type == kSuper) {
1029       // Refine called method based on receiver for kVirtual/kInterface, and
1030       // caller for kSuper.
1031       ArtMethod* orig_called = called;
1032       if (invoke_type == kVirtual) {
1033         CHECK(receiver != nullptr) << invoke_type;
1034         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, sizeof(void*));
1035       } else if (invoke_type == kInterface) {
1036         CHECK(receiver != nullptr) << invoke_type;
1037         called = receiver->GetClass()->FindVirtualMethodForInterface(called, sizeof(void*));
1038       } else {
1039         DCHECK_EQ(invoke_type, kSuper);
1040         CHECK(caller != nullptr) << invoke_type;
1041         StackHandleScope<2> hs(self);
1042         Handle<mirror::DexCache> dex_cache(
1043             hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
1044         Handle<mirror::ClassLoader> class_loader(
1045             hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
1046         // TODO Maybe put this into a mirror::Class function.
1047         mirror::Class* ref_class = linker->ResolveReferencedClassOfMethod(
1048             called_method.dex_method_index, dex_cache, class_loader);
1049         if (ref_class->IsInterface()) {
1050           called = ref_class->FindVirtualMethodForInterfaceSuper(called, sizeof(void*));
1051         } else {
1052           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1053               called->GetMethodIndex(), sizeof(void*));
1054         }
1055       }
1056 
1057       CHECK(called != nullptr) << PrettyMethod(orig_called) << " "
1058                                << PrettyTypeOf(receiver) << " "
1059                                << invoke_type << " " << orig_called->GetVtableIndex();
1060 
1061       // We came here because of sharpening. Ensure the dex cache is up-to-date on the method index
1062       // of the sharpened method avoiding dirtying the dex cache if possible.
1063       // Note, called_method.dex_method_index references the dex method before the
1064       // FindVirtualMethodFor... This is ok for FindDexMethodIndexInOtherDexFile that only cares
1065       // about the name and signature.
1066       uint32_t update_dex_cache_method_index = called->GetDexMethodIndex();
1067       if (!called->HasSameDexCacheResolvedMethods(caller, sizeof(void*))) {
1068         // Calling from one dex file to another, need to compute the method index appropriate to
1069         // the caller's dex file. Since we get here only if the original called was a runtime
1070         // method, we've got the correct dex_file and a dex_method_idx from above.
1071         DCHECK(!called_method_known_on_entry);
1072         DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1073         const DexFile* caller_dex_file = called_method.dex_file;
1074         uint32_t caller_method_name_and_sig_index = called_method.dex_method_index;
1075         update_dex_cache_method_index =
1076             called->FindDexMethodIndexInOtherDexFile(*caller_dex_file,
1077                                                      caller_method_name_and_sig_index);
1078       }
1079       if ((update_dex_cache_method_index != DexFile::kDexNoIndex) &&
1080           (caller->GetDexCacheResolvedMethod(
1081               update_dex_cache_method_index, sizeof(void*)) != called)) {
1082         caller->SetDexCacheResolvedMethod(update_dex_cache_method_index, called, sizeof(void*));
1083       }
1084     } else if (invoke_type == kStatic) {
1085       const auto called_dex_method_idx = called->GetDexMethodIndex();
1086       // For static invokes, we may dispatch to the static method in the superclass but resolve
1087       // using the subclass. To prevent getting slow paths on each invoke, we force set the
1088       // resolved method for the super class dex method index if we are in the same dex file.
1089       // b/19175856
1090       if (called->GetDexFile() == called_method.dex_file &&
1091           called_method.dex_method_index != called_dex_method_idx) {
1092         called->GetDexCache()->SetResolvedMethod(called_dex_method_idx, called, sizeof(void*));
1093       }
1094     }
1095 
1096     // Ensure that the called method's class is initialized.
1097     StackHandleScope<1> hs(soa.Self());
1098     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1099     linker->EnsureInitialized(soa.Self(), called_class, true, true);
1100     if (LIKELY(called_class->IsInitialized())) {
1101       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1102         // If we are single-stepping or the called method is deoptimized (by a
1103         // breakpoint, for example), then we have to execute the called method
1104         // with the interpreter.
1105         code = GetQuickToInterpreterBridge();
1106       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1107         // If the caller is deoptimized (by a breakpoint, for example), we have to
1108         // continue its execution with interpreter when returning from the called
1109         // method. Because we do not want to execute the called method with the
1110         // interpreter, we wrap its execution into the instrumentation stubs.
1111         // When the called method returns, it will execute the instrumentation
1112         // exit hook that will determine the need of the interpreter with a call
1113         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1114         // it is needed.
1115         code = GetQuickInstrumentationEntryPoint();
1116       } else {
1117         code = called->GetEntryPointFromQuickCompiledCode();
1118       }
1119     } else if (called_class->IsInitializing()) {
1120       if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1121         // If we are single-stepping or the called method is deoptimized (by a
1122         // breakpoint, for example), then we have to execute the called method
1123         // with the interpreter.
1124         code = GetQuickToInterpreterBridge();
1125       } else if (invoke_type == kStatic) {
1126         // Class is still initializing, go to oat and grab code (trampoline must be left in place
1127         // until class is initialized to stop races between threads).
1128         code = linker->GetQuickOatCodeFor(called);
1129       } else {
1130         // No trampoline for non-static methods.
1131         code = called->GetEntryPointFromQuickCompiledCode();
1132       }
1133     } else {
1134       DCHECK(called_class->IsErroneous());
1135     }
1136   }
1137   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1138   // Fixup any locally saved objects may have moved during a GC.
1139   visitor.FixupReferences();
1140   // Place called method in callee-save frame to be placed as first argument to quick method.
1141   *sp = called;
1142 
1143   return code;
1144 }
1145 
1146 /*
1147  * This class uses a couple of observations to unite the different calling conventions through
1148  * a few constants.
1149  *
1150  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1151  *    possible alignment.
1152  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1153  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1154  *    when we have to split things
1155  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1156  *    and we can use Int handling directly.
1157  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1158  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1159  *    extension should be compatible with Aarch64, which mandates copying the available bits
1160  *    into LSB and leaving the rest unspecified.
1161  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1162  *    the stack.
1163  * 6) There is only little endian.
1164  *
1165  *
1166  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1167  * follows:
1168  *
1169  * void PushGpr(uintptr_t):   Add a value for the next GPR
1170  *
1171  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1172  *                            padding, that is, think the architecture is 32b and aligns 64b.
1173  *
1174  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1175  *                            split this if necessary. The current state will have aligned, if
1176  *                            necessary.
1177  *
1178  * void PushStack(uintptr_t): Push a value to the stack.
1179  *
1180  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1181  *                                          as this might be important for null initialization.
1182  *                                          Must return the jobject, that is, the reference to the
1183  *                                          entry in the HandleScope (nullptr if necessary).
1184  *
1185  */
1186 template<class T> class BuildNativeCallFrameStateMachine {
1187  public:
1188 #if defined(__arm__)
1189   // TODO: These are all dummy values!
1190   static constexpr bool kNativeSoftFloatAbi = true;
1191   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1192   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1193 
1194   static constexpr size_t kRegistersNeededForLong = 2;
1195   static constexpr size_t kRegistersNeededForDouble = 2;
1196   static constexpr bool kMultiRegistersAligned = true;
1197   static constexpr bool kMultiFPRegistersWidened = false;
1198   static constexpr bool kMultiGPRegistersWidened = false;
1199   static constexpr bool kAlignLongOnStack = true;
1200   static constexpr bool kAlignDoubleOnStack = true;
1201 #elif defined(__aarch64__)
1202   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1203   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1204   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1205 
1206   static constexpr size_t kRegistersNeededForLong = 1;
1207   static constexpr size_t kRegistersNeededForDouble = 1;
1208   static constexpr bool kMultiRegistersAligned = false;
1209   static constexpr bool kMultiFPRegistersWidened = false;
1210   static constexpr bool kMultiGPRegistersWidened = false;
1211   static constexpr bool kAlignLongOnStack = false;
1212   static constexpr bool kAlignDoubleOnStack = false;
1213 #elif defined(__mips__) && !defined(__LP64__)
1214   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1215   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1216   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1217 
1218   static constexpr size_t kRegistersNeededForLong = 2;
1219   static constexpr size_t kRegistersNeededForDouble = 2;
1220   static constexpr bool kMultiRegistersAligned = true;
1221   static constexpr bool kMultiFPRegistersWidened = true;
1222   static constexpr bool kMultiGPRegistersWidened = false;
1223   static constexpr bool kAlignLongOnStack = true;
1224   static constexpr bool kAlignDoubleOnStack = true;
1225 #elif defined(__mips__) && defined(__LP64__)
1226   // Let the code prepare GPRs only and we will load the FPRs with same data.
1227   static constexpr bool kNativeSoftFloatAbi = true;
1228   static constexpr size_t kNumNativeGprArgs = 8;
1229   static constexpr size_t kNumNativeFprArgs = 0;
1230 
1231   static constexpr size_t kRegistersNeededForLong = 1;
1232   static constexpr size_t kRegistersNeededForDouble = 1;
1233   static constexpr bool kMultiRegistersAligned = false;
1234   static constexpr bool kMultiFPRegistersWidened = false;
1235   static constexpr bool kMultiGPRegistersWidened = true;
1236   static constexpr bool kAlignLongOnStack = false;
1237   static constexpr bool kAlignDoubleOnStack = false;
1238 #elif defined(__i386__)
1239   // TODO: Check these!
1240   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1241   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1242   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1243 
1244   static constexpr size_t kRegistersNeededForLong = 2;
1245   static constexpr size_t kRegistersNeededForDouble = 2;
1246   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1247   static constexpr bool kMultiFPRegistersWidened = false;
1248   static constexpr bool kMultiGPRegistersWidened = false;
1249   static constexpr bool kAlignLongOnStack = false;
1250   static constexpr bool kAlignDoubleOnStack = false;
1251 #elif defined(__x86_64__)
1252   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1253   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1254   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1255 
1256   static constexpr size_t kRegistersNeededForLong = 1;
1257   static constexpr size_t kRegistersNeededForDouble = 1;
1258   static constexpr bool kMultiRegistersAligned = false;
1259   static constexpr bool kMultiFPRegistersWidened = false;
1260   static constexpr bool kMultiGPRegistersWidened = false;
1261   static constexpr bool kAlignLongOnStack = false;
1262   static constexpr bool kAlignDoubleOnStack = false;
1263 #else
1264 #error "Unsupported architecture"
1265 #endif
1266 
1267  public:
BuildNativeCallFrameStateMachine(T * delegate)1268   explicit BuildNativeCallFrameStateMachine(T* delegate)
1269       : gpr_index_(kNumNativeGprArgs),
1270         fpr_index_(kNumNativeFprArgs),
1271         stack_entries_(0),
1272         delegate_(delegate) {
1273     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1274     // the next register is even; counting down is just to make the compiler happy...
1275     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1276     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1277   }
1278 
~BuildNativeCallFrameStateMachine()1279   virtual ~BuildNativeCallFrameStateMachine() {}
1280 
HavePointerGpr() const1281   bool HavePointerGpr() const {
1282     return gpr_index_ > 0;
1283   }
1284 
AdvancePointer(const void * val)1285   void AdvancePointer(const void* val) {
1286     if (HavePointerGpr()) {
1287       gpr_index_--;
1288       PushGpr(reinterpret_cast<uintptr_t>(val));
1289     } else {
1290       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1291       PushStack(reinterpret_cast<uintptr_t>(val));
1292       gpr_index_ = 0;
1293     }
1294   }
1295 
HaveHandleScopeGpr() const1296   bool HaveHandleScopeGpr() const {
1297     return gpr_index_ > 0;
1298   }
1299 
AdvanceHandleScope(mirror::Object * ptr)1300   void AdvanceHandleScope(mirror::Object* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1301     uintptr_t handle = PushHandle(ptr);
1302     if (HaveHandleScopeGpr()) {
1303       gpr_index_--;
1304       PushGpr(handle);
1305     } else {
1306       stack_entries_++;
1307       PushStack(handle);
1308       gpr_index_ = 0;
1309     }
1310   }
1311 
HaveIntGpr() const1312   bool HaveIntGpr() const {
1313     return gpr_index_ > 0;
1314   }
1315 
AdvanceInt(uint32_t val)1316   void AdvanceInt(uint32_t val) {
1317     if (HaveIntGpr()) {
1318       gpr_index_--;
1319       if (kMultiGPRegistersWidened) {
1320         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1321         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1322       } else {
1323         PushGpr(val);
1324       }
1325     } else {
1326       stack_entries_++;
1327       if (kMultiGPRegistersWidened) {
1328         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1329         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1330       } else {
1331         PushStack(val);
1332       }
1333       gpr_index_ = 0;
1334     }
1335   }
1336 
HaveLongGpr() const1337   bool HaveLongGpr() const {
1338     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1339   }
1340 
LongGprNeedsPadding() const1341   bool LongGprNeedsPadding() const {
1342     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1343         kAlignLongOnStack &&                  // and when it needs alignment
1344         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1345   }
1346 
LongStackNeedsPadding() const1347   bool LongStackNeedsPadding() const {
1348     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1349         kAlignLongOnStack &&                  // and when it needs 8B alignment
1350         (stack_entries_ & 1) == 1;            // counter is odd
1351   }
1352 
AdvanceLong(uint64_t val)1353   void AdvanceLong(uint64_t val) {
1354     if (HaveLongGpr()) {
1355       if (LongGprNeedsPadding()) {
1356         PushGpr(0);
1357         gpr_index_--;
1358       }
1359       if (kRegistersNeededForLong == 1) {
1360         PushGpr(static_cast<uintptr_t>(val));
1361       } else {
1362         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1363         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1364       }
1365       gpr_index_ -= kRegistersNeededForLong;
1366     } else {
1367       if (LongStackNeedsPadding()) {
1368         PushStack(0);
1369         stack_entries_++;
1370       }
1371       if (kRegistersNeededForLong == 1) {
1372         PushStack(static_cast<uintptr_t>(val));
1373         stack_entries_++;
1374       } else {
1375         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1376         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1377         stack_entries_ += 2;
1378       }
1379       gpr_index_ = 0;
1380     }
1381   }
1382 
HaveFloatFpr() const1383   bool HaveFloatFpr() const {
1384     return fpr_index_ > 0;
1385   }
1386 
AdvanceFloat(float val)1387   void AdvanceFloat(float val) {
1388     if (kNativeSoftFloatAbi) {
1389       AdvanceInt(bit_cast<uint32_t, float>(val));
1390     } else {
1391       if (HaveFloatFpr()) {
1392         fpr_index_--;
1393         if (kRegistersNeededForDouble == 1) {
1394           if (kMultiFPRegistersWidened) {
1395             PushFpr8(bit_cast<uint64_t, double>(val));
1396           } else {
1397             // No widening, just use the bits.
1398             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1399           }
1400         } else {
1401           PushFpr4(val);
1402         }
1403       } else {
1404         stack_entries_++;
1405         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1406           // Need to widen before storing: Note the "double" in the template instantiation.
1407           // Note: We need to jump through those hoops to make the compiler happy.
1408           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1409           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1410         } else {
1411           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1412         }
1413         fpr_index_ = 0;
1414       }
1415     }
1416   }
1417 
HaveDoubleFpr() const1418   bool HaveDoubleFpr() const {
1419     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1420   }
1421 
DoubleFprNeedsPadding() const1422   bool DoubleFprNeedsPadding() const {
1423     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1424         kAlignDoubleOnStack &&                  // and when it needs alignment
1425         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1426   }
1427 
DoubleStackNeedsPadding() const1428   bool DoubleStackNeedsPadding() const {
1429     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1430         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1431         (stack_entries_ & 1) == 1;              // counter is odd
1432   }
1433 
AdvanceDouble(uint64_t val)1434   void AdvanceDouble(uint64_t val) {
1435     if (kNativeSoftFloatAbi) {
1436       AdvanceLong(val);
1437     } else {
1438       if (HaveDoubleFpr()) {
1439         if (DoubleFprNeedsPadding()) {
1440           PushFpr4(0);
1441           fpr_index_--;
1442         }
1443         PushFpr8(val);
1444         fpr_index_ -= kRegistersNeededForDouble;
1445       } else {
1446         if (DoubleStackNeedsPadding()) {
1447           PushStack(0);
1448           stack_entries_++;
1449         }
1450         if (kRegistersNeededForDouble == 1) {
1451           PushStack(static_cast<uintptr_t>(val));
1452           stack_entries_++;
1453         } else {
1454           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1455           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1456           stack_entries_ += 2;
1457         }
1458         fpr_index_ = 0;
1459       }
1460     }
1461   }
1462 
GetStackEntries() const1463   uint32_t GetStackEntries() const {
1464     return stack_entries_;
1465   }
1466 
GetNumberOfUsedGprs() const1467   uint32_t GetNumberOfUsedGprs() const {
1468     return kNumNativeGprArgs - gpr_index_;
1469   }
1470 
GetNumberOfUsedFprs() const1471   uint32_t GetNumberOfUsedFprs() const {
1472     return kNumNativeFprArgs - fpr_index_;
1473   }
1474 
1475  private:
PushGpr(uintptr_t val)1476   void PushGpr(uintptr_t val) {
1477     delegate_->PushGpr(val);
1478   }
PushFpr4(float val)1479   void PushFpr4(float val) {
1480     delegate_->PushFpr4(val);
1481   }
PushFpr8(uint64_t val)1482   void PushFpr8(uint64_t val) {
1483     delegate_->PushFpr8(val);
1484   }
PushStack(uintptr_t val)1485   void PushStack(uintptr_t val) {
1486     delegate_->PushStack(val);
1487   }
PushHandle(mirror::Object * ref)1488   uintptr_t PushHandle(mirror::Object* ref) SHARED_REQUIRES(Locks::mutator_lock_) {
1489     return delegate_->PushHandle(ref);
1490   }
1491 
1492   uint32_t gpr_index_;      // Number of free GPRs
1493   uint32_t fpr_index_;      // Number of free FPRs
1494   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1495                             // extended
1496   T* const delegate_;             // What Push implementation gets called
1497 };
1498 
1499 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1500 // in subclasses.
1501 //
1502 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1503 // them with handles.
1504 class ComputeNativeCallFrameSize {
1505  public:
ComputeNativeCallFrameSize()1506   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1507 
~ComputeNativeCallFrameSize()1508   virtual ~ComputeNativeCallFrameSize() {}
1509 
GetStackSize() const1510   uint32_t GetStackSize() const {
1511     return num_stack_entries_ * sizeof(uintptr_t);
1512   }
1513 
LayoutCallStack(uint8_t * sp8) const1514   uint8_t* LayoutCallStack(uint8_t* sp8) const {
1515     sp8 -= GetStackSize();
1516     // Align by kStackAlignment.
1517     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1518     return sp8;
1519   }
1520 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1521   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1522       const {
1523     // Assumption is OK right now, as we have soft-float arm
1524     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1525     sp8 -= fregs * sizeof(uintptr_t);
1526     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1527     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1528     sp8 -= iregs * sizeof(uintptr_t);
1529     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1530     return sp8;
1531   }
1532 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1533   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1534                             uint32_t** start_fpr) const {
1535     // Native call stack.
1536     sp8 = LayoutCallStack(sp8);
1537     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1538 
1539     // Put fprs and gprs below.
1540     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1541 
1542     // Return the new bottom.
1543     return sp8;
1544   }
1545 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1546   virtual void WalkHeader(
1547       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1548       SHARED_REQUIRES(Locks::mutator_lock_) {
1549   }
1550 
Walk(const char * shorty,uint32_t shorty_len)1551   void Walk(const char* shorty, uint32_t shorty_len) SHARED_REQUIRES(Locks::mutator_lock_) {
1552     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1553 
1554     WalkHeader(&sm);
1555 
1556     for (uint32_t i = 1; i < shorty_len; ++i) {
1557       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1558       switch (cur_type_) {
1559         case Primitive::kPrimNot:
1560           // TODO: fix abuse of mirror types.
1561           sm.AdvanceHandleScope(
1562               reinterpret_cast<mirror::Object*>(0x12345678));
1563           break;
1564 
1565         case Primitive::kPrimBoolean:
1566         case Primitive::kPrimByte:
1567         case Primitive::kPrimChar:
1568         case Primitive::kPrimShort:
1569         case Primitive::kPrimInt:
1570           sm.AdvanceInt(0);
1571           break;
1572         case Primitive::kPrimFloat:
1573           sm.AdvanceFloat(0);
1574           break;
1575         case Primitive::kPrimDouble:
1576           sm.AdvanceDouble(0);
1577           break;
1578         case Primitive::kPrimLong:
1579           sm.AdvanceLong(0);
1580           break;
1581         default:
1582           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1583           UNREACHABLE();
1584       }
1585     }
1586 
1587     num_stack_entries_ = sm.GetStackEntries();
1588   }
1589 
PushGpr(uintptr_t)1590   void PushGpr(uintptr_t /* val */) {
1591     // not optimizing registers, yet
1592   }
1593 
PushFpr4(float)1594   void PushFpr4(float /* val */) {
1595     // not optimizing registers, yet
1596   }
1597 
PushFpr8(uint64_t)1598   void PushFpr8(uint64_t /* val */) {
1599     // not optimizing registers, yet
1600   }
1601 
PushStack(uintptr_t)1602   void PushStack(uintptr_t /* val */) {
1603     // counting is already done in the superclass
1604   }
1605 
PushHandle(mirror::Object *)1606   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1607     return reinterpret_cast<uintptr_t>(nullptr);
1608   }
1609 
1610  protected:
1611   uint32_t num_stack_entries_;
1612 };
1613 
1614 class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
1615  public:
ComputeGenericJniFrameSize()1616   ComputeGenericJniFrameSize() : num_handle_scope_references_(0) {}
1617 
1618   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1619   // is at *m = sp. Will update to point to the bottom of the save frame.
1620   //
1621   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1622   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1623       SHARED_REQUIRES(Locks::mutator_lock_) {
1624     ArtMethod* method = **m;
1625 
1626     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
1627 
1628     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1629 
1630     // First, fix up the layout of the callee-save frame.
1631     // We have to squeeze in the HandleScope, and relocate the method pointer.
1632 
1633     // "Free" the slot for the method.
1634     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
1635 
1636     // Under the callee saves put handle scope and new method stack reference.
1637     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
1638     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
1639 
1640     sp8 -= scope_and_method;
1641     // Align by kStackAlignment.
1642     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1643 
1644     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
1645     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
1646                                         num_handle_scope_references_);
1647 
1648     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
1649     uint8_t* method_pointer = sp8;
1650     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
1651     *new_method_ref = method;
1652     *m = new_method_ref;
1653   }
1654 
1655   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const1656   void LayoutCookie(uint8_t** sp) const {
1657     // Reference cookie and padding
1658     *sp -= 8;
1659   }
1660 
1661   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
1662   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1663   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1664       SHARED_REQUIRES(Locks::mutator_lock_) {
1665     // First, fix up the layout of the callee-save frame.
1666     // We have to squeeze in the HandleScope, and relocate the method pointer.
1667     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
1668 
1669     // The bottom of the callee-save frame is now where the method is, *m.
1670     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
1671 
1672     // Add space for cookie.
1673     LayoutCookie(&sp8);
1674 
1675     return sp8;
1676   }
1677 
1678   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)1679   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
1680                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
1681                          uint32_t** start_fpr)
1682       SHARED_REQUIRES(Locks::mutator_lock_) {
1683     Walk(shorty, shorty_len);
1684 
1685     // JNI part.
1686     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
1687 
1688     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
1689 
1690     // Return the new bottom.
1691     return sp8;
1692   }
1693 
1694   uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
1695 
1696   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
1697   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
1698       SHARED_REQUIRES(Locks::mutator_lock_);
1699 
1700  private:
1701   uint32_t num_handle_scope_references_;
1702 };
1703 
PushHandle(mirror::Object *)1704 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
1705   num_handle_scope_references_++;
1706   return reinterpret_cast<uintptr_t>(nullptr);
1707 }
1708 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)1709 void ComputeGenericJniFrameSize::WalkHeader(
1710     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
1711   // JNIEnv
1712   sm->AdvancePointer(nullptr);
1713 
1714   // Class object or this as first argument
1715   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
1716 }
1717 
1718 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
1719 // the template requirements of BuildGenericJniFrameStateMachine.
1720 class FillNativeCall {
1721  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1722   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
1723       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
1724 
~FillNativeCall()1725   virtual ~FillNativeCall() {}
1726 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)1727   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
1728     cur_gpr_reg_ = gpr_regs;
1729     cur_fpr_reg_ = fpr_regs;
1730     cur_stack_arg_ = stack_args;
1731   }
1732 
PushGpr(uintptr_t val)1733   void PushGpr(uintptr_t val) {
1734     *cur_gpr_reg_ = val;
1735     cur_gpr_reg_++;
1736   }
1737 
PushFpr4(float val)1738   void PushFpr4(float val) {
1739     *cur_fpr_reg_ = val;
1740     cur_fpr_reg_++;
1741   }
1742 
PushFpr8(uint64_t val)1743   void PushFpr8(uint64_t val) {
1744     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
1745     *tmp = val;
1746     cur_fpr_reg_ += 2;
1747   }
1748 
PushStack(uintptr_t val)1749   void PushStack(uintptr_t val) {
1750     *cur_stack_arg_ = val;
1751     cur_stack_arg_++;
1752   }
1753 
PushHandle(mirror::Object *)1754   virtual uintptr_t PushHandle(mirror::Object*) SHARED_REQUIRES(Locks::mutator_lock_) {
1755     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
1756     UNREACHABLE();
1757   }
1758 
1759  private:
1760   uintptr_t* cur_gpr_reg_;
1761   uint32_t* cur_fpr_reg_;
1762   uintptr_t* cur_stack_arg_;
1763 };
1764 
1765 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
1766 // of transitioning into native code.
1767 class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
1768  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)1769   BuildGenericJniFrameVisitor(Thread* self, bool is_static, const char* shorty, uint32_t shorty_len,
1770                               ArtMethod*** sp)
1771      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
1772        jni_call_(nullptr, nullptr, nullptr, nullptr), sm_(&jni_call_) {
1773     ComputeGenericJniFrameSize fsc;
1774     uintptr_t* start_gpr_reg;
1775     uint32_t* start_fpr_reg;
1776     uintptr_t* start_stack_arg;
1777     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
1778                                              &handle_scope_,
1779                                              &start_stack_arg,
1780                                              &start_gpr_reg, &start_fpr_reg);
1781 
1782     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
1783 
1784     // jni environment is always first argument
1785     sm_.AdvancePointer(self->GetJniEnv());
1786 
1787     if (is_static) {
1788       sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
1789     }
1790   }
1791 
1792   void Visit() SHARED_REQUIRES(Locks::mutator_lock_) OVERRIDE;
1793 
1794   void FinalizeHandleScope(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
1795 
GetFirstHandleScopeEntry()1796   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
1797     return handle_scope_->GetHandle(0).GetReference();
1798   }
1799 
GetFirstHandleScopeJObject() const1800   jobject GetFirstHandleScopeJObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
1801     return handle_scope_->GetHandle(0).ToJObject();
1802   }
1803 
GetBottomOfUsedArea() const1804   void* GetBottomOfUsedArea() const {
1805     return bottom_of_used_area_;
1806   }
1807 
1808  private:
1809   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
1810   class FillJniCall FINAL : public FillNativeCall {
1811    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope)1812     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
1813                 HandleScope* handle_scope) : FillNativeCall(gpr_regs, fpr_regs, stack_args),
1814                                              handle_scope_(handle_scope), cur_entry_(0) {}
1815 
1816     uintptr_t PushHandle(mirror::Object* ref) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_);
1817 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)1818     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
1819       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
1820       handle_scope_ = scope;
1821       cur_entry_ = 0U;
1822     }
1823 
ResetRemainingScopeSlots()1824     void ResetRemainingScopeSlots() SHARED_REQUIRES(Locks::mutator_lock_) {
1825       // Initialize padding entries.
1826       size_t expected_slots = handle_scope_->NumberOfReferences();
1827       while (cur_entry_ < expected_slots) {
1828         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
1829       }
1830       DCHECK_NE(cur_entry_, 0U);
1831     }
1832 
1833    private:
1834     HandleScope* handle_scope_;
1835     size_t cur_entry_;
1836   };
1837 
1838   HandleScope* handle_scope_;
1839   FillJniCall jni_call_;
1840   void* bottom_of_used_area_;
1841 
1842   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
1843 
1844   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
1845 };
1846 
PushHandle(mirror::Object * ref)1847 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
1848   uintptr_t tmp;
1849   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
1850   h.Assign(ref);
1851   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
1852   cur_entry_++;
1853   return tmp;
1854 }
1855 
Visit()1856 void BuildGenericJniFrameVisitor::Visit() {
1857   Primitive::Type type = GetParamPrimitiveType();
1858   switch (type) {
1859     case Primitive::kPrimLong: {
1860       jlong long_arg;
1861       if (IsSplitLongOrDouble()) {
1862         long_arg = ReadSplitLongParam();
1863       } else {
1864         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
1865       }
1866       sm_.AdvanceLong(long_arg);
1867       break;
1868     }
1869     case Primitive::kPrimDouble: {
1870       uint64_t double_arg;
1871       if (IsSplitLongOrDouble()) {
1872         // Read into union so that we don't case to a double.
1873         double_arg = ReadSplitLongParam();
1874       } else {
1875         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
1876       }
1877       sm_.AdvanceDouble(double_arg);
1878       break;
1879     }
1880     case Primitive::kPrimNot: {
1881       StackReference<mirror::Object>* stack_ref =
1882           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1883       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
1884       break;
1885     }
1886     case Primitive::kPrimFloat:
1887       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
1888       break;
1889     case Primitive::kPrimBoolean:  // Fall-through.
1890     case Primitive::kPrimByte:     // Fall-through.
1891     case Primitive::kPrimChar:     // Fall-through.
1892     case Primitive::kPrimShort:    // Fall-through.
1893     case Primitive::kPrimInt:      // Fall-through.
1894       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
1895       break;
1896     case Primitive::kPrimVoid:
1897       LOG(FATAL) << "UNREACHABLE";
1898       UNREACHABLE();
1899   }
1900 }
1901 
FinalizeHandleScope(Thread * self)1902 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
1903   // Clear out rest of the scope.
1904   jni_call_.ResetRemainingScopeSlots();
1905   // Install HandleScope.
1906   self->PushHandleScope(handle_scope_);
1907 }
1908 
1909 #if defined(__arm__) || defined(__aarch64__)
1910 extern "C" void* artFindNativeMethod();
1911 #else
1912 extern "C" void* artFindNativeMethod(Thread* self);
1913 #endif
1914 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,jobject l,jobject lock)1915 uint64_t artQuickGenericJniEndJNIRef(Thread* self, uint32_t cookie, jobject l, jobject lock) {
1916   if (lock != nullptr) {
1917     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
1918   } else {
1919     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
1920   }
1921 }
1922 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,jobject lock)1923 void artQuickGenericJniEndJNINonRef(Thread* self, uint32_t cookie, jobject lock) {
1924   if (lock != nullptr) {
1925     JniMethodEndSynchronized(cookie, lock, self);
1926   } else {
1927     JniMethodEnd(cookie, self);
1928   }
1929 }
1930 
1931 /*
1932  * Initializes an alloca region assumed to be directly below sp for a native call:
1933  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
1934  * The final element on the stack is a pointer to the native code.
1935  *
1936  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
1937  * We need to fix this, as the handle scope needs to go into the callee-save frame.
1938  *
1939  * The return of this function denotes:
1940  * 1) How many bytes of the alloca can be released, if the value is non-negative.
1941  * 2) An error, if the value is negative.
1942  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)1943 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
1944     SHARED_REQUIRES(Locks::mutator_lock_) {
1945   ArtMethod* called = *sp;
1946   DCHECK(called->IsNative()) << PrettyMethod(called, true);
1947   uint32_t shorty_len = 0;
1948   const char* shorty = called->GetShorty(&shorty_len);
1949 
1950   // Run the visitor and update sp.
1951   BuildGenericJniFrameVisitor visitor(self, called->IsStatic(), shorty, shorty_len, &sp);
1952   visitor.VisitArguments();
1953   visitor.FinalizeHandleScope(self);
1954 
1955   // Fix up managed-stack things in Thread.
1956   self->SetTopOfStack(sp);
1957 
1958   self->VerifyStack();
1959 
1960   // Start JNI, save the cookie.
1961   uint32_t cookie;
1962   if (called->IsSynchronized()) {
1963     cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
1964     if (self->IsExceptionPending()) {
1965       self->PopHandleScope();
1966       // A negative value denotes an error.
1967       return GetTwoWordFailureValue();
1968     }
1969   } else {
1970     cookie = JniMethodStart(self);
1971   }
1972   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
1973   *(sp32 - 1) = cookie;
1974 
1975   // Retrieve the stored native code.
1976   void* nativeCode = called->GetEntryPointFromJni();
1977 
1978   // There are two cases for the content of nativeCode:
1979   // 1) Pointer to the native function.
1980   // 2) Pointer to the trampoline for native code binding.
1981   // In the second case, we need to execute the binding and continue with the actual native function
1982   // pointer.
1983   DCHECK(nativeCode != nullptr);
1984   if (nativeCode == GetJniDlsymLookupStub()) {
1985 #if defined(__arm__) || defined(__aarch64__)
1986     nativeCode = artFindNativeMethod();
1987 #else
1988     nativeCode = artFindNativeMethod(self);
1989 #endif
1990 
1991     if (nativeCode == nullptr) {
1992       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
1993 
1994       // End JNI, as the assembly will move to deliver the exception.
1995       jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
1996       if (shorty[0] == 'L') {
1997         artQuickGenericJniEndJNIRef(self, cookie, nullptr, lock);
1998       } else {
1999         artQuickGenericJniEndJNINonRef(self, cookie, lock);
2000       }
2001 
2002       return GetTwoWordFailureValue();
2003     }
2004     // Note that the native code pointer will be automatically set by artFindNativeMethod().
2005   }
2006 
2007   // Return native code addr(lo) and bottom of alloca address(hi).
2008   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2009                                 reinterpret_cast<uintptr_t>(nativeCode));
2010 }
2011 
2012 // Defined in quick_jni_entrypoints.cc.
2013 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2014                                     jvalue result, uint64_t result_f, ArtMethod* called,
2015                                     HandleScope* handle_scope);
2016 /*
2017  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2018  * unlocking.
2019  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2020 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2021                                                     jvalue result,
2022                                                     uint64_t result_f) {
2023   // We're here just back from a native call. We don't have the shared mutator lock at this point
2024   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2025   // anything that requires a mutator lock before that would cause problems as GC may have the
2026   // exclusive mutator lock and may be moving objects, etc.
2027   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2028   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2029   ArtMethod* called = *sp;
2030   uint32_t cookie = *(sp32 - 1);
2031   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2032   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2033 }
2034 
2035 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2036 // for the method pointer.
2037 //
2038 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2039 // to hold the mutator lock (see SHARED_REQUIRES(Locks::mutator_lock_) annotations).
2040 
2041 template<InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2042 static TwoWordReturn artInvokeCommon(uint32_t method_idx, mirror::Object* this_object, Thread* self,
2043                                      ArtMethod** sp) {
2044   ScopedQuickEntrypointChecks sqec(self);
2045   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs));
2046   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2047   ArtMethod* method = FindMethodFast(method_idx, this_object, caller_method, access_check, type);
2048   if (UNLIKELY(method == nullptr)) {
2049     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
2050     uint32_t shorty_len;
2051     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2052     {
2053       // Remember the args in case a GC happens in FindMethodFromCode.
2054       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2055       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2056       visitor.VisitArguments();
2057       method = FindMethodFromCode<type, access_check>(method_idx, &this_object, caller_method,
2058                                                       self);
2059       visitor.FixupReferences();
2060     }
2061 
2062     if (UNLIKELY(method == nullptr)) {
2063       CHECK(self->IsExceptionPending());
2064       return GetTwoWordFailureValue();  // Failure.
2065     }
2066   }
2067   DCHECK(!self->IsExceptionPending());
2068   const void* code = method->GetEntryPointFromQuickCompiledCode();
2069 
2070   // When we return, the caller will branch to this address, so it had better not be 0!
2071   DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2072                           << " location: "
2073                           << method->GetDexFile()->GetLocation();
2074 
2075   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2076                                 reinterpret_cast<uintptr_t>(method));
2077 }
2078 
2079 // Explicit artInvokeCommon template function declarations to please analysis tool.
2080 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2081   template SHARED_REQUIRES(Locks::mutator_lock_)                                          \
2082   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2083       uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2084 
2085 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2086 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2087 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2088 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2089 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2090 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2091 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2092 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2093 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2094 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2095 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2096 
2097 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2098 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2099     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2100     SHARED_REQUIRES(Locks::mutator_lock_) {
2101   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2102 }
2103 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2104 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2105     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2106     SHARED_REQUIRES(Locks::mutator_lock_) {
2107   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2108 }
2109 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2110 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2111     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2112     SHARED_REQUIRES(Locks::mutator_lock_) {
2113   return artInvokeCommon<kStatic, true>(method_idx, this_object, self, sp);
2114 }
2115 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2116 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2117     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2118     SHARED_REQUIRES(Locks::mutator_lock_) {
2119   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2120 }
2121 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2122 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2123     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2124     SHARED_REQUIRES(Locks::mutator_lock_) {
2125   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2126 }
2127 
2128 // Determine target of interface dispatch. This object is known non-null. First argument
2129 // is there for consistency but should not be used, as some architectures overwrite it
2130 // in the assembly trampoline.
artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2131 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(uint32_t deadbeef ATTRIBUTE_UNUSED,
2132                                                       mirror::Object* this_object,
2133                                                       Thread* self,
2134                                                       ArtMethod** sp)
2135     SHARED_REQUIRES(Locks::mutator_lock_) {
2136   ScopedQuickEntrypointChecks sqec(self);
2137   StackHandleScope<1> hs(self);
2138   Handle<mirror::Class> cls(hs.NewHandle(this_object->GetClass()));
2139 
2140   // The optimizing compiler currently does not inline methods that have an interface
2141   // invocation. We use the outer method directly to avoid fetching a stack map, which is
2142   // more expensive.
2143   ArtMethod* caller_method = QuickArgumentVisitor::GetOuterMethod(sp);
2144   DCHECK_EQ(caller_method, QuickArgumentVisitor::GetCallingMethod(sp));
2145 
2146   // Fetch the dex_method_idx of the target interface method from the caller.
2147   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2148 
2149   const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
2150   CHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
2151   const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
2152   Instruction::Code instr_code = instr->Opcode();
2153   CHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2154         instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2155       << "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
2156   uint32_t dex_method_idx;
2157   if (instr_code == Instruction::INVOKE_INTERFACE) {
2158     dex_method_idx = instr->VRegB_35c();
2159   } else {
2160     CHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2161     dex_method_idx = instr->VRegB_3rc();
2162   }
2163 
2164   ArtMethod* interface_method = caller_method->GetDexCacheResolvedMethod(
2165       dex_method_idx, sizeof(void*));
2166   DCHECK(interface_method != nullptr) << dex_method_idx << " " << PrettyMethod(caller_method);
2167   ArtMethod* method = nullptr;
2168 
2169   if (LIKELY(interface_method->GetDexMethodIndex() != DexFile::kDexNoIndex)) {
2170     // If the dex cache already resolved the interface method, look whether we have
2171     // a match in the ImtConflictTable.
2172     uint32_t imt_index = interface_method->GetDexMethodIndex();
2173     ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
2174         imt_index % mirror::Class::kImtSize, sizeof(void*));
2175     if (LIKELY(conflict_method->IsRuntimeMethod())) {
2176       ImtConflictTable* current_table = conflict_method->GetImtConflictTable(sizeof(void*));
2177       DCHECK(current_table != nullptr);
2178       method = current_table->Lookup(interface_method, sizeof(void*));
2179     } else {
2180       // It seems we aren't really a conflict method!
2181       method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2182     }
2183     if (method != nullptr) {
2184       return GetTwoWordSuccessValue(
2185           reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2186           reinterpret_cast<uintptr_t>(method));
2187     }
2188 
2189     // No match, use the IfTable.
2190     method = cls->FindVirtualMethodForInterface(interface_method, sizeof(void*));
2191     if (UNLIKELY(method == nullptr)) {
2192       ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2193           interface_method, this_object, caller_method);
2194       return GetTwoWordFailureValue();  // Failure.
2195     }
2196   } else {
2197     // The dex cache did not resolve the method, look it up in the dex file
2198     // of the caller,
2199     DCHECK_EQ(interface_method, Runtime::Current()->GetResolutionMethod());
2200     const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()
2201         ->GetDexFile();
2202     uint32_t shorty_len;
2203     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(dex_method_idx),
2204                                                    &shorty_len);
2205     {
2206       // Remember the args in case a GC happens in FindMethodFromCode.
2207       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2208       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2209       visitor.VisitArguments();
2210       method = FindMethodFromCode<kInterface, false>(dex_method_idx, &this_object, caller_method,
2211                                                      self);
2212       visitor.FixupReferences();
2213     }
2214 
2215     if (UNLIKELY(method == nullptr)) {
2216       CHECK(self->IsExceptionPending());
2217       return GetTwoWordFailureValue();  // Failure.
2218     }
2219     interface_method = caller_method->GetDexCacheResolvedMethod(dex_method_idx, sizeof(void*));
2220     DCHECK(!interface_method->IsRuntimeMethod());
2221   }
2222 
2223   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2224   // We create a new table with the new pair { interface_method, method }.
2225   uint32_t imt_index = interface_method->GetDexMethodIndex();
2226   ArtMethod* conflict_method = cls->GetEmbeddedImTableEntry(
2227       imt_index % mirror::Class::kImtSize, sizeof(void*));
2228   if (conflict_method->IsRuntimeMethod()) {
2229     ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2230         cls.Get(),
2231         conflict_method,
2232         interface_method,
2233         method,
2234         /*force_new_conflict_method*/false);
2235     if (new_conflict_method != conflict_method) {
2236       // Update the IMT if we create a new conflict method. No fence needed here, as the
2237       // data is consistent.
2238       cls->SetEmbeddedImTableEntry(imt_index % mirror::Class::kImtSize,
2239                                   new_conflict_method,
2240                                   sizeof(void*));
2241     }
2242   }
2243 
2244   const void* code = method->GetEntryPointFromQuickCompiledCode();
2245 
2246   // When we return, the caller will branch to this address, so it had better not be 0!
2247   DCHECK(code != nullptr) << "Code was null in method: " << PrettyMethod(method)
2248                           << " location: " << method->GetDexFile()->GetLocation();
2249 
2250   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2251                                 reinterpret_cast<uintptr_t>(method));
2252 }
2253 
2254 }  // namespace art
2255